MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, April 21

1. Memoization and Streams

Memoization is a technique to improve performance by recording previously computed values. When-
ever a computation is repeated, the recorded result is used instead of performing the same work a
second time. Today, we will look at a simple example of how to memoize a procedure:

(define (memoize proc)
(let ((run? #f) (result #f))
(lambda ()
(cond ((not run?)

(set! result (proc))
(set! run? #t)
result)
(else result)))))

Consider now what happens if we change the definition of delay as follows.
(delay s) <==> (memoize (lambda () s))
Draw the environment diagrams for the following expressions with and without stream memoization.

(define a 5)

(define flip (cons-stream a (cons-stream (- a) flip)))
(stream-car (stream-cdr a))

(set! a 7)

(stream-car (stream-cdr a))

2. Playing with Scope
Let’s take a look at our old friend make-acct:

(define make-acct
(lambda (balance)
(lambda (msg . args)
(case msg
((BALANCE) balance)
((DEPOSIT) (set! balance (+ balance (cadr args))))))))

(define a (make—acct 100))

(a ’balance) ==> 100
(define b
(let ((balance 1000))
a))
(b ’balance) ==> 100

Why does b have a balance of 100 and not 10007 Quickly sketch the environment diagram for the
above expressions to see why.



2 6.001, Spring Semester, 1999—Recitation — Wednesday, April 21

3. Re-scoping a procedure

Consider a new special form called rescope that takes a procedure and returns a procedure with
the same parameters and body, but whose environment pointer points to the current environment.
Consider defining another account c¢ by rescoping a (instead of by calling make-acct).
(define c
(let ((balance 1000))

(rescope a)))
(c ’balance) ==> 1000

Let’s add the special form rescope to the mc-evalutator.
(1) Define Data Abstraction

(define (rescope? exp) (tagged-list? exp ’rescope))
(define (rescope-exp exp) (cadr exp))

(2) Add the appropriate cond clause to mc-eval

((rescope? exp) (eval-rescope exp env))

(3) Write eval-rescope

(define (eval-rescope exp env)
(let ((proc (mc-eval (rescope-exp exp) env)))
(if (compound-procedure? proc)
(make-procedure (procedure-parameters proc)
(procedure-body proc)
env)
(error "Bad argument to rescope")))

)

4. Grabbing procedure’s scope

Consider a new special form called inscope that takes a procedure and an expression and then
evaluates the expression with respect to the procedure’s environment. For example

(define d
(inscope a (lambda () (set! balance ’loser))))

(a ’balance) ==> 100
(@
(a ’balance) ==> loser

Let’s add the special form inscope to the mc-evalutator.
(1) Define Data Abstraction

(define (inscope? exp) (tagged-list? exp ’inscope))
(define (inscope-procedure exp) (cadr exp))
(define (inscope-body exp) (caddr exp))

(2) Add the appropriate cond clause to mc-eval

((inscope? exp) (eval-inscope exp env))
(3) Write eval-inscope

(define (eval-inscope exp env)
(let ((proc (mc-eval (rescope-exp exp) env)))
(if (compound-procedure? proc)
(mc-eval (inscope-body exp)
(procedure-environment proc))
(error "Bad procedure to inscope")))



