
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1998

Recitation – Wednesday, May 6

1. Student Presentation

Summarize the main points of the lecture of May 7. Take a position on what you think the future
role of computer assisted surgery will be in medicine, and whether you think computers should be
used to aid surgeons in delicate surgery such as neurosurgery.

2. Memory

Memory consists of many cells. Each cell stores the following: A number and a tag. For now, we
have three tags:
“N” – Number
“P” – Pointer to another cell
“E” – NULL

0 1 2 3 4 5 6 7 8 9 10
the-cars N3 N4 P0 N3 N5 P2 N2 N3 P1 N4
the-cdrs E0 E0 P4 P5 P0 P6 P5 P3 P3 N5

Using this implementation of cons cells, (cons A B) does this:

1. Look for the next FREE location
2. Store A at the-cars[i]
3. Store B at the-cdrs[i]
4. Return Pi, a pointer to the new cons cell.

Using the memory block above, draw the box-and-pointer diagram starting from P5.

Note that not everything sitting in memory is useful. For example, consider what occurs when the
following is evaluated (define foo (map square (list 1 2 3))).

1. Build the list (1 2 3)
2. Build the list (1 4 9)
3. Define foo to be the latter list

There are no pointers to the list (1 2 3) anymore. It cannot be accessed. It is garbage. The memory
should be recycled.



6.001, Spring Semester, 1998—Recitation – Wednesday, May 6 2

3. Garbage Collection

Does our computer have infinite memory? No. But we can create the illusion of infinite memory
using Garbage Collection. Consider the following four procedure. When applied, will Scheme run
out of memory or go into an infinite loop?

Procedure Out of Mem? Infinite Loop?
(define (foo) (foo))

(define (foo)

(let ((x (cons 1 2)))

(foo)))

(define (foo z)

(let ((x (cons 1 2)))

(foo x)))

(define (foo z)

(let ((x (cons 1 z)))

(foo x)))

What’s Garbage? Garbage is anything that cannot have any influence on the future computa-
tion. Everything else we need to keep around. We define the Root Set to be the set of all pointers
in the machine registers and stack. The cells we might need are defined as those cells that can be
reached by a succesion of car and cdr operations starting from the root set.

3. Reference Count

Here’s the main idea to reference counting:

1. Attach a counter to each pair in memory.
2. When a new pointer is connected to that pair, increment the counter.
3. When a pointer is removed, decrement the counter.
4. Any cell with 0 counter is garbage.

Consider the following example, and draw the box-and-pointer diagrams below, keeping a “reference
counter” with each cell.

(define a (list 1 2 3))

(set-cdr! a 4)

(set-cdr! a a)

(set! a 1)

Reference Counting can’t handle circular data structures!



6.001, Spring Semester, 1998—Recitation – Wednesday, May 6 3

3. Stop and Copy

Here’s the main idea to Stop and Copy:

1. Split memory in half (Working memory and Copy memory).
2. Keep a free pointer to the free part of memory.
3. When Memory runs out, stop computation and begin garbage collection.

(a) Place scan and free pointers at the start of the Copy memory.

(b) Copy the Root Set over to copy memory, incrementing free. In each location that’s
copied over, put the “Broken Heart” token in the car and the forwarding address in the
cdr.

(c) Starting at the scan pointer, check the car and the cdr. If either is a pointer, look at the
location in Working memory. If it’s already been copied (i.e. it has a “Broken Heart”),
update the reference. Otherwise, copy the location and put the “Broken Heart” in the
old location.

(d) Repeat until scan = free.

(e) Swap the roles of the Working and Copy memory.

The register machine code for this algorithm is in the text.

For example, let’s perform stop-and-copy on the following with Root Set = { P5 }:

Working 0 1 2 3 4 5 6 7 8 9 10

the-cars N3 N4 P0 N3 N5 P2 N2 N3 P1 N4

the-cdrs E0 E0 P4 P5 P0 P6 P5 P3 P3 N5

Copy 0 1 2 3 4 5 6 7 8 9 10

the-cars

the-cdrs

This method sounds expensive, because half of memory is idle except when using the Garbage
Collector. However, it goes just about as fast as possible. It only examines valid locations. Most
memory is garbage, and never even gets looked at. We see a very common tradeoff here: Pay a lot
of space, get a lot of time.



6.001, Spring Semester, 1998—Recitation – Wednesday, May 6 4

3. Mark - Sweep

Here’s the main idea to Mark-Sweep:

1. Add a Mark Bit to each location in memory.
2. Keep a free pointer to the head of the free list.
3. When Memory runs out, stop computation, clear the Mark Bits and begin garbage collection.

4. Mark
(a) Start at the root and follow the accessible structure (keeping a stack of where you still

need to go).

(b) Mark every cell you visit.

(c) Stop when you see a marked cell, so you don’t go into a cycle.

5. Sweep
(a) Start at the end of memory, and build a new free list.

(b) If a cell is unmarked, then it’s garbage, so hook it into the free list.

For example, let’s perform Mark-Sweep on the following with Root Set = { P5 }:

Memory 0 1 2 3 4 5 6 7 8 9 10

the-cars N3 N4 P0 N3 N5 P2 N2 N3 P1 N4 P5

the-cdrs E0 E0 P4 P5 P0 P6 P5 P3 P3 N5 N7

marks

Stack:

Free Pointer:

This method is a good deal more compact than stop-and-copy. However, it also always looks
through all of memory, so it is fairly slow.

In this example, we needed a stack to keep track of where we still need to explore. This can actually
be done without a stack by keeping track of recursive calls using the data structures in memory
themselves.


