MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999
Recitation — Friday, May 7
Final Review Handout !

Iterative vs. Recursive Processes and Order of Growth
Consider the two procedures below. Assume the arguments passed in are always positive integers.

(define (o0dd? x)
(if (=x 1)
#t
(even? (- x 1))))

(define (even? x)
(not (odd? x)))

Given the above definitions, when the expression (odd? 24) is evaluated, does that generate a
recursive or iterative process? Why?

What is the order of growth of in time of the procedure even??
What is the order of growth of in space of the procedure odd??

=

Change one of the two functions above to make the process the opposite of what it currently is (eg.
If it’s a recursive process, make it iterative and if it’s an iterative process, make it recursive).

—

Consider the function below:

(define (power-of-27 n)
(cond ((= n 1) #t)
((< n 1) #£)
(else
(power-of-27 (/ n 2)))))

Does the function power-of-27 generate a recursive or iterative process? Why?
What is the order of growth of in time of the procedure power-of-277
What is the order of growth of in space of the procedure power-of-277

—

!Disclaimer: This handout was created as a study guide for the final. It is NOT necessarily complete.
There could be other material not covered in this handout that is still fair game for the final. This is
also NOT a practice final, in that I didn’t time how long it should take. I just tried to come up with
some problems that would help in reviewing for the final.

2 6.001, Spring Semester, 1999—Recitation — Friday, May 7

Higher Order Procedures and Tree Structures

We'd like to write an evaluator for simple in-fix numerical expressions. For example, consider the trees
generated by the following expressions. Careful: Notice that the operators are not quoted.

(define expl (list 3 + 5))
(define exp2 (list 3 * (list (list 4 + (list 6 - 2)) / 2)))

How does expl print when evaluated?

Draw the box and pointer diagram for the tree structure of exp2

=

Write a function infix that evaluates these types of expressions. For example,

(infix 4) => 4
(infix expl) ==> 8
(infix exp2) ==> 12

—

Consider a function infix->prefix that takes an infix expression like expl and exp2 above, and
transforms the expression into prefix form (e.g. it swaps the order of the operator and first operand).
For example, the expression (infix->prefix (list (list 3 * 2) + 4)) will produce the same list
structure as (i.e. will be equal? with) the value of following expression:

(1ist + (1list * 3 2) 4).

Write the function infix->prefix.

=

6.001, Spring Semester, 1999—Recitation — Friday, May 7 3

Local State

Assume scheme has the following special form time, which takes one argument and times how long it
takes to evaluate the argument. Time returns a list of two elements, the first is the amount of time it
took to evaluate the expression, and the second is the value of the expression. For example,

(time (sqrt 4)) ==> (20 2)

(time (sqr 5)) ==> (10 25)

(time (list 1 2 3)) ==> (7 (1 2 3))

(time (/ 1 0)) ==> Error: divide by zero

Assume, for simplicity, that (sqrt x) always takes 20 time units to compute and (sqr x) always
takes 10 time units to compute for all positive numbers.

Louis has a program that he wants to make run faster. He wants to see what procedures are eating
up the most amount of time. He decides to write a procedure called make-timed-procedure which
takes a procedure and returns a procedure that does the same thing as the original, but also keeps
track of the total time spent in the procedure. For example,

(define tsqrt (make-timed-procedure sqrt))
(define tsqr (make-timed-procedure sqr))

(tsqrt ’time) ==> 0 (tsqr ’time) ==> 0
(tsqrt 4) ==> 2 (tsqr 10) ==> 100
(tsqrt ’time) ==> 20 (tsqr ’time) ==> 10
(tsqrt 4) ==> 2 (tsqr 10) ==> 100
(tsqrt ’time) ==> 40 (tsqr ’time) ==> 20

Louis writes the following procedure:

(define make-timed-procedure-1
(let ((total-time 0))
(lambda (proc)
(lambda (%)
(if (eq? x ’time)
total-time
(let ((result (time (proc x))))
(set! total-time (+ total-time (car result)))
(cadr result)))))))
After defining the following two functions, Louis trys out his code. Show the output of each of the
following expressions, assuming that each call to sqrt takes 20 and each call to sqr takes 10 time

units.

(define tsqrt-1 (make-timed-procedure-1 sqrt))
(define tsqr-1 (make-timed-procedure-1 sqr))

i (map tsqrt-1 (map tsqr-1 ’(-1 2 -3 4 -5))) ==>

(tsqrt-1 ’time) ==>

(tsqr-1 ’time) ==>
This isn’t quite the behavior we wanted. What change needs to be made to make-timed-procedure
so that we get the correct behavior?

=

4 6.001, Spring Semester, 1999—Recitation — Friday, May 7

Object Oriented Programming and Environment Diagrams

Below is the object oriented system from the March 19th Lecture Notes (just included for reference)

(define (get-method object message)
(object message))

(define (no-method name)
(list 'no-method name))

(define (no-method? x)
(if (pair? x)
(eq? (car x) 'no-method)
false))

(define (method? x)
(not (no-method? x)))

(define (ask object message . args)
(let ((method (get-method object message)))
(if (method? method)
(apply method (cons object args))
(error "No method” message (cadr method)))))

Consider the following expressions:

(define (create-counter)
(let ((count 0))
(lambda (message)
(case message
((VALUE) (lambda (self) count))
((INCR) (lambda (self)
(set! count (+ 1 count))
count))
((DECR) (lambda (self)
(set! count (- count 1))

count))))))

(define c1 (create-counter))
(define c2 (create-counter))

Draw the environment diagram for the above three expressions.

=

Write the expression that you would use to get the value of counter c1.

=

Write the expression that you would use to increment counter c1.

=

6.001, Spring Semester, 1999—Recitation — Friday, May 7 5

Streams and Higher Order Procedures

In this part, we are going to create an infinite stream of higher-order procedures. First, here are some
simple functions that we are going to be using.

(define (compose f g) (lambda (x) (£ (g x))))
(define (incr x) (+ x 1))
(define (sqr x) (* x x)

Now, Consider the function compose-fstreams that takes two streams-of-functions, fs1 and £s2, and
returns another stream-of-functions where each element is the result of composing the corresponding
elements of £s1 and fs2.

(define (compose-fstreams fsl fs2)
(cons-stream (compose (stream-car fsl) (stream-car fs2))
(compose-fstreams (stream-cdr fsl1) (stream-cdr fs2))))

We define the following two infinite streams of functions, one that increments and one that squares.

(define fs-incr (cons-stream incr fs-incr))
(define fs-sqr (cons-stream sqr fs-sqr))

We can now define another infinite stream-of-functions fs (Hint: this is similar to how we defined

integers in terms of ones).

(define fs
(cons-stream incr (compose-fstreams fs-incr fs)))

What is the first element of the stream fs?

What is the second element of the stream fs?
Consider the function apply-fstream and the definition of the stream s, below.

(define (apply-fstream fs x)
(cons-stream
((stream-car fs) x)
(apply-fstream (stream-cdr fs) x)))
(define s (apply-fstream fs 0))

What are the first 10 elements of the stream s?
Consider the following two streams that are defined.

(define t1 (apply-fstream (compose-fstreams fs fs-sqr) 0))
(define t2 (apply-fstream (compose-fstreams fs-sqr fs) 0))

What are the first 5 elements of the stream t17?

What are the first 5 elements of the stream t27

=

6 6.001, Spring Semester, 1999—Recitation — Friday, May 7

Meta Circular Evaluator

We would like to introduce a new special form to our evaluator called same?. Same? always takes
three arguments, and returns #t if all three arguments are eq?. Same?, however is smart in that if the
first two arguments are different, then the third argument is not evaluated. Here are some examples
of using same?.

(same? ’x ’x ’x) => #t
(same? ’x ’x ’y) ==> #f
(same? ’x ’y ’y) ==> #f
(same? ’x ’y (/ 1 0)) ==> #f
(same? ’x ’x (/ 1 0)) ==> Divide by Zero Error

To add this special form to the evaluator, we need to define some data abstraction.

Define the function same?? that checks to see if an expression is a same? expression.

=

Define the functions same?-first and same?-second that select out the first and second sub-expressions
(assume someone else defined same?-third).

=
=

Next, write the appropriate clause to add to the cond clause of eval, assuming that we have the
function eval-same? that will evaluate a same? expression.

=

Finally, write the eval-same? function that takes a same? expression and an environment and
implements the special form as described above.

=

Fill in the blanks:

i We need to make same? a special form in our language because our language has

evaluation. If, instead, our language had evaluation, then we could simply de-
fine same? as a function.

Assuming our Scheme has the alternative method of evaluation (stated in the previous paragraph),
define same? as a function.

=

6.001, Spring Semester, 1999—Recitation — Friday, May 7 7

Explicit Control Evaluator

The special form same? from the previous example was so helpful that we decided to add it to the
explicit control evaluator. Assume that in addition to the registers we’ve used in the past, we’'ve also
got the register TMP. Fill in the blanks in the following code that evaluates a same? expression.

N

1. ev-same?

2 (assign unev (reg exp))

3 (assign exp ((op same?-first) (reg exp)))
4. (save continue)

5.

6 (save unev)

7 (assign)
8. (goto)

9. eval-after-first

10. (restore unev)

11.

12. (assign tmp (reg val))

13. (assign exp ((op same?-second) (reg unev)))
14. (save tmp)

15.

16. (save unev)

17. (assign continue eval-after-second)

18. (goto)

19. eval-after-second

20. (restore unev)

21.

22. (restore tmp)

23. (test (op eq?))

24. (branch (label eval-third-arg))
25. (assign val #f)

26.
27. (goto (reg continue))

28. eval-third-arg

29. (assign exp ((op same?-third) (reg unev)))

30.

31. (save tmp)

32. (goto)

33. eval-after-third

34. (restore tmp)

35.

36. (test (op eq?))

37. (branch (label all-same))
38. (assign val #f)

39. (goto (reg continue))

40. all-same

41. (assign val #t)

42. (goto (reg continue))

j Does this same? operation handle tail recursion? Why or why not?

j For example, is the following recursive or iterative?

(define (foo x y)
(same? (even? x) (even? y) (foo x (/ y 2))))

8 6.001, Spring Semester, 1999—Recitation — Friday, May 7

Concurrency
Consider the following definitions of x and y

(define x 2)
(define y 3)

In the table below, list all possible final values of z after the following expressions are evaluated.

(parallel-execute
(lambda () (set! x (+ y y)))
(lambda () (set! y (* x y))))

(define z (list x y))

=

Implementing Put and Get

Assume that we have one global put and get table called *global-put-table*. Define (a simplified
version of) put and get as follows?.

(put keys value) -- Places the value in the global table indexed by keys
(get keys) ==> value

For example,

(put ’(6001 is) ’fun)

(put ’(the season is) ’spring)

(get ’ (6001 is)) ==> fun
(put ’(6001 is) ’(almost over))

(put ’year 1999)

(get ’house) ==> #f
(get ’(6001 is)) ==> (almost over)
(get ’year) ==> 1999

Complete the following three definitions for put and get.

—

(define *global-put-table*)

=

(define (put keys value)

)

—

(define (get keys)

)

2Note that the put we used before took any number of keys such as (put ’a ’b ’(c d) 5) and then to retrieve,
(get ’a ’b ’(c d)) ==> 5. For this example, we’ll be simplifying it to take one list of keys.

6.001, Spring Semester, 1999—Recitation — Friday, May 7 9

Register Machines

Draw the Data Paths AND Controller for a machine to compute whether the input x is odd by
successively subtracting 1 from the input. You can assume that the input will be a positive integer.
Assume the only primitive operations you have are subtraction, logical not, and testing equality. After
your machine finishes running, the result in the answer register should be either #t or #f.

Data Path

Controller

10 6.001, Spring Semester, 1999—Recitation — Friday, May 7

Compilers
Consider the following compiled code:

1. (assign val (op make-compiled-procedure) (label entry23) (reg env))
2. (goto (label after-lambda22))

3. entry23

4. (assign env (op compiled-procedure-env) (reg proc))

5. (assign env (op extend-environment) (const (f ¢)) (reg argl) (reg env))
6. (save continue)

7. (save env)

8. (assign proc (op lookup-variable-value) (const c¢) (reg env))
9. (assign val (op lookup-variable-value) (const f) (reg env))
10. (assign argl (op list) (reg val))

11. (test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch29))

13. compiled-branch28

(assign continue (label proc-return30))

15. (assign val (op compiled-procedure-entry) (reg proc))

16. (goto (reg val))

17. proc-return30

18. (assign proc (reg val))

19. (goto (label after-call27))

20. primitive-branch29

21. (assign proc (op apply-primitive-procedure) (reg proc) (reg argl))
22. after-call27

23. (restore env)

24. (restore continue)

25. (assign val (op lookup-variable-value) (const f) (reg env))
26. (test (op false?) (reg val))

27. (branch (label false-branch25))

28. true-branch26

29. (assign val (const 1))

30. (goto (label after-if24))

31. false-branch25

32. (assign val (const 2))

33. after-if24

34. (assign argl (op list) (reg val))

35. (assign val (op lookup-variable-value) (const a) (reg env))

36. (assign argl (op cons) (reg val) (reg argl))

37. (test (op primitive-procedure?) (reg proc))

38. (branch (label primitive-branch33))

39. compiled-branch32

40. (assign val (op compiled-procedure-entry) (reg proc))

41. (goto (reg val))

42. primitive-branch33

43. (assign val (op apply-primitive-procedure) (reg proc) (reg argl))
44. (goto (reg continue))

45. after-call31

46. after-lambda22

47. (perform (op define-variable!) (const a) (reg val) (reg env))

48. (assign val (const ok))

Decompile the following groups of code. (Hint: Don’t worry if the overall code looks a bit unusual.)

j Lines 8-22:
i Lines 25-33:
j Lines 8-45:
i Lines 1-48:

