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Abstract
We describe a linear-time algorithm that recovers abso-

lute camera positions for networks of thousands of terres-
trial images spanning hundreds of meters, in outdoor urban
scenes, under uncontrolled lighting. The algorithm requires
no human input or interaction. For real data, it recovers
camera pose globally consistent on average to roughly five
centimeters, or about four pixels of epipolar alignment.

This paper’s principal contributions include an exten-
sion of Markov chain Monte Carlo estimation techniques to
the case of unknown numbers of feature points, unknown oc-
clusion and deocclusion, large scale (thousands of images,
and hundreds of thousands of point features), and large di-
mensional extent (tens of meters of inter-camera baseline,
and hundreds of meters of baseline overall). Also, a princi-
pled method is given to manage uncertainty on the sphere; a
new use of the Hough transform is proposed; and a method
for aggregating local baseline constraints into a globally
consistent pose set is described.

1. Introduction
Extrinsically calibrated imagery is of fundamental interest
in a variety of computer vision and graphics applications,
including sensor fusion, 3-D reconstruction for model cap-
ture, and image-based rendering. In practice, registering
imagery can require substantial manual effort—for exam-
ple, matching common points across multiple images.

We have developed two camera registration algorithms
as part of a system for automated model capture in extended
urban environments [25, 12]. In our system, a human oper-
ator moves a sensor [7] to many viewing positions in and
around the scene of interest. The sensor acquires images
annotated with a rough estimate of the acquiring camera’s
position and orientation in absolute (Earth) coordinates.

Images are grouped by optical center into single, wide-
FOV mosaics called “nodes” [12]. Each node is subse-
quently treated as a rigid, super-hemispherical image with a
single pose. The sensor’s initial pose estimates are accurate
only to several meters and several degrees; thus, one critical
component of our system is the refinement of these esti-
mates to bring all cameras into pixel-accurate registration.
The scale of the dataset rules out interactive techniques, so

pose recovery must be fully automated. Solving the gen-
eral registration problem requires determination of six pa-
rameters for each camera—three of rotation, and three of
position. Our approach decouples the 6-DOF problem into
pure rotation (3-DOF) and pure translation (3-DOF) com-
ponents. This paper assumes rotationally registered images
as inputs [3], and addresses only position recovery.

We make use of a number of existing techniques from
computer vision and estimation theory, including: the use
of gradient-based features for robustness against lighting
variations and strong perspective; probabilistic inference;
the Hough transform, for robust and efficient initialization;
Markov chain Monte Carlo (MCMC) for sampling high-
dimensional spaces; and expectation maximization (EM)
methods, for solution of coupled classification and estima-
tion problems.

1.1. Algorithm Overview
The goal of our algorithm is to accurately register every
camera (node) to a single, common coordinate system. Our
approach exploits the fact that adjacent (nearby) nodes tend
to observe overlapping scene structure, namely point fea-
tures. The algorithm first detects shared structure across
pairs of adjacent nodes, estimating a local displacement re-
lating each pair. These local constraints are then propagated
throughout the node graph to assign a globally consistent
position to each node.

1.2. Input Requirements and Assumptions
Our algorithm requires the following inputs:

• Intrinsic calibration. Radial distortion has been cor-
rected, and pinhole camera parameters (focal length,
principal point, skew) are supplied.

• Accurate extrinsic orientations. Scene-relative orien-
tations and vanishing point directions are supplied for
each node [3].

• Rough camera locations. Absolute (GPS-based) posi-
tion estimates for each node are supplied.

• Camera adjacency. A list of the neighbors of each
node is supplied.

• Point features. Sub-pixel point features, produced by
intersecting pairs of image lines, are supplied for each
image.



1.3. Paper Overview
The paper is structured as follows. Section 2 reviews projec-
tive feature representations and geometric probability. Sec-
tion 3 describes the position recovery algorithm, and Sec-
tion 4 reports experimental results. Section 5 reviews re-
lated work, and Section 6 summarizes our contributions and
results.

2. Preliminaries
A rigid transformation, consisting of a 3-D translation t and
orthonormal rotation R, expresses points pw in world space
as points pc in camera space. Formally,

pc = R>(pw − t); pw = Rpc + t.

Our algorithm assumes that all rotation matrices R are
known, and recovers a Gaussian distribution on t for each
camera.

2.1. Projective Points
Image points can be represented as planar coordinate pairs
(u, v); however, because the field of view in our images is
large, we represent point features uniformly as projective
rays, or unit vectors on

�
2, the Gaussian sphere.

2.2. Bingham’s Distribution
Features viewed by a single camera are inherently projec-
tive, since no depth information is available, and noisy; we
wish to represent such features appropriately. Exponential
distributions are useful for many inference tasks, but the
commonly used Gaussian density is a Euclidean probabil-
ity measure unsuitable for projective variables. We repre-
sent projective image features (points and lines) on

�
2 using

Bingham’s distribution [6], a zero-mean Gaussian variable
x ∈ R3 conditioned on ‖x‖ = 1.

This distribution is parameterized by a symmetric 3 × 3
matrix M , analogous to the information matrix of a zero-
mean Gaussian distribution, that encodes a feature’s “orien-
tation” (i.e. ray and line directions) and “shape” (i.e. feature
type and degree of uncertainty):

p(x) = c exp(x>Mx)

where c is a normalizing coefficient that depends only on
the shape parameters.

3. Position Recovery Algorithm
Figure 1 depicts the position recovery algorithm. First,
translation direction (baseline) estimates are initialized for
all node adjacencies using a Hough transform. An EM
technique refines the baseline by averaging over all possi-
ble point feature correspondence sets. Once a baseline esti-
mate has been found for each adjacency, a global optimiza-
tion step finds the camera positions most consistent with the
baselines. Finally, a rigid 3-D to 3-D registration aligns the
node set to the raw (initial) pose estimates.
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Figure 1: Position Recovery Overview

3.1. Two-Camera Translation Geometry
Given rotationally registered cameras A and B, and re-
spective point feature sets X = {x1, . . . , xN} and Y =
{y1, . . . , yM}, we wish to determine the direction of mo-
tion b from A to B most consistent with the available data.

3.1.1. Epipolar Geometry Under Known Orientation
An epipolar plane P contains two camera centers and a 3-D
point seen by both cameras. Projections of the 3-D point
onto each of the images, x and y respectively, must there-
fore also lie in P (Figure 2).
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Figure 2: Epipolar Geometry
(a) A single 3-D point lies in an epipolar plane containing the
baseline and any projective observations of the point. (b) The
epipolar planes induced by a set of 3-D points forms a pencil
coincident with the baseline. The normals of these planes
thus lie on a great circle orthogonal to the baseline direction.

For rotationally registered cameras, it holds that

(x × y) · b = 0. (1)

Define mij ≡ xi × yj . For the correct pairs of i and
j—that is, for those (i, j) couplets in which feature xi truly
matches feature yj—the constraint (1) becomes mij ·b = 0.
If the mij are viewed as projective epipolar lines, then the
baseline b can be viewed as a projective focus of expansion,
and its antipode the focus of contraction, the intersections
of all epipolar lines arising from true matches.

3.1.2. Geometric Constraints on Correspondence
The correspondence and baseline are both initially un-
known, severely under-constraining the above construction.
For images with M and N features, there are MN possible
individual feature matches, and O((MN)!) possible corre-
spondence sets, making the search space enormous. Its
dimension can be reduced by eliminating candidate corre-
spondences (Figures 3 and 4).

The 3-D line directions and 2-D line classifications ob-
tained from rotational pose recovery provide strong cues for
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Figure 3: Line Constraints
Two images, and possible matches for a point feature A in
the first image. Point B is the true match; C and D are also
plausible because they are formed by lines whose directions
match those of the lines forming A. Point E is rejected, since
its line directions do not match those of A.
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Figure 4: Direction Constraints
(a) Baseline uncertainty induces an equatorial band of uncer-
tainty for epipolar lines. The match between features � and

� is plausible because it implies motion in the correct direc-
tion. (b) The match between � and �

1
is rejected because

it implies backward motion; the match with �
2

is rejected be-
cause its epipolar line does not lie in the uncertainty band.

feature culling and point correspondence rejection. Each
candidate correspondence is discarded unless:

• Directions (VPs) of constituent lines match.
• Epipolar line falls within uncertainty bound.
• Inferred depth of 3-D point falls in reasonable range.

3.2. Estimation of Translation Direction
If true correspondence between the feature sets X and Y is
known, then in the absence of measurement noise, a set of
constraints (1) can be used to estimate b by minimizing the
objective function

E =
∑

(i,j)∈F

(mij · b)2.

Here, F is the set of F pairings (i, j) that represent the true
matches. The optimal b is the eigenvector associated with
the minimum eigenvalue of the matrix

A =
∑

(i,j)∈F

mijm
>
ij .

In reality, every point feature is a noisy observation aris-
ing from the intersection of two noisy image lines, each
represented by a Bingham variable. The Bingham uncer-
tainty of the intersection can be determined by fusing the
two lines. Similarly, correspondence between point features
xi and yj induces an uncertain epipolar line mij . Estima-
tion of the baseline must therefore incorporate the uncer-
tainty of the mij , and produce a distribution on b.

3.2.1. Baseline Inference from Noisy Data
The Bingham parameters M � of the baseline distribution
can be inferred by projective fusion as

M � =
∑

(i,j)∈F

M ij + M0

where M ij represents the uncertainty of the epipolar line
mij , M0 is the prior distribution on b, and the sum is taken
only over indices associated with true matches. Equiva-
lently, inference can be performed by associating a binary-
valued variable bij with every possible correspondence:

bij =

{

1, if xi matches yj

0, otherwise.

The Bingham parameters of b are then determined by

M � =

M
∑

i=1

N
∑

j=1

bijM ij + M0,

where summation occurs over every possible (i, j) pairing.
Due to feature noise and occlusion, explicit correspon-

dence cannot always be determined. Thus, we employ con-
tinuous variables wij ∈ [0, 1] to represent the likelihood,
or probability, that feature xi matches feature yj . In this
weighted formulation, inference of b becomes

M � =

M
∑

i=1

N
∑

j=1

wijM ij + M 0.

The bij represent the deterministic limit of the wij .

3.2.2. Feature Match Weights
A feature observed in one image has at most one true match
in the other image. A true match exists only if the observa-
tion corresponds to a real 3-D point, and if its counterpart in
the other image is visible and detected. Formally, we write

N
∑

k=0

bik =

M
∑

k=0

bkj = 1
i ∈ [1, M ]
j ∈ [1, N ]

,

where bi0 and b0j are binary slack variables [10], taking
value one if xi (resp., yj) matches no feature, and zero oth-
erwise. In the probabilistic case, we write analogously

N
∑

k=0

wik =

M
∑

k=0

wkj = 1
i ∈ [1, M ]
j ∈ [1, N ]

. (2)

This condition enforces a symmetric (two-way) constraint
over all correspondences: each feature in either image can
match a set of possible features in the other image with
some probability. The weights can be represented by an
(M + 1) × (N + 1) matrix W (or B, in the binary case),
whose rows represent the features X , whose columns rep-
resent the features Y , and whose individual entries are the
match weights (Figure 5). The condition in (2) states that
the weight matrix be doubly stochastic [23], i.e. that both
its rows and its columns sum to one.
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Figure 5: Match Matrix
The match matrix encodes pairwise feature correspondences.
(a) A binary match matrix. (b) The matrix augmented with
slack variables.

3.2.3. Initialization: Obtaining a Prior Distribution

Motion direction and correspondence are tightly coupled
and under-constrained. However, we can use initial pose
and match constraints to approximate b without explicit cor-
respondence.

Let M represent the set of all plausible correspondences
(epipolar lines) between X and Y , and let the subset M′ ⊂
M contain only the F true matches. If all lines in M are
drawn on

�
2 (Figure 6), those in M′ (in the absence of

noise) will intersect at the motion direction b. The remain-
der, representing false matches, will intersect at uncorre-
lated locations. The point of maximum incidence on

� 2 is
the most likely direction of motion; this point can be lo-
cated by discretizing

� 2 and accumulating all (weighted)
candidate epipolar lines M in a Hough transform.

Figure 6: Hough Transform for Baseline Estimation
Two examples of Hough transforms for baseline estimation.
Epipolar lines for all plausible matches are accumulated; the
transform peak represents the baseline direction.

Because there are MN possible matches and only F (at
most min(M, N)) true matches, the true baseline peak may
be obscured by spurious peaks. For example, a point fea-
ture lying close to the motion direction can plausibly match
many features in the other image (Figure 7). Enforcing (2)
through iterative normalization [23] dramatically improves
the coherence of the true motion direction.

Although the discrete Hough transform has limited accu-
racy, the resulting motion direction estimate b0 can be used
as a strong prior (with parameters M 0 in the notation of
Section 3.2) for subsequent inference.

3.3. Monte Carlo Expectation Maximization
This section describes refinement of the baseline estimate
solely from observed point features, without explicit corre-
spondence, by employment of an EM algorithm in which
the posterior distribution is discretely sampled. Using max-

b

x

y1
y2

y3

HT

False
Peak

True
Baseline

(a) (b) (c)

True
Baseline

False
Peaks

Figure 7: False Hough Transform Peaks
(a) False peaks in the Hough transform can be caused by
features too close to the direction of motion, which have
many matches. (b) An example. (c) The same example af-
ter Sinkhorn normalization.

imum likelihood notation,

b∗ = argmax � [p(b|M)]

Bayes’ rule yields

p(b|M) =
∑

�

p(b, B|M)

=
∑

�

p(b|B,M)p(B|M)

where B is a valid binary correspondence matrix, and
p(B|M) is the prior distribution on the correspondence set.
This prior can be uniform, or can incorporate geometric
match constraints like those in Section 3.1.2.

3.3.1. Structure from Motion without Correspondence
An optimal estimate for b can be found by maximizing
p(b|M), treating correspondence sets as nuisance parame-
ters in a Bayesian formulation, and evaluating over all pos-
sible matrices B [14]. We use an EM algorithm, alternat-
ing between an M-step, in which a log likelihood function
is maximized to estimate b given a distribution on B, and
an E-step, in which this distribution is estimated given the
current baseline. Convergence on the global optimum is vir-
tually guaranteed by the Hough transform initialization.

We relate continuous to binary weights by defining wij

as the marginal probability of match bij regardless of the
other matches; that is,

wij ≡ p(bij = 1|b,M) =
∑

�

δ(i, j)p(B|b,M);

The next sections describe a method for efficiently evaluat-
ing the wij by Monte Carlo sampling.

3.3.2. Sampling the Posterior Distribution
In the MCMC formulation, each possible binary match ma-
trix B represents a distinct state; random transitions be-
tween states occur according to the Metropolis criterion
[21] until steady state is reached. When the transition like-
lihoods are appropriately chosen, the steady-state probabil-
ities represent the distribution on correspondence matrices



B. In practice, all visited Bk (where k is a transition in-
dex) are averaged to obtain a weight matrix W , which by
construction meets the criteria of (2).

The MCMC algorithm requires a valid starting state and
random state perturbations that satisfy detailed balance,
meaning that every valid state is reachable from every other
valid state. Suitable perturbations must thus be defined.

3.3.3. Match Perturbations
Dellaert’s method [14] treats the case in which all features
are visible in all images, and thus only allows swap pertur-
bations: Bk+1 is identical to Bk except for a single row (or,
equivalently, column) swap. Since simple swapping pre-
serves the number of matches, states with greater or fewer
matches than the current state are never reached.

(a) (b)

Figure 8: Row and Column Swaps
(a) Two rows of the match matrix, including outliers, are inter-
changed. (b) Two columns are interchanged.

We generalize Dellaert’s technique, in the two-camera
case, to handle an unknown number of visible 3-D fea-
tures, and also to handle outliers and occlusion, by utilizing
slack variables and by adding two complementary opera-
tions (Figure 9). The split perturbation converts a match
into two unmatched features; the merge perturbation joins
two unmatched features into one match.

(a) (b)

Figure 9: Split and Merge Perturbations
(a) A valid match is split into two outliers, reducing the number
of matches by one. (b) Two outliers are merged into a match,
increasing the number of matches by one.

3.4. Multi-Camera Method
The baseline estimation method recovers camera motion
only up to an unknown scale factor for each baseline. This
section describes a method for assembling the pair-wise
baseline directions and recovering a globally consistent po-
sition for each node.

3.4.1. Baseline Constraints
Only the directions (not distances) between adjacent nodes
and rough initial camera positions are known. We employ
an iterative algorithm that updates each node’s position pi

using constraints imposed by its associated baselines.

At each iteration, the list of all nodes is traversed in ran-
dom order. For a given node i, a set of constraints is assem-
bled by constructing rays originating at the current positions
pj of its neighbor nodes and emanating in the direction of
the estimated baselines bji (Figure 10). The new position p′

i

for node i is chosen to minimize the mean-square distance
to each baseline ray. In the absence of baseline uncertainty,
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Figure 10: Single Node Baseline Constraints
A node’s position is constrained by adjacent positions and
baselines.

p′
i can be determined according to

p′
i =

(

∑

j
(I − bjib

>

ji)
)−1 (

∑

j
(I − bjib

>

ji)pj

)

. (3)

Uncertainty in baseline directions can be incorporated by
replacing bjib

>

ji in (3) with the second-moment matrix of
the baseline’s Bingham density. Uncertainty in p′

i, in the
form of a 3 × 3 Euclidean covariance matrix, is approxi-
mated by the inverse matrix in (3).

3.4.2. Metric Registration
A final registration phase finds the optimal rigid transla-
tion, rotation, and isotropic scaling [18] that align the re-
fined node positions to the initial (Earth-relative) node po-
sitions (Figure 11). This phase also transforms each node’s
uncertainty estimates into metric Earth coordinates so that
end-to-end confidences can be assessed.

(a) (b) (c) (d)

Figure 11: Metric Registration Process
(a) The original configuration is shifted so that the two cen-
troids coincide. (b) Rays from the centroid to each camera
are rotationally aligned. (c) The optimal scale is computed
and applied. (d) The final configuration.

3.5. Asymptotic Running Time
The number of adjacencies in the node graph is linear in the
number of nodes n, since every node has at most a constant
number of neighbors. The algorithm’s pairwise baseline es-
timation stage requires O(f 2) time per adjacency, where f

is the maximum number of point features in the two nodes
involved; in practice we bound f by a constant. Thus the
pairwise stage requires O(n) time.

The global algorithm of Section 3.4.1 runs for at most
a constant number of iterations. At each iteration, n new



node positions are computed, each in O(1) time. The final
metric alignment runs in O(n) time; thus, the end-to-end
algorithm requires O(n) time.

3.6. Limitations
The algorithm has several limitations. It requires point fea-
tures. It relies on pairwise baseline estimates, so may be un-
stable for degenerate input configurations, or incorrect node
adjacencies. The algorithm’s assumption that nearby nodes
are likely to have observed overlapping scene structure may
be faulty, for example when two nodes lie on opposite sides
of a thin structure.

4. Experiments
We implemented the position registration algorithm in
roughly 5,000 lines of C++ code, and instrumented its per-
formance on a 250MHz SGI O2 with 1.5 GB of memory.
We report the following quantities for each dataset:

• Data size. The number of omni-directional nodes, con-
stituent rectangular images, detected point features,
and adjacent node pairs, as well as the average distance
between adjacent nodes.

• Computation time. Average and total running times
for each stage, excluding file I/O.

• Positional offsets. The difference between each node’s
initial and refined position, which enables us to assess
the algorithm’s robustness against poor initial pose.

• End-to-End position error. Uncertainty estimates
for the refined node positions using 99% confidence
bounds of the recovered Gaussian densities.

• Feature consistency. We assessed end-to-end feature
consistency by thresholding (at 80%) each MCEM
weight matrix to a binary match matrix. For each sur-
viving match, we compute the 3-D distance (in cm) be-
tween rays extruded from each node through the point
feature, and the 2-D distance (in pixels) between each
point feature and its epipolar line in the other node.

4.1. Tech Square Data Set
The Technology Square data set consists of 75 nodes span-
ning an area of roughly 285 by 375 meters (Figure 12). For
this data set, our algorithm corrected initial position errors
of nearly seven meters, producing pose consistent on aver-
age to 5.6 cm of position and 1.22 pixels. The maximum
pose error for any node was 11.0 cm of position and 5.71
pixels. Total CPU time was just under three hours.

4.2. Comparison to Manual Solution
A manually generated pose solution was available for this
dataset [12], enabling comparison to our automatic tech-
nique. Identifying five or more correspondences by hand
for each of roughly 200 adjacencies requires significant hu-
man effort; thus the student operator omitted many point
matches, producing a convergent, but not over-determined,

Figure 12: Tech Square Node Configuration
Node positions and adjacencies for the Tech Square data set.
The average baseline was 30.88 meters.

Data Type Per Image Per Node Total

Nodes — — 75
Images — 48 3899
Points 227 10,958 887,598

Node Adj — — 189

Per Pair Total

Baseline Hough 8.1 s 25 m 31 s
Baseline MCEM 45.3 s 2 h 23 m

Global Opt — 0 m 53 s

Total 53.4 s 2 h 49 m

Table 1: Tech Square Data Size, CPU Times by Stage

Avg Max

Position Diff 0.70 m 6.70 m
Position Bound 5.6 cm 11.0 cm

Avg Max Std. Dev.

3-D Ray Error 9.6 cm 12.4 cm 3.3 cm
2-D Epi Error 1.22 pix 5.71 pix 2.33 pix

Table 2: Tech Square Consistency

constraint set. Figure 13 compares epipolar geometry for
manual and automated pose recovery.

Manual Automatic

Figure 13: Tech Square Comparison I
A point feature in one image and its epipolar line in another
image, as computed using pose generated by manual corre-
spondence (bottom middle) vs. our automatic method (bottom
right). Note the error in the manual solution, due to insufficient
match constraints.

Figure 14 compares epipolar geometry for a corner from
a repeating series of windows obscured by foliage. The



manual solution has poor epipolar geometry, since the hu-
man user did not enter this particular match constraint. It
is plainly impossible to match these window corners given
only this pair of images, due to the camera’s limited FOV;
even given omni-directional images, human operators find it
difficult or impossible to match window corners due to the
severe clutter obscuring most individual views. Our algo-
rithm succeeds where the human fails by combining many
omni-directional observations of many point features.

Manual Automatic

Figure 14: Tech Square Comparison II
A feature whose match is difficult for a human operator to
identify. Epipolar geometry is shown for manual (bottom mid-
dle) and automated (bottom right) pose solutions. Note the
error in the manual solution.

4.3. Ames Court Data Set
The Ames Court data set spans an area of 315 by 380 me-
ters; the average adjacency baseline was 23.53 meters. Ini-
tial pose was corrected by over six meters, achieving aver-
age consistency of 5.7 cm and 3.88 pixels. The maximum
pose inconsistency was 8.8 cm and 5.02 pixels. Total CPU
time was just under four hours.

4.4. Benefit of Omni-Directional Imagery
There is substantial theoretical evidence that wide-FOV
(i.e., omni-directional) images are fundamentally more

Per Image Per Node Total

Nodes — — 100
Images — 20 2,000
Points 257 4, 132 413,254

Node Adj — — 232

Per Pair Total

Baseline Hough 7.8 s 30 m 10 s
Baseline MCEM 52.6 s 3 h 24 m

Global Opt — 1 m 04 s

Total 60.4 s 3 h 55 m

Table 3: Ames Court Data Size, CPU Times by Stage

Avg Max

Position Diff 3.53 m 6.18 m
Position Bound 5.7 cm 8.8 cm

Avg Max Std. Dev.

3-D Ray Error 14.9 cm 20.2 cm 5.6 cm
2-D Epi Error 3.88 pix 5.02 pix 2.10 pix

Table 4: Ames Court Consistency

Figure 15: Ames Court Epipolar Geometry
Point features and corresponding epipolar lines for a typical
node pair in the Ames Court set.

powerful than narrow-FOV (i.e., planar) images (e.g. [15]).
Here, we show some empirical evidence using position
(baseline) recovery. We examined the Hough transform,
and resulting baseline direction estimate, for a node pair
as a function of the FOV. Transform values are plotted in
Figure 16. The sharpness of the peak, and the consistency
of the resulting baseline estimate, increases with field of
view. Moreover, we observed that narrow-FOV images do
not provide sufficient feature overlap for convergence in any
of our datasets.

1% 10%

25% 50%

Figure 16: Hough Transform Peak Coherence
The dependence of baseline Hough transform peak coher-
ence on FOV. The transform is shown for increasing percent-
ages of sphere coverage.

5. Related Work
Interactive tools have been used for bundle adjustment
[13, 22], but do not scale to our problem size. Algorithmic
approaches recover relative pose through the use of known
targets [28], or by tracking targets from a moving camera
[20, 16, 4]. These methods are sensitive to image noise, il-
lumination variations, and strong perspective or occlusion
due to extended baselines. Feature [24] and texture [19]
trackers find correspondences only for short baselines and
sequences.

Many robust algorithms attempt to discard outliers [16,
27, 1, 8], but do not sample from the space of feature sets
in a principled way or account for match ambiguities and
feature noise. Several authors have formulated correspon-
dence probabilistically [9, 14, 26, 5], but have not demon-
strated their methods for large numbers of features or ex-
tended camera motions. Correspondence-free pose estima-
tion techniques [17] have not been demonstrated for scenes
with significant occlusion or lighting variation.

Measurement uncertainty has typically been treated with
additive Gaussian noise [29], but spherical distributions are



more appropriate [11]. Finally, some authors have proposed
EM algorithms for coupled SFM (e.g. [9]), but none have
provided a principled treatment of measurement noise and
matching ambiguity. Recently, a probababilistic EM for-
mulation has been proposed which handles multiple images
and match ambiguity [14], but only when the number of 3-D
features is known, and all features are visible in all images.

6. Contributions and Conclusions
This paper makes several contributions. First, we propose
the use of a priori absolute position estimates. Second,
we present evidence that wide-FOV (omni-directional) im-
ages are more powerful observations than conventional im-
ages. Third, we extend existing probabilistic feature corre-
spondence methods to correctly incorporate projective un-
certainty, and to handle unknown numbers of features, oc-
clusion, deocclusion, and outliers (elsewhere [2] we show
that the resulting algorithm is robust against up to 80% out-
liers). Fourth, we combine Hough transform and probabilis-
tic techniques to address the limitations of both methods.
Fifth, we demonstrate how to aggregate uncertain pair-wise
baseline constraints to produce globally consistent node po-
sition estimates.

We also assessed end-to-end error of the 6-DOF pose re-
covery system. To our knowledge, the resulting datasets are
the largest registered terrestrial image datasets in existence,
regardless of whether manual or automated calibration algo-
rithms are used. Producing equivalent datasets using man-
ual photogrammetric bundle-adjustment would require pro-
hibitive human effort.

One advantage of working at this scaling regime is that of
overconstraint and data redundancy. We emphasize that the
image datasets registered with our algorithm were acquired
outdoors, over wide baselines, under uncontrolled and vary-
ing lighting conditions, and in the presence of significant
occlusion and visual clutter. The algorithms described here
and in [3] represent a new end-to-end capability for auto-
mated, absolute registration of terrestrial images.
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