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Abstract

In this paper we describe Atlas, a hybrid metrical/topological ap-
proach to simultaneous localization and mapping (SLAM) that
achieves efficient mapping of large-scale environments. The repre-
sentation is a graph of coordinate frames, with each vertex in the
graph representing a local frame and each edge representing the
transformation between adjacent frames. In each frame, we build
a map that captures the local environment and the current robot
pose along with the uncertainties of each. Each map’s uncertainties
are modeled with respect to its own frame. Probabilities of entities
with respect to arbitrary frames are generated by following a path
formed by the edges between adjacent frames, computed using ei-
ther the Dijkstra shortest path algorithm or breath-first search. Loop
closing is achieved via an efficient map-matching algorithm coupled
with a cycle verification step. We demonstrate the performance of the
technique for post-processing large data sets, including an indoor
structured environment (2.2 km path length) with multiple nested
loops using laser or ultrasonic ranging sensors.

KEY WORDS—mobile robots, SLAM, scaling, navigation
and mapping, ATLAS, cyclic environments

1. Introduction

In this paper we describe Atlas, a framework in which exist-
ing small-scale mapping algorithms are used to achieve real-
time performance in large-scale, cyclic environments. The ap-
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proach does not maintain a single, global coordinate frame,
but rather an interconnected set of local coordinate frames.
The representation consists of a graph of multiple local maps
of limited size. Each vertex in the graph represents a local co-
ordinate frame and each edge represents the transformation
between adjacent local coordinate frames. In each local coor-
dinate frame, we build a map that captures the local environ-
ment and the current robot pose along with their uncertainties.
Together, the coordinate frame and the map are referred to as
a “map-frame”. The spatial extent of each map is not pre-
defined. Instead a limit is placed on the complexity of each
map. An intrinsic performance metric of the local simulta-
neous localization and mapping (SLAM) processing is used
to determine whether to transition to an adjacent map-frame
or to generate a new one. The map’s complexity is typically
bounded by placing a hard limit on the maximum number of
features that can be inserted into the map, and the performance
metric is typically based on the number of observed features
and the local uncertainty of the robot.

Atlas is intended to be a generic framework in which a vari-
ety of techniques could be used as the local mapping module.
The approach assumes that a suitable local SLAM algorithm
is available that can produce consistent maps in small-scale
regions with a fixed amount of computation for each new sen-
sor observation. Efficient global performance is not possible
if the local SLAM method incurs an ever-growing computa-
tional burden. For example, when local SLAM is based on
scan-matching, then only a finite set of scans can be retained
in local regions. If local processing were based on the match-
ing of a new sensor scan with all of the scans ever obtained in
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a local region, then local map complexity would grow linearly
with time.

Each map’s uncertainties are modeled with respect to its
own local coordinate frame. The uncertainty of the edges (ad-
jacency transformations) in the Atlas graph are represented
by a Gaussian random variable and are derived from the
output of the SLAM algorithm running in a local region. A
limit is placed on the per-map computation by defining a mea-
sure of complexity for each map-frame, which is not allowed
to exceed a threshold (the map capacity). Rather than operat-
ing on a single map of ever-increasing complexity, the Atlas
framework simply switches its focus to a new or adjacent
map-frame.

New links are added to the Atlas graph via an efficient
map-matching algorithm. Potential map-matches are enter-
tained only for map-frames that fall within an uncertainty
bound of the current map. Coordinate transformations and
associated error estimates are generated for the entities in one
map-frame with respect to another arbitrary map-frame by
following a path formed by the edges between adjacent map-
frames. These paths are computed using either (i) the Dijsktra
shortest path algorithm (Dijkstra 1959) or (ii) the breadth-
first search (BFS). When the Dijkstra shortest path algorithm
is used, the uncertainties of the transformations of the edges
of the graph serve as a distance metric.Alternatively, using the
BFS, the number of intervening map-frames is used as the dis-
tance metric. All other components of Atlas have a bounded
computational cost and hence the choice of Dijsktra versus
BFS determines the overall order of growth of computational
complexity of the method.

Assuming that each vertex of theAtlas graph has a bounded
degree (the maximum number of adjacent map-frames is
bounded), then the computational cost of the Dijkstra compu-
tation is O(n log n) (where n is the number of map-frames),
and when using BFS the computational cost is O(n). Atlas
achieves efficient real-time performance by amortizing this
uncertainty projection computation over time. For the envi-
ronments considered in this paper, the computational effort
expended for uncertainty projection and map-match candi-
date selection is several orders of magnitude less than the
computational effort expended for local SLAM processing
and map-matching. Hence, we anticipate that the method can
effectively handle environments several orders of magnitude
larger than those considered in our experiments below.

Loop closing is one of the most difficult issues in SLAM re-
search. Two different types of error can occur in loop closing:
false positive matches and missed detected matches. The for-
mer refers to situations in which the robot erroneously asserts
that a loop has been closed with a false match. The latter case
occurs when a loop closure has been missed due to failure to
successfully match the current map with a previously mapped
area. Atlas adopts a conservative loop closing and verification
strategy which attempts to avoid false positive matches at the
expense of missing some genuine loop closure events. It is

possible, however, to present an adversely designed environ-
ment with highly repetitive structure and a path in which the
accumulated uncertainty is so large that our technique, as well
as any known SLAM loop closing algorithm, would fail.

The difficulty of a particular environment to loop closures
is dependent on the growth of uncertainty in local mapping
tasks and on the richness of the local map representation.
Richer maps are less likely to be ambiguous and a smaller
growth of uncertainty allows for longer paths to be followed
before confusing two nearby ambiguous regions.

The main challenge in SLAM is handling uncertainty: lo-
cal uncertainty due to noise introduced in each measurement,
and global uncertainty due to the need to discern whether the
region currently observed by the robot is newly explored ter-
ritory or has been previously visited. Both local and global
uncertainty are exacerbated by repeated low-level structure
(for example, periodic arrays of doors or windows) or high-
level structure (for example, nearby corridors that are nearly
indistinguishable).

Uncertainty is a challenge in two respects: it is antago-
nistic both to achieving correctness and efficiency. When the
mapping algorithm mistakes one local feature for another, or
one region for another, it performs an incorrect data associ-
ation and produces an incorrect map. On the other hand, if
the algorithm expends excessive effort in an attempt to avoid
such misassociations, it sacrifices efficiency. For algorithm
designers, then, a key challenge is to construct a correct map
with reasonably high probability, while bounding the amount
of computation expended.

The use of submaps allows Atlas to handle ambiguity at
small scales (feature sizes). For Atlas to handle ambiguity at
large scales, the environment must satisfy the condition that
this scale must be larger than the error ellipsoid accrued by
the robot around any loop traversed prior to encountering the
ambiguous region.

After recognizing the closure of an extended loop, we do
not constrain the composition of adjacency transformations to
be the identity transformation. This is essential to achieving
efficient real-time performance, since no global updates are
required during the robot’s motion. The identity constraint can
be applied off-line, however, to refine the global arrangement
of the multiple coordinate frames (see Section 4).

2. Related Research

Before describing the components of Atlas in more detail,
we first provide a brief review of related research. Probabilis-
tic techniques have proven vital in attacking the large-scale
SLAM problem. A variety of approaches have been proposed
for representing the uncertainty inherent to sensor data and
robot motion, including topological (Kuipers 2000), particle
filter (Thrun 2001; Montemerlo et al. 2002), and feature-based
(Smith, Self, and Cheeseman 1990) models. Several highly
successful SLAM approaches have been developed based on
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the combination of laser scan-matching with Bayesian state
estimation (Gutmann and Konolige 1999; Thrun 2001). These
methods, however, encounter computational difficulties when
closing large loops.

The Kalman filter provides the optimal linear recursive
solution to SLAM when certain assumptions hold, such as
perfect data association, linear motion and measurement mod-
els, and Gaussian error models (Smith, Self, and Cheeseman
1990). The convergence and scaling properties of the Kalman
filter solution to the linear Gaussian SLAM problem are now
well known (Dissanayake et al. 2001). Considerable recent
research effort has been extended toward mitigation of the
O(n2) complexity (where n is the number of features) of the
Kalman filter SLAM solution. Efficient strategies for SLAM
with feature-based representations and Gaussian representa-
tion of error include postponement (Davison 1998), decou-
pled stochastic mapping (DSM; Leonard and Feder 2001), the
compressed filter (Guivant and Nebot 2001), sequential map
joining (Tardós et al. 2002), the constrained local submap fil-
ter (Williams, Dissanayake, and Durrant-Whyte 2002), and
sparse extended information filters (SEIFs; Thrun et al. 2002,
2003). Each of these methods employs a single, globally refer-
enced coordinate frame for state estimation. The Kalman filter
can fail badly, however, in situations in which large angular
errors and significant data association ambiguities invalidate
the Gaussian error assumptions.

In outdoor environments, several SLAM algorithms have
been implemented for very large-scale data sets. For exam-
ple, Guivant and Nebot (2001) have published results for an
experiment in Victoria Park, Sydney, using the compressed
filter, with an implementation that uses trees as “point” fea-
tures. (In Section 5.3, we present processing results for this
data set using scan-matching.) More recently, Wang, Thorpe,
and Thrun (2003) and Hähnel, Schulz, and Burgard (2002)
have achieved full three-dimensional (3D) mapping of urban
areas with dynamic objects. Thrun et al. (2003) have demon-
strated large-scale SLAM in a cyclic underground mine. (In
Section 5.4, we also present processing results for this data
set.)

Some of the most successful experiments for autonomous
loop closure in indoor environments have been performed
by Gutmann and Konolige (1999). One notable feature of
their work, which we adopt in the current paper, is the use of
a hybrid metrical/topological map representation (Gutmann
and Konolige 1999):

“A map is represented as an undirected graph:
nodes are robot poses with associated scans
and links are constraints between poses ob-
tained from dead-reckoning, scan-matching, or
correlation.”

However, our approach differs from that of Gutmann and
Konolige in several critical respects. Our method operates
successfully with either feature-based SLAM (Smith, Self,

and Cheeseman 1990) or laser scan-matching (Lu and Milios
1997) as the local mapping module. The approach of Gutmann
and Konolige (1999) relies on the accuracy of dense laser
scanner data and would encounter difficulties with sonar data.
To detect loop closure events, our approach performs map-
matching with constant-size submaps; Gutmann and Kono-
lige (1999) use a local patch which grows linearly with the
position uncertainty. In our approach, we reject false posi-
tive matches due to repetitive environmental structure with
the loop cycle verification step described in Section 3.3.2.
Finally, when loops are closed, our approach simply adds a
new connection to the Atlas graph, whereas the method of
Gutmann and Konolige (1999) requires the recomputation of
all of the scan poses that comprise a loop when cycles are
detected.

One of the appealing aspects of a hybrid metri-
cal/topological approach to mapping and localization (Chong
and Kleeman 1997a; Kuipers 2000; Bailey and Nebot 2001;
Choset and Nagatani 2001) is that uncertain state estimates
do not need to be referenced to a single global reference
frame. The strategy of partitioning a large map into multiple
smaller maps is intuitively appealing for both computational
efficiency and robustness. Chong and Kleeman (1997b) write
“ . . . the local mapping strategy is devised . . . to improve ef-
ficiency and to curb the accumulated ‘inevitable errors’ from
propagating to other local maps continuously.” This is the
strategy advocated in this paper. Our approach, however, dif-
fers significantly from that of Chong and Kleeman (1997a)
in the manner in which the graph of local maps is used. We
separate the processes of map-matching (adding new links to
the graph) from traversal (determining the map-frame that best
describes the current sensor measurements). We cast the prob-
lem of projecting the uncertainty of one map-frame relative
to another as an amortized shortest path problem, providing
a computationally efficient method to close loops in cyclic
environments. Using our cycle verification step, our method
can tolerate an increased level of ambiguity in environments
with repetitive structure.

The hybrid metrical/topological approach allows us to re-
strict the representation of errors via Gaussian distributions
to local regions where linearization works well, rather than
representing the entire environment with one Gaussian distri-
bution. The large-scale linearization inherent in methods that
use a single global coordinate system for error representation,
such as SEIFs or DSM, will fail when closing large loops with
unbounded linearization errors. Since Atlas does not enforce
cycle consistency constraints, it can handle the non-linearities
inherent to uncertain coordinate transformations more grace-
fully than alternatives that employ a single global reference
frame.

An alternative to the use of local linearization would be to
adopt a fully non-linear formulation of the SLAM problem,
such as FastSLAM (Montemerlo et al. 2002) or SLAM us-
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Fig. 1. The Dijkstra projection using two different source nodes. (a) depicts the topological arrangement of the Atlas
graph. (b) uses map-frame A as the source of the projection. (c) uses map-frame D as the source. The ellipses on the co-
ordinate frames represent the accumulated projection error. The shortest path from map-frameA to D is clearly via map-frame B.

ing a sum of Gaussians model (Durrant-Whyte et al. 2001).
The computational requirements of these methods, however,
remain poorly understood in large cyclic environments. In fu-
ture research, it may be possible to implement one of these
techniques as the local mapping strategy within the Atlas
framework.

3. Atlas Components

We now provide a detailed description of the core concepts
of the Atlas framework: uncertainty projection, competing
hypotheses, creation of new map-frames (Genesis), closing
loops (map-matching), and instantiating and evaluating new
hypotheses in adjacent map-frames (Traversal).

3.1. Uncertainty Projection

Atlas edges contain the information necessary to relate two
map-frames. The uncertainty of the transformation edge is
used to project a stochastic entity (such as the robot position)
from one map-frame into another. However, if the map-frames
are not adjacent, these transformations (and their uncertain-
ties) must be composed along a path of edges that link the
Atlas vertices. Due to cycles in the graph, there may be more
than one path from one vertex to another. Since these cycles
are not constrained on-line, distinct paths will not in general
produce the same composite transformation. In Figure 1(a),
frame D is reachable from A via B or C, resulting in the two
possible projections of frame D relative to A, shown in Fig-
ure 1(b).

To resolve this ambiguity we use either the Dijkstra shortest
path algorithm (Dijkstra 1959) or a BFS to find a unique path
between the nodes. For the Dijkstra projection, we use a statis-
tical metric, ρ, based on the uncertainty of the transformation
in Atlas edges. The metric we choose is the determinant of
the covariance matrix of the composite transformation:
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Appendix B reviews the notation that we employ for repre-
senting uncertain coordinate frame transformations (Smith,
Self, and Cheeseman 1990; Castellanos and Tardós 2000).
The determinant of the covariance is a measure of the vol-
ume of the n-sigma hyperellipsoid of probability mass for a
Gaussian distribution (Feder, Leonard, and Smith 1999).

The determinant is a good metric to use since it is also
invariant to deterministic coordinate transformations.
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det (�wc) = det (�ac) . (6)

We define the Dijkstra projection of an Atlas graph with
respect to a given source vertex as the global arrangement
of frames using compositions along Dijkstra shortest paths.
This projection has the property of transforming the Atlas
graph into a tree of transformations with the source map-
frame as the root. We measure the nearness of any map-frame
to the source frame as ρ computed from the compositions of
transformations up the tree to the root.

3.2. Genesis

Since the complexity of each map is bounded, it is necessary
to create new local map-frames when entering unexplored re-
gions for which no existing map-frame can explain the sensor
measurements. The Genesis process adds a new vertex and
edge to the Atlas graph. Mathematically, the generation of a
new map-frameMj and robot pose xj via genesis is a function
of an old map-frame Mi and robot pose xi :

(Mj , xj ) = g(Mi , xi ). (7)
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Table 1. Defining Map Signature Elements Between
Pairings of Line and Point Features

Pairing Geometry Element

Point–point
d 1

[d1]

Point–line
d3d2

d
1


 d1

d2

d3




Line–line

d 1

d4

d3

d 2 α




d1

d2

d3

d4

α




The process of genesis encapsulated by the function g is
broken down as follows.

1. The current robot pose defines the origin of a new frame.
Thus, the transformation from the old to the new frame
is simply the robot’s position in the old frame at the
time the new frame is created.

2. The robot pose is initialized to zero in the new frame.

3. The uncertainty of the transformation is set to the un-
certainty of robot pose in the old frame.

4. The uncertainty of the robot pose in the new frame is
zero by definition. All of the uncertainty of the robot
pose at the time of genesis is captured by the uncertain
transformation.

3.3. Map-matching

Genesis creates new maps to explain unexplored areas. In
cyclic environments the robot will eventually revisit an area
that it has already explored. We would like to automatically
discover such loop closure events and update the connectivity
in the Atlas graph. There are essentially three steps to loop
closing.

First, the robot has to know which of its previously ex-
plored maps it could possibly be returning to given the inte-
grated uncertainty about the loop. This is achieved using the
map projections as described in Section 3.1. While computing
the map projections from the current map-frame, we maintain
a list of potential map-frames that may possibly overlap the
current one.

Secondly, we need to check if any of the map-frames in the
potential list match the current frame. This is achieved with
a map-matching module that compares the structure of two

maps and returns the probability that the two maps match as
well as the coordinate transformation that best aligns the two
maps.

Finally, when the map-matching module succeeds in find-
ing a match, (and after verifying the consistency of the align-
ment; see Section 3.3.2), we update the Atlas graph by simply
adding an edge to the graph. The edge contains the align-
ment transformation and uncertainty returned from the map-
matching module.

We can describe the map-matching process as a search
for a coordinate transformation that aligns two overlapping
map-frames. The uncertainty from the prior estimate for the
map-frame alignment transformation (as computed by the
map projection) may be very large; too large, in fact, to be
able to rely on the simple strategy of nearest-neighbor feature
gating for data association. Thus, the map-matching module
needs to be a method that is robust to large initial errors in the
transformation.

In general terms, map-matching is comprised of two steps.

1. Determining the probability mij that the two maps Mi

and Mj match by identifying common structure:

mij = P(Mi ∩ Mj ). (8)

2. Producing the alignment transformation T
j

i and its un-
certainty �ij between maps Mi and Mj :{

T
j

i , �ij

} = P
(
T

j

i | Mi ∩ Mj

)
. (9)

The exact form ofMi ∩Mj used for determining common
structure is not dictated by the Atlas framework, but left as a
module to be defined in a particular implementation. For the
feature-based SLAM results in this paper, we define the op-
eration Mi ∩ Mj as the search for correspondence between
features in Mi and Mj . If a small number of features match
for two maps, then the probability of a successful match is low.
For the scan-matching results in this paper, iterative closest
point (ICP) matching is performed between the two maps. In
our implementation, each local scan-matching map consists
of sets of laser scan points and uncertain vehicle poses (Ap-
pendix C), rather than using an occupancy grid as employed
by Gutmann and Konolige (1999).

Repetitive structure in the environment may cause false
positive matches to be discovered in map-matching. The de-
gree of repetition can be somewhat assessed by map-matching
a map with itself. Only map structure elements that match
uniquely within a map should be used to evaluate a match to
another map.

3.3.1. Feature-Based Map Matching

We now describe a two stage implementation of the map-
matching process for our feature-based example summarized
as follows.
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two maps i and j share features and a good map-match can be found between them. Note how only a subset of features are
matched.
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1. A signature for both maps is constructed which is an or-
dered list of elements describing properties of the map
that are invariant to translation and rotation of its co-
ordinate frame. A comparison operator is defined over
two signatures which yields a set of correspondences
between elements in each list.

2. Each map is matched with itself to identify repetitive
structure. Any elements that correspond to other ele-
ments in the same map are removed from the map’s
signature. This dramatically reduces the likelihood of
false map-matches due to repetitive structure by focus-
ing on the unique elements of each local environment.

3. The signatures of both maps are now compared. Each
element to element correspondence defines a potential
alignment transformation from Mi to Mj .

4. Each potential alignment transformation is applied to
Mi . The validity of each transformation is evaluated by
counting the number, η, of feature pairs it brings into
alignment with nearest-neighbor gating.

5. The correspondences from the best (largest η) potential
transformation with η > ηm are used to refine the trans-
formation and its covariance. Each correspondence de-
fines a constraint on the transformation. The combined
set of η constraints are solved in weighted least-squares
sense using the covariances of the feature estimates
within each map to form the weights. This process also
yields the covariance of the transformation.

In this implementation, our maps consist of 2D point and
line features. The elements used in creating a map signature
are pairings of non-parallel lines, point–line pairs and point–
point pairs drawn from the map. For each pairing, the signa-
ture element consists of distances and/or angles that are inde-
pendent of the map-frame’s orientation and location. Table 1
defines the invariants used for the three species of pairings.

The number of signature elements to compare when match-
ing maps is of O(n2), which may lead to O(n4) matches that
need to be performed. However, we can reduce the number of
matches that need to be tested to O(n2) by sorting the signa-
ture elements into a canonical order, which then reduces the
total computational burden to O(n2 log n).

The approach we have adopted for map-matching is not
unique. For example, the joint compatibility test with branch
and bound technique suggested by Neira and Tardós (2001)
could also be utilized. The freedom to choose a map-matching
strategy highlights the modularity of the Atlas framework.

3.3.2. Cycle Verification

One of the biggest difficulties to correctly closing large loops
is the danger of false matches due to ambiguous structure in
the environment. When the environment contains repetitive

structure, map-matches are not unique. Furthermore, the prior
uncertainty of the mapping robot before closing the loop may
be too large to disambiguate the correct match. Even when
there is only one match visible, it could be the case that the
correct match just has not been seen yet, and thus we cannot
be certain of the single match.

There are several possible approaches to tackling the deci-
sion of when to accept a map-match. For example, one could
employ multiple hypotheses to track each possible decision
branch, as in Austin and Jensfelt (2000). Alternatively, one
could use a method capable of representing multimodal prob-
ability distributions, such as Monte Carlo localization (Del-
laert et al. 1999; Thrun et al. 2000) or sum of Gaussian models
(Durrant-Whyte et al. 2001). Another strategy is to temporar-
ily take the maximum likelihood decision, and then detect and
fix errors later by rolling back the computation. This technique
is used in Thrun et al. (2003), where falsely matched links can
be recursively corrected when large errors are detected.

Each strategy has its advantages and disadvantages. Meth-
ods that perform multiple hypothesis tracking or that employ
multimodal probability distributions are exponentially com-
plex, and aggressive methods for reducing the number of ac-
tive hypotheses (or modes) are required. Rollback methods
may not be able to accurately detect the errors and there is not
real bound on how far they may have to rollback the computa-
tion to fix the errors. (The computation is at least proportional
to the time to detect an error.) Also, most data structures are
not suited to efficient rollbacks (such as the standard Kalman
filter).

The approach that we adopt in this paper is to defer the
decision until more information is available for a verification.
One potential disadvantage with deferring decisions is that
one may never have enough information for a validation. The
mapping algorithm will fail to close loops in some situations,
for example, if a path is crossed orthogonally with little over-
lap in sensor measurements from different passes.

The basic idea for map-match verification is to defer the
validation of map-match edges in the Atlas graph until a
“small” cycle is formed that is geometrically consistent. When
closing a large loop, the prior uncertainty for the matches may
be so large that multiple ambiguous matches are possible (Fig-
ure 4). By waiting for at least one more distinct map-match,
the consistency of cycles formed with the first map-match
can be verified. These cycles are much smaller than the large
loop’s cycle, and thus we can bound the error around it. If the
cycle’s prior uncertainty is smaller that the expected distance
between ambiguous matches and the transformations around
the cycle are consistent, we can be confident that we have the
single correct map correspondences. Both unvalidated map-
match edges are then validated and their effects are propagated
in subsequent map projections.

Short cycles containing the current Atlas node are quickly
discovered in constant-time complexity by employing a trun-
cated BFS. A cycle is found when the BFS leads to a node that
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Fig. 4. On the left is the state of the Atlas graph before closing the large loop ABCDE · · · WXY . There are two potential
map-matches YB and YA; however, the prior uncertainty of the open-loop transformations is too large to disambiguate the
map-matches. On the right is the state of the Atlas graph after mapping node Z and making the match ZC. A small cycle
CBYZC is now present with an uncertainty less than the distance between the ambiguities and both edges ZC and YB are
validated. The transformations about cycle YBAY are inconsistent w, and hence edge YA is unvalidated.

has been previously visited. The sequence of nodes that make
up the cycle is determined by the two distinct paths up the BFS
tree from the previously visited node. The BFS is truncated
after a maximum depth to ensure constant-time complexity.

The cycle verification step effectively increases the map
coverage used to form the match. False positives are then only
a problem when the scale of any environment ambiguities is
larger than the coverage size of the maps in the verification
cycle. Thus, the likelihood of false matches is greatly reduced
for an almost insignificant extra computational cost.

3.4. Traversal with Competing Hypotheses

Since each map-frame only covers a localized portion of the
environment, the mapping robot will not be able to match sen-
sor measurements with a map-frame once it leaves the volume
covered by the map-frame. The robot will either need to use an
adjacent map-frame to explain its observations, or it will have
to generate a new map if it cannot find a valid map-frame. To
determine if adjacent map-frames can better explain the cur-
rent sensor measurements, we spawn a hypothesis using the
transformation in the Atlas edge to instantiate the robot in an
adjacent map-frame. Initially new hypotheses (which we call
juvenile hypotheses) are prevented from mapping new struc-
ture to explain sensor measurements. Juvenile hypotheses are
just used to evaluate the localization performance using ex-
isting structure.

Thus, at any given time, there are several competing map-
frame hypotheses that attempt to explain the current robot
pose and sensor observations. The map-frames that best ex-
plain the current sensor measurements will have hypotheses
that can match most of the measurements to the map struc-
ture. On the other hand, invalid hypotheses will fail to match
sensor measurements to existing structure and will be conse-
quently pruned. We verify the validity of each map-frame’s
hypothesis by monitoring a performance metric q for a few
time-steps. The performance metric is simply the likelihood
that the current sensor measurements Z explain the map Mi

and current robot pose xi :

qi = P (Mi , xi | Z) . (10)

The Atlas framework continually maintains a set of sev-
eral hypotheses to continually determine the best map-frames
to activate. Each map-frame can support only one hypothe-
sis at a time, and the maximum number of total hypotheses,
Hm, is fixed so that the computational requirements remains
bounded. If the number of potential hypotheses is greater than
Hm, then they are instantiated only when existing hypotheses
are terminated. In practice, this will only occur in highly in-
terconnected regions of the Atlas graph, and the limit has not
been shown to have a significant effect on the performance
since invalid hypotheses are quickly pruned.
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Juvenile

Dominant

Retired

Mature

Fig. 5. Atlas hypothesis state transition diagram. The
dominant hypothesis is used to provide an output from the
algorithm. It is simply the most successful of all the mature
hypotheses. Mature hypotheses are able to extend maps and
spawn juvenile hypotheses in adjacent map-frames. When a
mature hypothesis fails to describe the robot’s environment
adequately (the robot has moved away, for example), it is
retired. It can be reinstated as a juvenile at some time in the
future by an adjacent mature hypothesis. Juveniles are not
allowed to modify their map. If, after a probationary period,
a juvenile’s map is failing to explain sensor data, then it
is deleted. However, a successful juvenile is promoted to
mature status.

3.4.1. Traversal

Four types of map-frame hypotheses are used to manage the
traversal of focus about the Atlas graph (making transitions
between adjacent map-frames). We label the different types
of hypothesis as juvenile, mature, dominant, and retired. Re-
tired hypotheses involve no computation and are simply used
to mark inactive maps. The two other types of hypotheses,
however, process sensor measurements and are evaluated with
the same performance metric. Mature hypotheses can extend
their maps (provided that they have not reached their map
capacity) and spawn juvenile hypotheses into their adjacent
map-frames. Juvenile hypotheses are used to test the feasibil-
ity of transitioning to neighboring maps, based on how well
these maps explain the sensor measurements. They are re-
stricted from extending their maps. See Figure 5 for a state
transition diagram.

A juvenile hypothesis can “mature” when after a short pro-
bationary period its performance metric q becomes greater
than any other mature hypothesis. If at the end of this proba-
tionary period the quality of a juvenile hypothesis does not
warrant promotion, it is simply deleted. (In our experiments,
the probationary period is a duration of 2 s.)

The mature hypothesis with the best performance metric is
considered the dominant hypothesis. The dominant hypothe-
sis is used for publishing current robot pose and local features
to clients of the Atlas framework. In other words, it is the
output of the framework.

Mature hypotheses that fail to perform well are saved and
“retired”. A retired hypothesis may be reactivated at a later
time as a juvenile.

If we have only one mature but failing hypothesis, then a
new one must be created to explain current sensor data. This is
done by genesis (Section 3.2). This situation will occur when
none of the existing hypotheses can adequately explain the
sensor measurements, such as when the robot moves into an
unexplored region.

3.4.2. Robot Relocalization

When creating a juvenile hypothesis in a retired map-frame
Mi we reinitialize its robot pose xi using the robot pose xj

from an adjacent map-frameMj (see Figure 6). First, we seed
the hypothesis with a robot pose x�

j
projected into frame i:

x�

i
= T

j

i ⊕ xj (11)

��

xi
= J1

(
T

j

i , xj

)
�ij J1

(
T

j

i , xj

)T +
J2

(
T

j

i , xj

)
�xj

J2

(
T

j

i , xj

)T
(12)

where J1 (·, ·) and J2 (·, ·) are the Jacobians of the transforma-
tion composition operators (Tardós et al. 2002).

The hypothesis now enters a bootstrapping phase, in which
a consistent initialization of the vehicle into the juvenile hy-
pothesis is sought. Sensor measurements, interpreted with the
seeded robot pose, x�

i
, are accumulated. This continues until

we have collected enough measurements, Z, to solve explic-
itly for the robot pose independently of x�

i
; we call this func-

tion w. This approach conserves the statistical independence
of map-frames:

(Mi , xnew

i
) = w(Mi , Z). (13)

If an explicit solution to w cannot be computed because of
lack of explained sensor measurements, then the hypothesis is
invalid and terminated. Otherwise we have a tenable juvenile
hypothesis.

3.5. Summary

Figure 8 summarizes the processing performed during each
cycle of the algorithm. Step 1, local map iteration, runs in
constant time, because the complexity of each local map
is bounded, and the number of non-retired hypothesis is
bounded. Step 2, the management of hypothesis state tran-
sitions, is bounded because we assume that each local map is
connected to a bounded number of other local maps (bounded
degree assumption). For step 3, the computational cost to run
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�
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Fig. 6. Seeding the robot position for juvenile hypothesis in frame i using the current pose in the adjacent map-frame j .
The retire hypothesis attached to frame i has the robot location at xold

i
. The hypothesis is rejuvenated to have the robot pose of x�

i
.

map projection to completion is O(n log n) when using the
Dijkstra shortest path algorithm and O(n) when using BFS
(where n is the number of map-frames). This computation is
amortized over time. Finally, step 4, map-matching, is con-
stant time because the size of the maps is bounded, and the
number of maps being matched is bounded.

The purpose of the map uncertainty projection computation
is to find potential candidates for map-matching. By amortiz-
ing this computation, the effect is a delay in the determination
of map-match candidates. During each iteration of the Atlas
algorithm, if the dominant map ID changes in step 2, then the
computation is restarted; otherwise, a fixed amount of effort
is expended to step the computation forward towards com-
pletion (Extensions 1 and 2 provide clear illustration of this
process).

The failure mode of this approach would be that if the dom-
inant map changes quickly, before the uncertainty projection
computation runs to completion, then some map-match can-
didates would be missed. If we assume, for example, that
the map uncertainty projection can be performed for p map-
frames each second, and that the vehicle spends t seconds in
each submap, then a failure to consider all map-frames for
candidacy for map-matching would occur when pt equals
n. In practice, for the scale of environments considered thus
far, this never occurs. The computational effort expended in
the uncertainty projection step is several orders of magnitude
smaller than the computational effort expended by the other
parts of the algorithm for the size of environments considered
in our experiments thus far.

4. Obtaining a Global Map

We are often motivated to provide a single global map of the
robot’s environment. For example, in Section 5 we compare

an estimated map with an architectural drawing. This “global-
ized” representation is a result of a post-processing procedure
to find a global projection of each map-frame. In other words,
we wish to find the position and orientation of each map-
frame with respect to a single frame. We choose to reference
all maps to the first map-frame created, frame 0.

The Dijkstra projection does this when using map-frame 0
as the source; however, it only uses a minimal subset of the
edges in the graph. We wish to find a projection that incorpo-
rates all the edges.

When there are loops in the graph, there will be a disparity
νi,j between the transformation T

j

i stored in the Atlas graph
edge and the transformation derived from the global poses of
each frame (T i

0 and T
j

0 , respectively):

νij = T
j

i ⊕ T 0
j

⊕ T i

0 . (14)

We seek to find the global arrangement T ∗ of all N frames
T = {T 1

0 · · · T N
0 } that minimizes this error over all edges.

This can be posed as a non-linear least-squares optimization
problem:

T ∗ = arg min
T

∑
ij

∥∥νij

∥∥2
. (15)

We use the Dijkstra projection to compute the initial global
arrangement, and the optimization typically converges in less
than five iterations using the Matlab optimization toolbox.

5. Experimental Results

We have obtained extensive experimental results with the
method, using both feature-based SLAM (Smith, Self, and
Cheeseman 1990) (described in Appendix A) and scan-
matching (described in Appendix C) as the local SLAM
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Fig. 7. The spatial and topological evolution of an Atlas. This set of diagrams highlights key aspects of the Atlas framework.
The environment depicted is fictional and the robot path is construed to be illustrative. The right-hand column of this diagram
uses shading to indicate the map-frames which successfully represent the local region. Note that contrary to what is suggested
by the shading, the maps do in fact overlap. This intersection is denoted by labeled brackets on the spatial diagrams. Note
also that the extent of a map-frames is not defined or bounded by area covered but by the set of mapped features within it.
(A) Genesis. The vehicle has built two maps (1,2). Map 1 no longer explains the surroundings and is inactive. Map 2 is “full”
and so the genesis of map 3 occurs. An edge is built between 2 and 3. Map 3 immediately becomes the dominant hypothesis.
(B) Map-matching. Mature hypotheses are running in both maps 3 and 4. The Dijkstra projection suggests that map 4 may be
“close” to map 2. The map-matching algorithm confirms this conjecture and a new link is created between 4 and 2. This is
loop closure. Map-frame 2 is now adjacent to a mature frame (4) and so shortly after the edge creation a juvenile hypothesis
is attached to it. (C) Hypothesis cull. The robot has recently traversed into map 2 (from 4) which has also become dominant.
Juvenile hypotheses have been installed in the adjacent frames 1 and 3. A short time later the juvenile hypothesis in map 3 has
been terminated; it cannot adequately explain the central corridor. The previously mature hypothesis in map 4 has also been
culled for the same reasons. The juvenile hypothesis in map 1 however has been promoted to mature status. At this point,
the estimate of the transformation between frames 1 and 4 can be updated using an observation constructed from the fact
that the vehicle is simultaneously in maps 1 and 4. (D) Loop closure. Initially only one mature hypothesis exists (in map 1).
Unlike in case (A) genesis is not imminent (low vehicle uncertainty and map is not full). Instead the map-matching algorithm
conjectures that maps 1 and 4 may be adjacent. The map-matching algorithm confirms this and another new link is created.
This completes the topological and spatial description of the environment.
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Algorithm:

1. Local map iteration: execution of one cycle of the local SLAM module (e.g. feature-based or scan-
match) in each non-retired map-frame using the new sensor measurements.

2. Hypothesis state transitions: creation, promotion, and demotion of hypotheses.

3. Map projection iteration: if the dominant map changes in step 2, restart the shortest path computation
and clear the map-match candidate list; otherwise, step the shortest path computation and add new
candidates for map-matching.

4. Map-matching: execute map-matching between the current dominant map and the next map-match
candidate; perform cycle verification.

Fig. 8. Summary of the computation performed for each cycle of the Atlas algorithm.

method. For the results reported here, when feature-based
SLAM is used as the local mapping method, we restrict the
size of each local map by setting an upper bound on the num-
ber of features in a map (typically 15 line segments). When
laser scan-matching is used as the local mapping method, we
restrict the number of vehicle poses in each submap (typi-
cally 15 vehicle poses). We have not observed the system to
be very sensitive to these choices of parameter values. (In-
deed, the scan-matching implementation works successfully
when each local map is restricted to be a single laser scan.)

The experiments in Sections 5.1 and 5.2 utilized a stan-
dard B21 mobile robot equipped with SICK PLS scanning
laser (50 m range, 5 cm resolution) and a ring of 24 Polaroid
ultrasonic sensors (7 m range, 5 mm resolution) and standard
odometry based on wheel encoders. For feature-based local
mapping, the method has been implemented using either laser
scanner data (with line segments as features; (Castellanos and
Tardós 2000) or sonar data (with points and line segments as
features; Leonard et al. 2002) or both laser and sonar data
being processed concurrently. Laser scan-matching in gen-
eral produces more visually appealing maps, but the scan-
matching approach does not generalize to noisier sonar data.

5.1. Ten loops in a Small-Scale Environment

We first show an experiment for a situation in which many
loops are repeatedly performed in a relatively small-scale en-
vironment. The robot executed multiple “figure eight” ma-
neuvers within the environment depicted in Figure 9(a). Each
corridor was traversed several times in both directions. The
total path driven was 690 m taking 45 min to complete. Fig-
ure 9(b) is the “dead-reckoned” path using odometry data.
Figure 9(c) shows the output produced for a “single map”
scan-matching solution. The map contains 200 vehicle poses.
Figure 9(d) shows the output produced for a “single map” laser
feature-based solution. Note that the map from scan-matching

“looks better” than the laser feature-based map, which has
some “doubled features” in it.

Figure 10(a) shows the Atlas output for this environment
with laser feature-based local mapping. A total of 12 map-
frames were created. Figure 10(b) shows the adjacency matrix
of the Atlas graph. Figure 10(c) plots the ID of the dominant
map versus time for this experiment, as well as the number
of active hypotheses versus time and the total amount of time
spent in each map-frame. About halfway through the run, the
algorithm reaches a steady state and does not create any ad-
ditional maps; the largest map ID no longer increases. Note
that the average number of active map-frames (containing a
mature hypothesis) at any instant reaches a steady-state value.

Figure 11 shows the output when scan-matching is used as
the local mapping module. The maximum number of vehicle
poses in a map-frame was set to 15, and 15 map-frames were
created.

5.2. Killian Court, MIT

In this section we present results for processing of data from
a long-duration mission performed at MIT in Killian Court,
a cluster of interconnected buildings at the center of the MIT
campus. Figure 12(a) shows the topological path of the vehi-
cle superimposed on an architectural drawing of the Killian
Court area. The mission had a path length of approximately
2.2 km and a duration of 2.5 h. The route contained nested
loops of various sizes and topologies. Figure 12(b) shows
the dead-reckoned path resulting from simply integrating the
odometry data. The dead-reckoning path clearly reveals sys-
tematic biases in the odometry. For the results reported below,
we augment the state vector with a several bias parameters that
are estimated on-line.

Figure 13(a) shows the result of applying the global opti-
mization described in Section 4 to the Atlas output based on
laser scanner data and odometry. A total of 101 map-frames
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Fig. 9. (a) The architectural plan and (b) odometry for the ten multiloop data set. The start position of the vehicle (0, 0) is in
the center of the operating area. (c) Laser scan-match map, full solution (no submaps). Each circle indicates a scan pose in
the map. (d) Laser feature-based SLAM map, full solution (no submaps).
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Fig. 10. (a) Atlas optimized map, using laser feature-based SLAM as the local mapping method. The numbers represent the
map IDs and are positioned near the origins of each map. Please note that the symbol adjacency is not necessarily indicative
of map adjacency (b) Adjacency matrix. (c) Map-frame genesis and activity. The generation of new map-frames drops off
as the area becomes fully mapped and maps are reused. Each dash in the central figure corresponds to a period in which a
particular map-frame was supporting an active, successful hypothesis. In this implementation, map-frames are not deleted and
so frames with erroneous maps might never be selected for reuse. Maps 6 and 7 are such a case; the right-hand figure indicates
correspondingly small amounts of activity time. The lower figure shows how the average number of active hypotheses remains
constant throughout the experiment.
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Fig. 11. (a) Atlas optimized map, using scan-matching as the local mapping method. (b) Adjacency matrix. (c) Map-frame
genesis and activity.
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Fig. 12. (a) The manually drawn topology of the driven route overlaid on an architectural drawing of part of the MIT campus
(Killian Court). The large east–west passage, known as the “infinite corridor”, is approximately 225 m long. (b) The trajectory
derived from odometry alone.
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were built, each containing a maximum of 15 mapped line
segments. Figure 13(b) shows the instantaneous sum of ker-
nel and user time for the Atlas process as well as its smoothed
value. Note that as more features are mapped and more map-
frames are created the mean processor load remains constant.
Figure 13(c) also plots the numerical label of the dominant
map-frame with time. During map-frame genesis, a counter
is incremented and the newly created map is labeled with its
value. As new ground is covered, the value of the dominant
map ID increases. When the robot returns, however, to a pre-
viously mapped area, the dominant map ID will decrease if
loop closure is successful. For example, approximately 1 h
into the experiment the robot returned to an area first mapped
45 min earlier. Similarly, after 2 h 15 min, the vehicle returned
to a region mapped just 5 min after the experiment began. The
experiment demonstrates the ability ofAtlas to close multiple,
nested loops.

Figure 14 shows results using data from the same exper-
iment but using the Polaroid sonar data instead of the laser
scanner data. The local SLAM method used is described fully
in Leonard et al. (2002). Figure 15 shows results using data
from the same data set when sonar and laser data are pro-
cessed concurrently. Figure 15(a) shows the global optimized
map, Figure 15(b) shows the map adjacency matrix, and Fig-
ure 15(c) shows the active map ID versus time.

Figure 16 shows results using data from the same ex-
periment but using laser scan-matching as the local SLAM
module. The maximum number of vehicle poses in a map-
frame was set to 15. Figure 16(a) shows the global opti-
mized map, Figure 16(b) shows the map adjacency matrix,
and Figure 16(c) shows the active map ID versus time. The
visual quality of the final optimized map is better using scan-
matching instead of feature-based SLAM; however, the scan-
matching approach would not be successful with reduced
quality data, such as sonar.

5.3. Victoria Park Using Scan-Matching

We next provide results using scan-matching as the local
SLAM module for an outdoor data set, made publicly avail-
able by E. Nebot of the University of Sydney. Results for this
data set were first published by Guivant and Nebot (2001),
using the compressed filter, an efficient method for large-
scale SLAM based on the Kalman filter. We refer the reader
to Guivant and Nebot (2001) for a detailed description of
the experimental setup for acquisition of this data. Process-
ing results for the same data set have been published by Liu
and Thrun (2003), using sparse extended information filters.
These researchers have used trees as discrete point features in
processing of this data set. In contrast, we have processed the
data using scan-matching as the local mapping module. These
data use a sensor with a much longer range than the indoor
scanner used in the Killian Court data set, and mounted on a
vehicle with significantly different dynamics. The maximum

number of vehicle poses in a map-frame was set to ten. Using
algorithm parameters nearly identical to those used to obtain
Figure 16, the output of Atlas is shown in Figure 17.

5.4. Pennsylvania Mine Scan-Match

Finally, we present results for an underground mine data set,
made available by S. Thrun of Carnegie Mellon University.
Processing results for this data set using sparse extended in-
formation filters are available in Thrun et al. (2003). This
data set is more challenging because it consists exclusively
of laser scanner data, with no odometry. To cope with the ab-
sence of odometry data, a motion model was assumed with the
vehicle traveling forward at a velocity of 17.5 cm s−1 (with
a large corresponding uncertainty). For scan-matching, the
maximum number of vehicle poses in a map-frame was 15.
The output of Atlas is shown in Figure 18.

6. Conclusion

In this paper we have presented Atlas, a general framework
for efficient large-scale mapping and navigation. The perfor-
mance of the approach has been verified using both laser
scanner and ultrasonic range data, demonstrating the capa-
bility to perform SLAM in large areas comprised of multiple,
nested loops in real time. Results have been presented for
both feature-based local SLAM (Smith, Self, and Cheeseman
1990) and scan-matching.

The method achieves a growth of complexity of either
O(n log n) when using the Dijsktra shortest path algorithm
to select candidates for map-matching, or O(n) when BFS
is used for this task. Amortization of this computation over
the time spent in each submap results in extremely efficient
performance. An off-line global alignment step is utilized to
generate a single global map for visualization purposes at the
end of a mission. This method operates extremely quickly (a
few seconds of computation time) for the size of environments
considered in this paper.

Several important issues remain for future work. For
many real-world SLAM problems in which biases and non-
linearities are significant, the “standard” full O(n2) solution
can fail badly. For a “true” linear Gaussian SLAM problem
with known data association, a submap approach such asAtlas
will yield state estimation errors that are larger than the full
O(n2) solution. In this case, Atlas is indeed suboptimal. The
issues of the rate of convergence and the “price paid” for using
multiple submaps require further study. In related research,
we have shown that when the local origins of submaps are de-
fined by map features shared between adjacent submaps, then
one can achieve asymptotic convergence to a solution that is
effectively the same as the full solution, for situations when
the robot can make repeated traversals of the environment
(Leonard and Newman 2003).

This paper has not addressed the issue of achieving global
convergence for repeated traversals of the environment. In
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Fig. 13. (a) Global optimized map and Atlas graph for processing of laser data (feature-based local SLAM). (b) Processor
load and current map ID for laser data run. The general linear increase in current map ID is indicative of the mapping of new
areas. The occasional “fallback” to a map with a lower ID represents successful loop closing—the reuse of an existing map.
(The processor load is plotted in arbitrary units.) (c) Map ID versus time, total activity versus map ID, and the number of
active hypotheses versus time for the laser feature-based SLAM processing. (d) Adjacency matrix. The beginning and end of
the experiment occur on a different floor of the building. The vehicle started on the fourth floor of MIT building 5 and was
manually steered to the elevator in MIT building 7 (approximately 5 min into the mission) and was taken to the third floor.
Approximately 10 min from the end of the mission, the vehicle was taken back into the elevator and back to the fourth floor,
traveling down past the origin to a portion of the environment not previously visited. Hence, the final segment of the trajectory
(the leftmost part of the map) does not align well with the longer corridor, which is actually on the third floor of the building
(see Extension 1).
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Fig. 14. Global optimized map and Atlas graph for processing of feature-based SLAM processing of sonar and odometry data.
The local SLAM algorithm, described in Leonard et al. (2002), uses random sample consensus for feature association and
classification and multiple vehicle poses in the state vector to enable consistent feature initialization from multiple vantage
points with wide-beam sonar measurements. Map-matching is more difficult with sonar. The results indicate situations where
Atlas fails to detect some loop closure events that are detected with the more accurate laser scanner data. For example, maps
73 and 102 fail to produce a verifiable match.
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Fig. 15. (a) Global optimized map and Atlas graph for processing of the Killian Court data set using laser and sonar data
concurrently (feature-based local SLAM). (b) Map adjacency matrix. (c) Map times. Extension 1 provides a full replay of
the data processing. Feature-based SLAM processing with sonar and laser concurrently performs better than processing laser
only, in part because the laser scanner has only a 180◦ field of view (looking forwards), whereas the sonar ring provides 360◦

coverage. This is advantageous when attempting map-matches for traversals of a corridor in opposite directions.
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Fig. 16. (a) Global optimized map and Atlas graph for processing of the Killian Court data set using laser scan-matching as
the local mapping method (Appendix C). (b) Map adjacency matrix. (c) Map times.
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Fig. 17. (a) Optimized map of Victoria Park data set using Atlas scan-matching. (b) Map times. (c) Adjacency matrix. See
Guivant and Nebot (2001) and Liu and Thrun (2003) for featured-based SLAM processing results for this data set.
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Fig. 18. (a) Optimized map of the Pennsylvania Mine data set using Atlas scan-matching (data made available by S. Thrun;
Thrun et al. 2003). (b) Map times. (c) Adjacency matrix. (d) Processing time. 58 min of CPU time were required to process
the 178 min of data. The processing rate is proportional to the number of scans matched. We can see about a twofold increase
in revisited areas as opposed to new areas, since there are saved scans in front of and behind the robot in the former. Notice
that there is no noticeable processing delay when closing a loop. Extension 3 provides a full replay of the data processing.
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related research, we have developed techniques whereby, with
each new map transition, we can also improve our estimate
of the transformation between frames. A related subject is
the issue of map fusion and map “clean-up”. Currently, with
the conservative approach to map-matching and loop closure
adopted in Atlas, the algorithm can generate multiple over-
lapping submaps for the same region of the environment. For
example, in Figure 10, the algorithm produced 12 map-frames
to cover the area of the “ten loops” experiment. Using a tech-
nique such as sequential map joining (Tardós et al. 2002),
these 12 map-frames could be combined to form a single map.
For larger-scale environments, such as the Killian Court data
set, the combination of many map-frames into a single map
would likely fail due to linearization errors.

Ongoing research efforts include the extension of the ap-
proach to accommodate 3D, omni-directional video camera
data and underwater sonar data.

Appendix A: Feature-Based Local Navigation
and Mapping

For the results presented in this paper we chose to adopt a com-
mon approach to the SLAM problem: feature-based stochas-
tic mapping using an extended Kalman filter (EKF). There
is a rich corpus of literature on this subject (Smith, Self,
and Cheeseman 1990). For completeness, the EKF-derived
feature-based SLAM algorithm is summarized below.

We seek an estimate x̂(i|j) at time i using vehicle relative
observations of features made up until time j of a state vector
defined to be concatenation of vehicle and n feature locations
(the map) and its covariance P(i|j):

x̂(i|j) = [
x̂v(i|j)T, x̂1(i|j)T · · · x̂n(i|j)T

]T

= [
x̂v(i|j)T, x̂m(i|j)T

]T

P(i|j) =
[

Pvv(i|j) Pvm(i|j)

Pvm(i|j)T Pmm(i|j).

]

The state vector to be estimated x̂ evolves according to a non-
linear process model:

x(k + 1) = F(x(k), u(k + 1)) + vv(k + 1).

Here, v is a process noise vector which is assumed to be a
zero mean, temporally uncorrelated random sequence with
covariance given by

E[v(k)] = 0

E[v(i).v(j)T] =
{

Q(k) if i = j = k,

0 otherwise.

If we assume that features do not move, the process model
can be simplified to

x(k + 1) =
[

Fv(xv(k), u(k + 1))

xm(k)

]
+

[
vv(k + 1)

0

]
.

Observations of features are modeled using a non-linear rela-
tionship between state and measurements

ẑ(k) = H(x(k)) + w(k).

The terms w is an observation noise vector, which is assumed
to be a zero mean, temporally uncorrelated random sequence
with covariance given by

E[w(k)] = 0

E[w(i).w(j)T] =
{

R(k) if i = j = k,

0 otherwise.

The prediction equations for the EKF are written as follows:

x̂(k + 1|k) = F(x̂(k|k), u(k + 1), k + 1)

P(k + 1|k) = ∇Fx̂P(k|k)∇FT
x̂ + Q(k + 1)

ẑ(k + 1|k) = H(x̂(k + 1|k), k + 1).

The term ∇·x̂ is understood to be the Jacobian of (·) with
respect to x evaluated at x̂(k + 1|k).

Following the prediction, the new observation z(k + 1) is
fused with the prior estimate by application of the following
equations:

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)ν(k + 1)

P(k + 1|k + 1) = P(k + 1|k) − W(k + 1)SννWT (k + 1)

where

ν(k + 1|k) = z(k + 1) − ẑ(k + 1|k)

Sνν = ∇Hx̂P(k + 1|k)∇HT
x̂ + R(k + 1)

W(k + 1) = P(k + 1|k)∇HT
x̂ Sνν

−1.

The nature of the SLAM problem results in sparse Jacobians
of the observation and process models. Under the assumption
of static features ∇Fx becomes

∇Fx =




∇Fv 0 · · · · · ·
0 I

. . .
...

...
. . .

. . . 0
0 · · · 0 I


 .

The observation of feature i is a function of only the vehicle
state and the feature being observed. Hence the observation
Jacobian is highly sparse and can be written in block form as

∇Hx = [∇Hv · · · 0 · · · ∇Hi · · · 0] (16)

where ∇Hi is the derivative with respect to the ith feature
and ∇Hv is the derivative with respect to the vehicle pose.
With n features, the sparseness of these matrices allows the
prediction step to be performedO(n) and the update inO(n2).
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An important aspect of this algorithm is that the dimension
of the state vector is not constant; it grows as more features are
observed and mapped. An observation z of an unmapped fea-
ture can be used to initialize a new feature via an initialization
function g(x̂, z):

x̂ ⇒ [
x̂T, g(x̂, z)T

]T

P ⇒
[

P P∇GT
x

∇GxP ∇GxP∇Gx + ∇GzR∇Gz.

]

The association of measurements to features can be ac-
complished via the commonly applied nearest-neighbor gat-
ing technique as described in Dissanayake et al. (2001) and
Bar-Shalom and Fortmann (1988).

Appendix B: Jacobians of Transformation
Compositions

In this appendix we briefly review our notation for represent-
ing uncertain coordinate frame transformations. See Castel-
lanos and Tardós (2000) for more detail.

In the case of two dimensions, we can represent a coor-
dinate frame transformation as a translation followed by a
rotation, parametrized as

T
j

i =

 xi

yi

θi


 ,

which describes the transformation of coordinates in frame j

to frame i.
We can compose transformations with the ⊕ operator as

follows

T k

i
= T

j

i ⊕ T k

j

=

 xi + cixj − siyj

yi + sixj + ciyj

θi + θj




where ci and si are cos(θi) and sin(θi), respectively.
When transforming the covariances of transformations, we

need to evaluate the Jacobians of the transformation operator
with respect to either of its arguments. The Jacobian of the T k

i

with respect to the first argument of ⊕ is J1

(
T

j

i , T k
j

)
:

J1

(
T

j

i , T k

j

) =

 1 0 −sixj − ciyj

0 1 cixj − siyj

0 0 1


 .

Likewise, the Jacobian of the T k
i

with respect to the second
argument of ⊕is J2

(
T

j

i , T k
j

)
:

J2

(
T

j

i , T k

j

) =

 ci −si 0

si ci 0
0 0 1


 .

The operator � forms the inverse transformation T i
j

=
�T

j

i such that T i
j
�T

j

i = I , where I is the identity transform.
The Jacobian of T i

j
with respect to T

j

i is J�
(
T

j

i

)
.

J�
(
T

j

i

) =

 −ci −si sixi − ciyi

si −ci cixi + siyi

0 0 −1


 .

Appendix C: Local SLAM Based on
Scan-Matching

Scan-matching is another local navigation module for Atlas.
It uses the laser scan points directly instead of extracting fea-
tures such as lines from the scans. Scan-matching has been
a popular approach to SLAM with dense laser scanner data
(Lu and Milios 1997; Gutmann and Konolige 1999; Thrun
2001). In this appendix, we describe a novel implementation
that combines scan-matching with a linear Gaussian state esti-
mation formulation (Smith, Self, and Cheeseman 1990). The
key to the method is to use past vehicle poses as elements in
the SLAM state vector (Leonard et al. 2002), and using scan-
matching to formulate measurements that are a function of two
different vehicle poses. This provides an effective means to
obtain uncertainty estimates for SLAM with scan-matching,
an issue that has been identified as problematic in previous re-
search with scan-matching (Wang, Thorpe, and Thrun 2003).

The map representation is a collection of laser scans. Each
laser scan is associated with a saved robot pose. The map state
vector is the concatenation of the current robot pose and all
the saved robot poses. We maintain the joint probability of
all the poses with a single multivariate Gaussian probability
distribution function. Scans are matched with the ICP algo-
rithm (Besl and McKay 1992). The ICP algorithm produces
the relative transformation between two scans, its uncertainty,
and an indication of how much the scans overlap.

ICP is a fairly simple algorithm that is used to align two
clouds of points with unknown correspondences. The algo-
rithm proceeds in two steps. In the first step, point correspon-
dences are found by matching all the points from one scan to
the closest point in the other scan. The second step then finds
a coordinate transformation that minimizes the error between
the matched point correspondences. These two steps are re-
peated until convergence is achieved or a maximum number
of iterations has occurred.

The algorithm can be improved when surface normals for
each point are available. The normals are used in the first step
to limit matches between points with normals that are not
pointing in the same general direction. In the second step, the
error of the point match is only considered in the direction of
the surface normal. This alleviates the issue when a surface is
not sampled at exactly the same points in the two scans.

To mitigate the effect of outliers in the data (from non-
overlapping regions of the scans, or moving objects) the
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error of the matches is modified by a Lorentzian which
smoothly downweights errors when they become too large.
The Lorentzian weighting is equivalent to assuming a Cauchy
(instead of a Gaussian) distribution of errors. Even though
the optimal minimization of a Cauchy distribution of errors is
non-linear and requires multiple iterations for convergences,
we have found that one iteration is sufficient since the mini-
mization step is repeated in the iterations of the ICP algorithm
anyway.

The current laser scan is matched (with ICP) in succession
to each of the saved scans in the current map. If there is signif-
icant overlap between the two scans, the transformation from
the ICP algorithm is treated as an observation of the relative
pose between the two scans.

The maps are naturally bounded by limiting the number of
saved scan poses. A new scan pose is added to the map after a
fixed distance of robot travel until the map is full.Additionally,
a new scan pose is added to the map if none of the previous
scans matched more than 50% with the current scan.

When using scan-matching as the local mapping strategy
forAtlas, the map-matching module also uses ICP. Since there
is typically a larger uncertainty in the initial arrangement be-
tween the maps, we need to take some extra steps to ensure
that the ICP algorithm converges quickly and on the global
minimum.

First, all the points from each saved scan are transferred to
the base coordinate frame of the map. Then a down-sampled
version of the scan is formed with the aid of a grid. The down-
sampled scan consists of the average of all the points from the
original scans that fall in each grid cell. A modified ICP al-
gorithm is then run on the down-sampled scans. The ICP is
modified to allow matches, not just between nearest pairs of
points, but from all points in the second scan that are within
a distance threshold of points in the first scan. These multiple
point correspondences enable the algorithm to find a trans-
formation within the catchment basin of the global minimum
error match.

Once the modified low-resolution ICP match has con-
verged, its output transformation will be slightly biased by
the inclusion of multiple correspondences for each point. This
transformation is used, however, to initialize a regular ICP
match using the full-resolution scans. Since the full-resolution
scan is initialized with a transformation that is much better
guess, it is less likely to become stuck in a false local mini-
mum of the error function.

Unlikely map-matches can be quickly detected after the
low-resolution ICP converges (or does not). It is often unnec-
essary to attempt the computationally intensive full-resolution
match.

Appendix D: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org. Extension 1 is a video that illustrates the process-

ing sequence for the the Killian Court data set using feature-
based local SLAM processing laser and sonar data concur-
rently (Figure 15). Extension 2 is the raw data file for the
Killian Court data set, in CARMEN log file format. Exten-
sion 3 is a video that illustrates processing of the CMU mines
data set using scan-matching as the local SLAM algorithm
(Figure 18). Extension 1 is narrated and provides a descrip-
tion of the annotations and colors used in the two movies.

Table of Multimedia Extensions
Extension Type Description

1 Video Processing of the Killian Court
data set using feature-based lo-
cal SLAM processing laser and
sonar data concurrently (Fig-
ure 15)

2 CLF
data file

Raw Killian Court data set

3 Video Processing of the CMU mines
data set using scan-matching
as the local SLAM algorithm
(Figure 18)
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