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This paper describes a system for struc-
ture from motion using vanishing points
and three-dimensional lines extracted from
omni-directional video sequences. To track
lines, we use a novel dynamic programming
approach to improve ambiguity resolution,
and we use delayed states to aid in the initial-
ization of landmarks. By reobserving van-
ishing points we get direct measurements of
the robot’s three-dimensional attitude that
are independent of its position. Using vanish-
ing points simplifies the representation since
parallel lines share the same direction states.
We show the performance of the system in
various indoor and outdoor environments
and include comparisons with independent
two-dimensional reference maps for each
experiment.
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There is increasing interest in the development of
structure from motion (SFM) algorithms capable of
running in real-time [6, 8]. Real-time SFM will en-
able applications such as (1) real-time navigation of
mobile robots in unknown environments, (2) real-
time capture of three-dimensional (3-D) computer
models using hand-held cameras, and (3) real-time
head tracking in extended environments.
The set of choices in the development of structure
from motion algorithms include:
• state estimation (batch vs. recursive);
• choice of representation (geometric vs. appear-

ance-based);
• choice of features (points, edges, lines, curves,

etc.);
• camera geometry (monocular, binocular, trinoc-

ular, omni-directional; affine vs. projective, cali-
brated vs. uncalibrated cameras);

• representation and manipulation of uncertainty
(Kalman filtering, sum of Gaussians, sequential
Monte Carlo methods, etc.).

This paper presents a system that uses vanishing
points (VPs) and 3-D line segments as features in
a stochastic framework for recursive SFM. The ap-
proach assumes that the scene contains sets of sta-
tionary parallel lines, a valid assumption in many
human-made environments. The approach is demon-
strated experimentally with results from several long
(1000+ frames) omni-directional video sequences.
A critical decision in algorithm development is the
choice between batch and recursive methods. Batch
SFM algorithms exist for static, clutter-free human-
made scenes and small camera excursions. Many
barriers remain, however, to achieve a real-time SFM
solution for complex, large-scale scenes.
The issues of choice of representation and reliable
extraction of features have been key issues in vision
research [15]. Most SFM algorithms have employed
points as features, extracted from images using tech-
niques such as the SUSAN corner detector [20],
with random sample consensus (RANSAC) used
to determine the correspondence of points across
image sequences. Using points as features, various
batch SFM algorithms are summarized in Hartley
and Zisserman [12] and Faugeras et al. [10]. For
recursive SFM using points, the current state-of-the-
art is perhaps best represented by Chiuso et al. [6]
and McLauchlan [16]. Chiuso et al. have developed
a real-time SFM system that can track large num-
bers of scene points and produce structure and mo-
tion estimates despite the presence of occlusion [6].
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McLauchlan has developed a hybrid batch/recursive
technique for SFM using bundle adjustment, termed
the variable-state dimension filter (VSDF) [16].
Our approach is similar in some ways to Chiuso et
al. [6], but different in several key respects. One pri-
mary difference is that we use VPs and 3-D lines as
features, rather than points. This greatly reduces the
amount of processing required, and allows a conser-
vative approach to initializing features into the map,
and matching measurements to features. A nice fea-
ture of VPs is that they are invariant to translation,
hence enabling the estimation of rotational errors to
be decoupled from the estimation of translational
errors.
Batch SFM using line features with manual corre-
spondence has been addressed by Taylor and Krieg-
man [21]. More recent work by Taylor has inte-
grated appearance-based methods with SFM to cre-
ate a complete interactive 3-D reconstruction sys-
tem [22]. In this paper, we consider recursive SFM
using lines and fully automatic correspondence.
An automatic, recursive SFM algorithm must make
data-association decisions such as ‘which measure-
ments correspond to previously mapped features?’,
‘which measurements correspond to new features?’,
and ‘which measurements are spurious?’. The brit-
tleness of most feature-detection methods is well
known [14]; erroneous decisions about the origins
of measurements can have disastrous consequences.
Correspondence errors will lead to filter divergence.
This motivates the development of methods that can
make delayed decisions, assessing the consistency of
data points obtained from multiple vantage points.
Batch algorithms for SFM often use techniques from
robust statistics, such as RANSAC, to assess consis-
tency across multiple images in a video sequence,
but such a capability is harder to achieve in a recur-
sive SFM implementation. In Chiuso et al.’s work,
tracked features are not included in the full SFM so-
lution until there is a high certainty that they provide
good-quality data. This paper adopts a similar phi-
losophy, using a technique to delay decisions about
the origins of measurements and to perform consis-
tent initialization of 3-D line features using data from
multiple vantage points.
Our approach assumes that the scene contains sets
of stationary parallel lines. This is a valid assump-
tion in many human-made environments such as in-
door offices and hallways, and outdoor urban envi-
ronments. The technique assumes that calibration in-
formation for the omni-cam is available. While there

has been a considerable effort in the use of omni-
directional imagery in computer vision, we are un-
aware of any published work using omni-directional
images to provide a full six-degrees-of-freedom, ge-
ometric SFM solution, using VPs and 3-D lines as
features.
The structure of this paper is as follows: Sect. 2
describes the stochastic estimation framework. Sec-
tion 3 describes the representation, detection, and
estimation of vanishing points. Section 4 describes
our dynamic programming approach to tracking par-
allel line segments in an image sequence. Section 5
describes the representation, initialization, and esti-
mation of 3-D lines. Section 6 presents experimen-
tal results for the system for three different exper-
iments, two performed indoors and one performed
outdoors. Results for one of the indoor sequences
are compared with a reference trajectory and a two-
dimensional (2-D) map generated from a commer-
cial laser/gyro navigation system. Finally, Sect. 7
summarizes the paper, contrasts it with other ap-
proaches to visual SFM, and suggests directions for
future research.

2 Estimation framework

Concurrent recovery of scene structure and camera
trajectory is a high-dimensional, coupled-state es-
timation problem. The key challenges here include
coping with uncertainty and scale, and the coupling
(non-independence) of errors in feature and cam-
era pose estimates. This paper uses the extended
Kalman filter (EKF) for recursive state estimation.
Our use of VPs for accurate rotation estimation ef-
fectively sidesteps two limitations of the EKF: its
potential for divergence when angular error is large,
and its inability to handle multi-modal distributions.
Our choice of features, and conservative approach to
feature initialization and matching, greatly ease the
data-association problem.
An important objective of our work is to tie esti-
mated scene structure to a common reference frame
defined by the initial camera pose, as in the work
in robotics known as simultaneous localization and
mapping (SLAM) [5, 17, 19, 24], using laser range
scanners [5, 9, 11, 17]. Some vision researchers have
pursued similar approaches for small scenes and
short camera excursions [8, 16].
This paper does not address the problems of large
loop-closing and global relocalization. In related re-
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Fig. 1. Data flow graph

search, we have developed a method for large-scale
mapping, called Atlas, and demonstrated large loop-
closing and global relocalization for 2-D SLAM with
laser and/or sonar data [4].
In this paper, we adopt a variable-dimension state-
estimation framework, as employed in SLAM [19].
Figure 1 summarizes the data flow in our system.
Given a sequence of omni-directional images and de-
tected linear features, our task is to estimate the po-
sition and orientation of 3-D scene landmarks (VPs
and 3-D lines), and the pose of the robot (or camera
on the robot) as each image was acquired. We join
uncertain landmark states and robot poses in a com-
mon state vector, with a corresponding error covari-
ance matrix:

xworld :=
[

xrobot
xmap

]
, (1)

Pworld :=
[

Prr Prm
Pmr Pmm

]
. (2)

The state-projection function models the motion of
the camera. The measurement-prediction function
models landmark observations. Newly discovered
landmarks (y) are incorporated into the map from
the measurements (z), using an initialization func-
tion g(·). The initialization function augments both
the state vector and covariance matrix, explicitly cor-
relating the new landmarks with all existing land-
marks:

y = g(x, z), (3)

x ←
[

x
y

]
, (4)

Pxx ←
[

Pxx Gx Pxx

PxxGT
x (Gx PxxGT

x + Gz PzzGT
z )

]
, (5)

where g(·), Gx , and Gz are the mapping function and
its Jacobians, and Pzz is the measurement covariance.
Reobservation of a landmark improves the estimate
of the observed landmark, the camera pose, and any
correlated landmarks. Cross covariances determine
the degree to which correlated states change in the
presence of new information, and propagate infor-
mation to features that are not observed in the current
frame.
Three-dimensional features may not be fully ob-
servable from a single vantage point. Thus, our
method combines observations from multiple van-
tage points [13], by retaining several recent, cor-
related estimated camera positions. This technique
also makes the filter more robust, providing a ‘proba-
tionary period’ before measurements are integrated
into the EKF and hence affect the SFM computation.
This approach loses no information, since data from
the probationary period is eventually fully incorpo-
rated into the solution.

3 Estimating vanishing points

Vanishing points (VPs) are the common directions
of parallel 3-D lines [1]. In a perspective view,
the VP is at the intersection of the images of the
lines. We detect potential VPs in each view by find-
ing clusters of line intersections. Subsequently, we
use a random-sample consensus (RANSAC)-based
method to seed initial clusters for an EM-based
(expectation-maximization) refinement [2]. EM gen-
erates a classification of observed lines to modeled
VPs, and a direction estimate for each VP. Since true
VPs are at infinity, they are invariant to translation,
whereas local features are not. Therefore, we de-
lay the initialization of VPs until the camera moves.
Once a VP is added to the state vector, the EKF is up-
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Fig. 2. The order of the objects cannot change unless
they are on different surfaces and the motion is large

dated with all past views of the VP using the retained
brief history of saved camera pose states.
We represent the VP with a 3-D unit vector in world
coordinates. Since the VP is constrained to have unit
length, it has only two effective degrees of freedom.
This means that the uncertainty in the parameters of
the VP ‘live’ on the constraint surface of the unit
sphere. To represent this uncertainty in the covari-
ance matrix of the EKF, we linearize the constraint
at the VP to be the tangent plane of the unit sphere
with its normal equal to the VP. Subsequently, we
represent the plane’s coordinate system by two basis
vectors and project the covariance of the VP onto the
plane.
The orthonormal basis vectors for the plane that is
normal to the VP vz are determined with the help of
a constant vector p that is initialized to be orthogonal
to the initial estimate of the VP:

p =
{

n([1 0 0]T ×vz) if vz
∼= [0 0 1]T ,

n([0 0 1]T ×vz) otherwise,
(6)

vx = n(vz × p), (7)
vy = n(vz ×vx), (8)

where the function n(v) generates a unit vector in the
same direction as v: n(v) := v/‖v‖.
We use the 2×3 matrix

Tv := [vx vy]T (9)

to project 3-D coordinates into the plane normal to
the VP.

4 Tracking image lines

Lines are tracked across consecutive image frames
using stochastic nearest-neighbor gating [3] aug-

mented by a novel ordering constraint. When parallel
lines are on a single surface, the relative order of
the lines is maintained from subsequent views. Some
lines may be occluded by convexities, but their order
can change only if the lines are on different surfaces
and the motion is large with respect to the size of the
surfaces (Fig. 2). Since in practice this is rare, we can
exploit this constraint to aid in tracking lines whose
prediction gates overlap. Nearest-neighbor tracking
is not robust enough because many typical scenes
have groups of lines that are closer together than the
tracking prediction uncertainty.
The lines from the previous view are projected into
the current view and then are matched to the newly
extracted image lines. By sorting the lines around
each corresponding VP we can apply a modified ver-
sion of the standard longest common substring al-
gorithm, which is efficiently solved with dynamic
programming [7], to find the best match while main-
taining the ordering constraint. If we imagine the VP
as the north pole of a globe (Fig. 3a), then all the
line segments run north–south, and they can be lexi-
cographically sorted by the longitude and latitude of
their midpoints. The mean color to the left and right
of a line are used to further reduce the chance of false
matches.

5 Mapping 3-D lines

In addition to VPs, the system tracks local, parallel
3-D line segments that share a common VP. These
segments have six degrees of freedom (DOF), which
we partition into three groups: two for the direction
of the line, two for the perpendicular offset of the line
from the origin, and two for the locations of the end-
points along the line. The endpoints are maintained
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a

b Fig. 3. a Projection of a 3-D line. b View in normal
plane of initialization of a 3-D line

as extra information outside the EKF state vector be-
cause of the non-Gaussian nature of occlusions. Thus
only two unique state elements are maintained for
each 3-D line landmark in the EKF. This offset of
the 3-D line is parameterized as a point in the plane
which passes through the origin and is orthogonal to
the corresponding VP of the line. This plane is pa-
rameterized by the same basis vectors as in (9).
Figure 3 shows the projection of a 3-D line and its
covariance onto the unit sphere. The system updates
3-D lines by projecting them into the current view,
and comparing them with the corresponding line ex-
tracted from the current view.
Due to the need to maintain estimates of correlations
between all features in the map, the computational

complexity of stochastic mapping is O(n2), where n
is the number of features mapped [18]. The current
implementation simply drops older features when
the number of features in the state vector exceeds
a preset constant limit (fifty 3-D line segments in the
experiments reported below).

6 Experimental results

We present experimental results using three omni-
directional video sequences. The experimental sys-
tem consists of a digital video camcorder attached
to a parabolic mirror which was oriented vertically
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for each image
extract edge contours from Laplacian of Gaussian
find mirror calibration marks and calibrate projection function
map edge contour pixel locations to rays
fit lines to contours and compute line covariances
find initial intersection clusters with RANSAC
refine intersection clusters with EM to get current view’s VPs
label lines with best VP from current view
propagate KF to current time
project KF VPs and preliminary VP tracks into current view
match projected VPs with current VPs
for each matched KF VP
update KF state and covariance

for each preliminary VP
extend preliminary VP track

for each unmatched VP
initialize new VP track

for each preliminary VP track longer than N frames
check if VP is invariant to translation
map new VP into KF state and covariance using current view
update new VP with past views

for each VP in KF
project all corresponding lines and preliminary lines into current view
sort projected lines and current view lines around VP
match lines using dynamic programming to enforce order constraint

for each match KF line
compute normalized residual
if residual < outlier threshold

update KF state and covariance
for each matched preliminary line
extend line track

for each unmatched line
initialize new track

for each preliminary line track longer than N frames
check to see if intersection is consistent with KF covariance
if consistent line intersection

initialize KF 3-D line and covariance from first and last views
update 3-D line from remaining past views
if more than M lines in KF

find line with oldest reobservation time
delete line and corresponding covariance elements
delete oldest robot pose and covariance
duplicate current robot pose and covariance
delete preliminary VP and line tracks older than N frames

Fig. 4. Summary of the recursive SFM algorithm using VPs and 3-D lines

for the indoor sequences and horizontally for the out-
door sequence.

6.1 Indoor sequence A:
mobile-robot experiment

For thefirst indoorsequence, thecamerawasmounted
on a small mobile robot as shown in Fig. 5a. To
maintain the calibration of the omni-camera despite

vibration during data acquisition, fiducial marks ad-
jacent to the mirror (visible in Fig. 5) were regis-
tered. For synchronization, we used a software mo-
dem to encode time stamps from the robot in the
camcorder’s audio channel. The current implemen-
tation of the algorithm uses MATLAB and has not
been optimized for speed. The processing time was
roughly one to three frames per second. We are de-
veloping an optimized C++ implementation to en-
able real-time operation.
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5a

5b

5c

6

Fig. 5. a The omni-directional video camera mounted
on a Pioneer robot. b Edges and VPs extracted. c Edges
extended to infinite lines
Fig. 6. Comparison of trajectories estimated from the
SFM algorithm (dashed line), a commercial laser/gyro
navigation system (solid line), and odometry for the in-
door experiment (dotted line). The total path length was
106 m and the robot returned to within approximately
30 cm of its starting point

The video sequence consisted of 2400 frames with
a trajectory length of 106 m. Odometry data from the
robot was used for EKF state projection. The error
drift rate was approximately 15 degrees per minute.
The robot moved at a speed of approximately 25 cm
per second. Sample images and features are shown in
Fig. 5b,c. Laser scanner data and commercial robot-

navigation software provided a ground-truth camera
pose with an accuracy of approximately 5 cm and
0.5 degrees.
Figure 6 shows a comparison of the camera trajec-
tory as estimated by the SFM algorithm with odom-
etry and with the output from a two-dimensional
(three-DOF) laser-gyro navigation system. Compar-
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7a 7b

7c 7d
Fig. 7. State-estimation errors. a Difference between heading estimated by the laser/gyro system and the SFM algorithm.
b Histogram of heading errors (note that there is only a 1 degree standard deviation). c Difference between translation (x, y, z)
estimated by the laser/gyro system and the SFM algorithm. d Histogram of translation errors

isons with ground-truth are possible only about one
rotation axis (yaw). However, our algorithm com-
putes a full six-DOF solution for the camera trajec-
tory. Figure 7 shows the distribution of rotational
and translation errors of the visual SFM output as
compared to the laser/gyro estimates. The standard
deviation of heading errors was one degree, and the
standard deviations for translation errors were 30 cm
in x and y and 6 cm in z. Figure 8 shows the dis-
tribution of vanishing point directions referenced to
odometry and to the visual SFM output. This demon-
strates the method’s ability to decouple estimation
of rotational and translational errors. Finally, Fig. 9

shows two views of the map estimated by the algo-
rithm, compared with a 2-D reference laser map.

6.2 Indoor sequence B:
body-mounted data acquisition

The omni-camera was mounted on a novel ‘back-
pack’ data-acquisition system that also contained an
inertial measurement unit and a radar Doppler veloc-
ity sensor. The system was used to acquire a video se-
quence for a person walking around an indoor envi-
ronment. Figure 10 shows examples of images from
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8a 8b

9a

9b

Fig. 8. Distribution of vanishing points: in
a we see the vanishing points projected into
the omni-directional image using the head-
ing estimate from the odometry only. In b we
see the VPs projected using the robot orienta-
tions estimated by our algorithm
Fig. 9. 3-D wireframe model of map for in-
door experiment. For comparison, walls es-
timated from laser data are shown in bold.
a Bird’s eye view. b Oblique view. Note:
line segments from the laser mapping system
(shown as bold) represent walls that are pro-
jected onto the ground plane
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a b
Fig. 10. An example application of accurate per-frame orientation estimation. In column (a) we show four frames of the input video
and in column (b) we depict the results of rendering a new view of each frame with the virtual camera’s rotation constrained to align
with the world’s x axis
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11

12

Fig. 11. Overlay of estimated camera path and scene
structure with an architectural drawing for the body-
mounted indoor experiment
Fig. 12. Comparison of trajectories estimated from the
SFM algorithm and odometry for the outdoor experi-
ment. The image sequence is 17 000 frames acquired
over a 946-m path

the sequence after stabilization based on VP estima-
tion. Figure 11 shows the SFM output and estimated
camera trajectory superimposed on a floor plan of the
environment (the 2nd floor of MIT’s Laboratory for
Computer Science).

6.3 Outdoor experimental results

The omni-camera was mounted on the Argus city-
scanning rolling platform [23] and used to obtain an
outdoor video sequence consisting of 17 000 frames
with a path length of 946 m. Figure 12 shows the
estimated map and camera trajectory, compared to
odometry. Although no ground-truth is available for

this sequence, we have overlaid the path and struc-
ture on top of a site plan for a qualitative evaluation,
as shown in Fig. 13.
The experiment terminated when the robot entered
a featureless region in which no vanishing points
were visible. Recovery from such situations is pos-
sible using the Atlas framework for large-scale
mapping [4].

7 Conclusion and future work

This paper described a new method for recursive
SFM from omni-directional video sequences. Van-
ishing points and 3-D lines are used as features in
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Fig. 13. Estimated camera path and 3-D line segments overlaid on site plan for outdoor experiment

a recursive state-estimation framework [19]. The ap-
proach has been demonstrated with off-line process-
ing of both indoor and outdoor image sequences. In
the mobile-robot indoor experiment (Sect. 6.1), the
resulting trajectory estimate and the map estimated
from the omni-directional video data compare favor-
ably with a trajectory estimate and map generated
from laser scanner data. In both the body-mounted
experiment (Sect. 6.2) and the outdoor experiment
(Sect. 6.3), there is excellent agreement between the
estimated scene structure and available architectural
drawings.

In ongoing research, the methods described in this
paper are being combined with the Atlas framework
for scalable mapping [4] to enable computationally
efficient large-scale mapping and loop-closing. In
addition, methods are being developed for texture es-
timation and aggregate feature matching.
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