
Passive Mobile Robot Localization within a
Fixed Beacon Field

Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,
{carrick,jleondard,rus,teller}@csail.mit.edu

Abstract: This paper describes an intuitive geometric algorithm for the localiza-
tion of mobile nodes in networks of sensors and robots using range-only or angle-only
measurements. The algorithm is a minimalistic approach to localization and tracking
when dead reckoning is too inaccurate to be useful. The only knowledge required
about the mobile node is its maximum speed. Geometric regions are formed and
grown to account for the motion of the mobile node. New measurements introduce
new constraints which are propagated back in time to refine previous localization
regions. The mobile robots are passive listeners while the sensor nodes actively
broadcast making the algorithm scalable to many mobile nodes while maintaining
the privacy of individual nodes. We prove that the localization regions found are
optimal–that is, they are the smallest regions which must contain the mobile node
at that time. We prove that each new measurement requires quadratic time in the
number of measurements to update the system, however, we demonstrate experi-
mentally that this can be reduced to constant time.

1 Introduction

Localization is a critical issue for many field robotics applications. In open
outdoor environments, differential GPS systems can provide precise position-
ing information. There are many applications, however, in which GPS cannot
be used, such as indoor, underwater, extraterrestrial, or urban environments.
For situations when GPS is unavailable, dead reckoning may provide an al-
ternative. Dead reckoning, however, is subject to accumulated error over time
and is insufficient for many tasks. Most current localization methods make
use of range or angle measurements to other nodes (pre-deployed beacons or
other robots) to constrain dead reckoning error growth [4, 7, 14, 15, 19, 20].

In this paper, we present a localization algorithm for mobile agents for
situations in which dead reckoning capabilities are poor, or simply unavail-
able. This includes the important case of passively tracking a non-cooperative
target. The method is also applicable to low cost underwater robots, such as



2 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

AMOUR [25], and other non-robotic mobile agents, such as animals [2] and
people [10].

Our approach is based on a field of statically fixed nodes that communicate
within a limited distance and are capable of estimating either ranges (in one
case) or angles (in the other case) to neighbors. These agents are assumed to
have been previously localized by a static localization algorithm (e.g. [18]). A
mobile node moves through this field, passively obtaining ranges (respectively
angles) to nearby fixed nodes and listens to broadcasts from the static nodes.
Based on this information, and an upper bound on the speed of the mobile
node, our method recovers an estimate of the path traversed. As additional
measurements are obtained, this new information is propagated backwards to
refine previous location estimates. We prove that our algorithm finds optimal
localization regions–that is, the smallest regions that must contain the mobile
node.

Our algorithm allows for significant delays between measurements which
makes traditional trilateration or triangulation approaches impossible. The
algorithm is scalable to any number of mobile nodes as the mobile nodes are
passive. The passivity of listeners also maintains the privacy of the mobile
nodes.

This paper is organized as follows. We first introduce the intuition behind
the range-only and angle-only versions of the algorithm. We then present the
general algorithm, which can be instantiated with either range or angle infor-
mation, and prove that it is optimal. Finally, we discuss an implementation
of the range-only and angle-only algorithms, present experimental results of
the range-only algorithm, and discuss extensions to the algorithm.

2 Related Work

A wide variety of strategies have been pursued for representing uncertainty in
robot localization. Many approaches employ probabilistic state estimation to
compute a posterior for the robot trajectory, based on assumed measurement
and motion models. A variety of filtering methods have been employed for
localization of mobile robots, including EKFs [7, 14, 15], Markov methods [3,
14], Monte Carlo methods [6, 7, 14] and batch techniques [4, 14, 15, 16]. Much
of this recent work falls into the broad area of simultaneous localization and
mapping (SLAM), in which the goal is to concurrently build a map of an
unknown environment while localizing the robot.

Our approach assumes that the robot operates in a static field of nodes
whose positions are known a priori. We assume only a known velocity bound
for the vehicle, in contrast to the more detailed motion models assumed by
modern SLAM methods. Most current localization algorithms assume an accu-
rate model of the vehicle’s uncertain motion. If a detailed probabilistic model
is available, then a state estimation approach will likely produce a more ac-
curate trajectory estimate for the robot. There are numerous real-world sit-



Passive Mobile Robot Localization within a Fixed Beacon Field 3

uations, however, that require localization algorithms that can operate with
minimal proprioceptive sensing, poor motion models, and/or highly nonlinear
measurement constraints. In these situations, the adoption of a bounded error
representation, instead of a representation based on Gaussians or particles, is
justified.

In previous work, Smith et al. also explored the problem of localization
of mobile nodes without dead reckoning [22]. They compare the case where
the mobile node is a passive listener verses actively pinging to obtain range
estimates. In the passive listening case an EKF is used. However, the inherent
difficulty of (re)initializing the filter leads them to conclude a hybrid approach
is necessary. The mobile node remains passive until it detects a bad state.
At this point it becomes active. In our work we maintain a passive state.
Additionally, our approach introduces a geometric approach to localization
which can stand alone, as we demonstrate experimentally in Section 6, or be
post-processed by a Kalman filter or other filtering methods.

Our approach represents uncertainty using bounded regions that are com-
puted based on worst-case assumptions of dead-reckoning and measurement
errors. This can be contrasted with the conventional assumption of Gaussian
errors in EKF approaches, or the representation of uncertainty with sets of
particles in Markov Chain Monte Carlo state estimation [24]. Previous work
adopting a bounded region representation of uncertainty includes Meizel et
al. [17], Briechle and Hanebeck [1], Spletzer and Taylor [23], and Isler and
Bajcsy [12]. Meizel et al. investigated the initial location estimation prob-
lem for a single robot given a prior geometric model based on noisy sonar
range measurements. Briechle and Hanebeck [1] formulated a bounded un-
certainty pose estimation algorithm given noisy relative angle measurements
to point features. Doherty et al. [9] investigated localizations methods based
only on wireless connectivity, with no range estimation. Spletzer and Taylor
developed an algorithm for multi-robot localization based on a bounded un-
certainty model [23]. Finally, Isler and Bajscy examine the sensor selection
problem based on bounded uncertainty models [12].

The robot localization problem bears similarities with the classical problem
of robot motion planning with uncertainty. In the seminal work of Erdmann
bounded sets are used for forward projection of possible robot configurations.
These are restricted by the control uncertainty cone [11]. In our work the step
to compute the set of feasible poses for a robot moving through time is similar
to Erdmann’s forward projection step.

Our approach differs from all these approaches by incorporating a dy-
namic motion component for the robot. By assuming a worst-case model for
robot motion, in terms of a maximum allowable speed, we are able to de-
velop a bounded region localization algorithm that can handle the trajectory
estimation problem given non-simultaneous measurements. This scenario is
particularly important for underwater acoustic tracking applications, where
significant delays between measurements are common due to the speed of
sound.



4 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

3 Algorithm Intuition

This section formally describes the localization problem we solve and the intu-
ition behind the range-only version and angle-only version of the localization
algorithms. The generic algorithm is presented in section 4.

3.1 Problem Formulation

We will now define a generic formulation for the localization problem. This
setup can be used to evaluate range-only, angle-only, and other localization
problems. We start by defining a localization region.

Definition 1. A localization region at some time t is the set of points in which
a node is assumed to be at time t.

We will often refer to a localization region simply as a region. It is useful
to formulate the localization problem in terms of regions as the problem is
typically under-constrained, so exact solutions are not possible. Probabilistic
regions can also be used, however, we will use a discrete formulation. In this
framework the localization problem can be stated in terms of finding optimal
localization regions.

Definition 2. We say that a localization region is optimal with respect to a
set of measurements at time t if at that time it is the smallest region that must
contain the true location of the mobile node, given the measurements and the
known velocity bound. A region is individually optimal if it is optimal with
respect to a single measurement.

For example, for a range measurement the individually optimal region is an
annulus and for the angle case it is a cone. Another way to phrase optimality
is if a region is optimal at some time t, then the region contains the true
location of the mobile node and all points in the region are reachable by the
mobile node.

Suppose that from time 1 · · · t we are given regions A1 · · ·At each of which
is individually optimal. The times need not be uniformly distributed, however,
we will assume that they are in sorted order. By definition, at time k region Ak

must contain the true location of the mobile node and furthermore, if this is
the only information we have about the mobile node, it is the smallest region
that must contain the true location. We now want to form regions, I1 · · · It,
which are optimal given all the regions A1 · · ·At and an upper bound on the
speed of the mobile node which we will call s. We will refer to these regions
as intersection regions as they will be formed by intersecting regions.

3.2 Range-Only Localization and Tracking

Figure 1 shows critical steps in the range-only localization of mobile Node m.
Node m is moving through a field of localized static nodes (Nodes a, b, c)
along the trajectory indicated by the dotted line.



Passive Mobile Robot Localization within a Fixed Beacon Field 5

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of the range-only localization algorithm.

At time t Node m passively obtains a range to Node a. This allows Node
m to localize itself to the circle indicated in Figure 1(a). At time t + 1 Node
m has moved along the trajectory as shown in Figure 1(b). It expands its
localization estimation to the annulus in Figure 1(b). Node m then enters the
communication range of Node b and obtains a ranging to Node b (see Figure
1(c)). Next, Node m intersects the circle and annulus to obtain a localization
region for time t + 1 as indicated by the bold red arcs in Figure 1(d).

The range taken at time t + 1 can be used to improve the localization
at time t as shown in Figure 1(e). The arcs from time t + 1 are expanded
to account for all locations the mobile node could have come from. This is
then intersected with the range taken at time t to obtain the refined location
region illustrated by the bold blue arcs. Figure 1(f) shows the final result.
Note that for times t and t + 1 there are two possible location regions. This
is because two range measurements do not provide sufficient information to
fully constrain the system. Range measurements from other nodes will quickly
eliminate this.

3.3 Angle-Only Localization and Tracking

Consider Figure 2. Each snapshot shows three static nodes that have self-
localized (Nodes a, b, c). Node m is a mobile node moving through the field
of static nodes along the trajectory indicated by the dotted line. Each snapshot
shows a critical point in the angle-only location and trajectory estimation for
Node m.



6 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of the angle-only localization algorithm.

At time t Node m enters the communication range of Node a and passively
computes the angle to Node a. This allows Node m to estimate its position
to be along the line shown in Figure 2(a). At time t + 1 Node m has moved
as shown in Figure 2(b). Based on its maximum possible speed, Node m
expands its location estimate to that shown in Figure 2(b). Node m now
obtains an angle measurement to Node b as shown in Figure 2(c). Based
on the intersection of the region and the angle measurement Node m can
constrain its location at time t + 1 to be the bold red line indicated in Figure
2(d).

The angle measurement at time t + 1 can be used to further refine the
position estimate of the mobile node at time t as shown in Figure 2(e). The
line that Node m was localized to at time t + 1 is expanded to represent
all possible locations Node m could have come from. This is region is then
intersected with the original angle measurement from Node a to obtain the
bold blue line which is the refined localization estimate of Node m at time t.
Figure 2(f) shows the two resulting location regions. New angle measurements
will further refine these regions.

4 The Localization Algorithm

4.1 Generic Algorithm

The localization algorithm follows the same idea as in Section 3. Each new
region computed will be intersected with the grown version of the previous



Passive Mobile Robot Localization within a Fixed Beacon Field 7

region and the information gained from the new region will be propagated
backwards. Algorithm 1 shows the details.

Algorithm 1 Localization Algorithm
1: procedure Localize(A1 · · ·At)
2: s← max speed
3: I1 = A1 . Initialize the first intersection region
4: for k = 2 to t do
5: 4t← k − (k − 1)
6: Ik =Grow(Ik−1, s4t) ∩Ak . Create the new intersection region
7: for j = k − 1 to 1 do . Propagate measurements back
8: 4t← j − (j − 1)
9: Ij =Grow(Ij+1, s4t) ∩Aj

10: end for
11: end for
12: end procedure

Algorithm 1 can be run online by omitting the outer loop (lines 4-6 and 11)
and executing the inner loop whenever a new region/measurement is obtained.

The first step in Algorithm 1 (line 3), is to initialize the first intersection
region to be the first region. Then we iterate through each successive region.

The new region is intersected with the previous intersection region grown
to account for any motion (line 6). Finally, the information gained from the
new region is propagated back by successively intersecting each optimal region
grown backwards with the previous region, as shown in line 9.

4.2 Algorithm Details

Two key operations in the algorithm which we will now examine in detail are
Grow and Intersect. Grow accounts for the motion of the mobile node over
time. Intersect produces a region that contains only those points found in
both localization regions being intersected.

Fig. 3. Growing a region by s. Acute angles, when grown, turn into circles as
illustrated. Obtuse angles, on the other hand, are eventually consumed by the growth
of the surroundings.



8 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

Figure 3 illustrates how a region grows. Let the region bounded by the
black lines contain the mobile node at time t. To determine the smallest pos-
sible region that must contain the mobile node at time t+1 we Grow the region
by s, where s is the maximum speed of the mobile node. The Grow operation
is the Minkowski sum [8] (frequently used in motion planning) of the region
and a circle with diameter s.

Notice that obtuse corners become circle arcs when grown, while every-
thing else “expands.” If a region is convex, it will remain convex. Let the
complexity of a region be the number of simple geometric features (lines and
circles) needed to describe it. Growing convex regions will never increase the
complexity of a region by more than a constant factor. This is true as every-
thing just expands except for obtuse angles which are turned into circles and
there are never more than a linear number of obtuse angles. Thus, growing
can be done in time proportional to the complexity of the region.

A simple algorithm for Intersect is to check each feature of one region
for intersection with all features of the other region. This can be done in time
proportional to the product of the complexities of the two regions. While bet-
ter algorithms exist for this, for our purposes this is sufficient as we will always
ensure that one of the regions we are intersecting has constant complexity as
shown in Sections 5.2 and 5.3. Additionally, if both regions are convex, the
intersection will also be convex.

4.3 Correctness and Optimality

We now prove the correctness and optimality of Algorithm 1. We will show
that the algorithm finds the location region of the node, and that this com-
puted location region is the smallest region that can be determined using only
maximum speed. We assume that the individual regions given as input are
optimal, which is trivially true for both the range and angle-only cases.

Theorem 1. Given the maximum speed of a mobile node and t individually
optimal regions, A1 · · ·At, Algorithm 1 will produce optimal intersection re-
gions I1 · · · It.

Without loss of generality assume that A1 · · ·At are in time order. We
will prove this theorem inductively on the number of range measurements for
the online version of the localization algorithm. The base case is when there
is only a single range measurement. Line 3 implies I1 = A1 and we already
know A1 is optimal.

Now inductively assume that intersection regions I1 · · · It−1 are optimal.
We must now show that when we add region At, It is optimal and the update of
I1 · · · It−1 maintains optimality given this new information. Call these updated
intersection regions I ′1 · · · I ′t−1.

First we will show that the new intersection region, I ′t, is optimal. Line 6
of the localization algorithm is



Passive Mobile Robot Localization within a Fixed Beacon Field 9

I ′t = Grow(It−1, s4t) ∩At. (1)

The region Grow(It−1) contains all possible locations of the mobile node at
time t ignoring the measurement At. The intersection region I ′t must contain
all possible locations of the mobile node as it is the intersection of two regions
that constrain the location of the mobile node. If this were not the case, then
there would be some point p which was not in the intersection. This would
imply that p was neither in It−1 nor At, a contradiction as this would mean
p was not reachable. Additionally, all points in I ′t are reachable as it is the
intersection of a reachable region with another region. Therefore, I ′t is optimal.

Finally we will show that the propagation backwards, line 9, produces
optimal regions. The propagation is given by

I ′j = Grow(I ′j+1, s4t) ∩Aj (2)

for all 1 ≤ j ≤ t−1. The algorithm starts with j = t−1. We just showed that
I ′t is optimal, so using the same argument as above It−1 is optimal. Applying
this recursively, all It−2 · · · I1 are optimal. Q.E.D.

5 Complexity

5.1 General Complexity

Algorithm 1 has both an inner and outer loop over all regions which suggests
an O(n2) runtime, where n is the number of input regions. However, Grow
and Intersect also take O(n) time as proven later by Theorem 2 and 3 for
the range and angle only cases. Thus, overall, we have an algorithm which
runs in O(n3) time. We show, however, that we expect the cost of Grow and
Intersect will be O(1), which suggests O(n2) runtime overall.

The runtime can be further improved by noting that the correlation of
the current measurement with the past will typically decrease rapidly as time
increases. This implies that information need only be propagated back a fixed
number of steps, eliminating the inner loop of Algorithm 1. Thus, we can
reduce the complexity of the algorithm to O(n).

5.2 Range-Only Complexity

The range-only instantiation of Algorithm 1 is obtained by taking range mea-
surements to the nodes in the sensor fields. Let A1 · · ·An be the circular
regions formed by n range measurements. A1 · · ·An are individually optimal
and as such can be used as input to Algorithm 1. We now prove the complex-
ity of localization regions is worst case O(n). Experimentally we find they are
actually O(1) leading to an O(n2) runtime.

Theorem 2. The complexity of the regions formed by the range-only version
of the localization algorithm is O(n), where n is the number of regions.



10 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

The algorithm intersects a grown intersection region with a regular region.
This will be the intersection of some grown segments of an annulus with a
circle (as shown in the Figure 4). Let regions that contain multiple disjoint
sub-regions be called compound regions. Since one of the regions is always
composed of simple arcs, the result of an intersection will be a collection of
circle segments. We will show that each intersection can at most increase the
number of circle segments by two, implying linear complexity in the worst
case.

Fig. 4. An example compound intersection region (in blue) and some new range
measurement in red. With each iteration it is possible to increase the number of
regions in the compound intersection region by at most two.

Consider Figure 4. At most the circular region can cross the inner circle of
the annulus that contains the compound region twice. Similarly, the circle can
cross the outer circle of the annulus at most twice. The only way the number
of sub-regions formed can increase is if the circle enters a sub-region, exits
that sub-region, and then reenters it as illustrated in the figure. If any of the
entering or exiting involves crossing the inner or outer circles of the annulus,
then it must cross at least twice. This means that at most two regions could
be split using this method, implying a maximum increase in the number of
regions of at most two.

If the circle does not cut the interior or exterior of the annulus within a
sub-region then it must enter and exit though the ends of the sub-region. But
notice that the ends of the sub-regions are grown such that they are circular,
so the circle being intersected can only cross each end twice. Furthermore, the
only way to split the subregion is to cross both ends. To do this the annulus
must be entered and exited on each end, implying all of the crosses of the
annulus have been used up. Therefore, the number of regions can only be
increased by two with each intersection proving Theorem 2.

In practice it is unlikely that the regions will have linear complexity. As
seen in Figure 4 the circle which is intersecting the compound region must be
very precisely aligned to increase the number of regions (note that the bottom



Passive Mobile Robot Localization within a Fixed Beacon Field 11

circle does not increase the number of regions). In the experiments described
in Section 6 we found some regions divided in two or three (e.g. when there
are only two range measurements, recall Figure 1). However, there were none
with more than three sub-regions. Thus, in practice the complexity of the
regions is constant leading to O(n2) runtime.

5.3 Angle-Only Region Complexity

Algorithm 1 is instantiated in the angle-only case by taking angle measure-
ments θ1 · · · θt with corresponding bounded errors e1 · · · et to the field of sen-
sors. These form the individually optimal regions A1 · · ·At used as input to
Algorithm 1. These regions appear as triangular wedges as shown in Figure
5(a). We now show the complexity of the localization regions is at worst O(n)
letting us conclude an O(n3) algorithm (in practice, the complexity is O(1)
implying a runtime of O(n2) see below).

Theorem 3. The complexity of the regions formed by the angle-only version
of the localization algorithm is O(n), where n is the number of regions.

(a)

0 50 100 150 200 250
6

8

10

12

14

16

18

20

22

Number of Grows and Intersections

R
eg

io
n 

C
om

pl
ex

ity

(b)

Fig. 5. (a)An example of the intersecting an angle measurement region with another
region. Notice that the bottom line increases the complexity of the region by one,
while the top line decreases the complexity of the region by two. (b)Growth in
complexity of a localization region as a function of the number of Grow and Intersect
operations.

Examining the Algorithm 1, each of the intersection regions I1 · · · In are
formed by intersecting a region with a grown intersection region n times. We
know growing a region never increases the complexity of the region by more
than a constant factor. We will now show that intersecting a region with a



12 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

grown region will never cause the complexity of the new region to increase by
more than a constant factor.

Each of these regions is convex as we start with convex regions and Grow
and Intersect preserve convexity. Assume we are intersecting Grow(Ik) with
Ak−1. Note that Ak−1 is composed of two lines. As Grow(Ik) is convex, each
line of Ak−1 can only enter and exit Grow(Ik) once. Most of the time this will
actually decrease the complexity as it will “cut” away part of the region. The
only time that it will increase the complexity is when the line enters a simple
feature and exits on the adjacent one as shown in Figure 5(a). This increases
the complexity by one. Thus, with the two lines from the region Ak−1 the
complexity is increased by at most two.

In practice the complexity of the regions is not linear, rather it is constant.
When a region is intersected with another region there is a high probability
that some of the complex parts of the region will actually be removed, sim-
plifying the region. Figure 5(b) illustrates the results of a simulation where
the complexity of a region was tracked over time. In the simulation a single
region was repeatedly grown and then intersected with a region formed by
an angle measurement from a randomly chosen node from a field of 30 static
nodes. Figure 5(b) shows that increasing the number of intersections does not
increase the complexity of the region. The average complexity of the region
was 12.0. Thus, the complexity of the regions is constant so the angle-only
localization algorithm runs in O(n2).

6 Experimental Results

We implemented the range-only version of Algorithm 1 and tested it on a
dataset created by Moore et al. [18]. Range measurements were obtained from
a static network of six MIT Crickets [21] to one mounted on a mobile robot.
The robot moved within a 2.0 by 1.5 meter space. Ground truth was collected
by a video capture system with sub-centimeter accuracy [18].

Figure 6(a) shows the static nodes (green), the arcs recovered by the local-
ization algorithm (orange), and a path generated by connecting the mid-points
of the arcs (green). Figure 6(b) shows the same recovered trajectory (green)
along with ground truth data (red). Inset in Figure 6(b) is an enlarged view
showing a location where an error occurred due to a lack of measurements
while the robot was making a turn.

The mean absolute error from the ground truth was 7.0cm with a max-
imum of 15.6cm. This was computed by taking the absolute error from the
ground truth data at each point in the recovered path. This compares well
with the 5cm of measurement error inherent to the Crickets [18]. Figure 7
shows the absolute error as a function of time.

The algorithm handles the error intrinsic to the sensors well. One reason
for this is the robot did not always travel at its maximum speed in a straight
line. This meant the regions were larger than if the robot were traveling at its



Passive Mobile Robot Localization within a Fixed Beacon Field 13

(a) (b)

Fig. 6. (a)The arcs found by the range-only implementation of Algorithm 1 and
the path reconstructed from these. Orange arcs represent the raw regions, while
the green line connects the midpoints of these arcs. (b)Ground truth (red) and
recovered path (green). Inset is an enlarged portion illustrating error caused by a
lack of measurements during a turn of the robot.

maximum speed in a straight line, making up for measurement error. In most
applications this will be the case, however, to be conservative the maximum
speed could be increased slightly to account for error in the sensors. Most
sensors also have occasional large non-Gaussian errors. To account for these,
measurements which have no intersection with the current localization region
are rejected as outliers.

This implementation only propagates information back to 5-8 localization
regions. We did not find it sensitive to the exact number. We also never
encountered a region with a complexity higher than three. These two facts
gives an overall runtime of O(n), or O(1) for each new range measurement.

7 Discussion

The propagation of the information gained from new measurements back to
previous measurements can take a significant amount of time. In the exper-
iments presented in Section 6 we found that we only had to propagate the
information back through a small, fixed, period of time. This led to a sig-
nificant reduction in the runtime. There are, however, cases where further
propagation may be needed. For instance, the localization of a mobile node



14 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

Time

A
bs

ol
ut

e 
E

rr
or

 (
cm

)

Fig. 7. Absolute error in the recovered position estimates in centimeters as a func-
tion of time.

traveling in a straight line at maximum speed could be improved by propagat-
ing the measurements back far. An adaptive system that decides at runtime
how far to propagate information back may improve localization results while
maintaining the constant time update.

Additional knowledge about the motion characteristics of the mobile node
can also be added to the system to further refine localization. Maximum ac-
celeration is likely to be known in most physical systems. With a bound on
acceleration the regions need only be grown in the current estimate of the
direction of travel and directions that could be achieved by the bounded ac-
celeration. In many systems this would significantly reduce the size of the
localization regions.

With real sensors there are some pathological cases which will cause the
algorithm to fail. If the maximum speed has not been increased sufficiently
to account for sensor errors then a number of consecutive erroneous measure-
ments could produce a region which does not contain the true location of the
mobile node. This situation can be detected as subsequent measurements will
have no intersection with the current localization region. At this point the al-
gorithm could be restarted or the previous regions could be modified to allow
for a larger error.

Our algorithm can be used with a variety of different sensors. Many are
passive in nature which allows for the scaling of our algorithm to any number
of mobile nodes. On land we have used MIT Crickets [21] to obtain range
measurements. Range measurements are obtained passively by taking the dif-
ference in time of flight of a radio and ultrasonic pulse. Angle measurements
can be obtained passively using an omnidirectional camera [4]. Underwater,



Passive Mobile Robot Localization within a Fixed Beacon Field 15

acoustic ranging can be done passively using synchronized clocks [5]. Angle
measurements can be obtained by listening to sounds using an acoustic ar-
ray [13].

The accuracy of the produced localization regions depends on a number of
factors in addition to the properties of the sensors. One of the most important
is the time between measurements. The more frequent the measurements the
more precise the localization regions will be. Additionally, the selection of the
static nodes to be used in measurements is important. For instance, taking
consecutive measurements to nodes that are close together will yield poor
results. Thus, a selection algorithm, such as that presented by Isler et al. [12],
will improve results by choosing the best nodes for measurements.

We have implemented this algorithm on our underwater robot AMOUR
and underwater sensor network [25], and plan to collect data at the Gump re-
search station in Moorea in June 2006. This system and many other underwa-
ter systems have poor dead-reckoning. We expect to enhance the localization
and tracking of our robot using the algorithm presented in this paper.

References

1. K. Briechle and U. D. Hanebeck. Localization of a mobile robot using rela-
tive bearing measurements. Robotics and Automation, IEEE Transactions on,
20(1):36–44, February 2004.

2. Z. Butler, P. Corke, R. Peterson, and D. Rus. From animals to robots: vir-
tual fences for controlling cattle. In International Symposium on Experimental
Robotics, pages 4429–4436, New Orleans, 2004.

3. M. Castelnovi, A. Sgorbissa, and R. Zaccaria. Markov-localization through color
features comparison. In Proceedings of the 2004 IEEE International Symposium
on Intelligent Control, pages 437– 442, 2004.

4. M. Deans and M. Hebert. Experimental comparison of techniques for localiza-
tion and mapping using a bearings only sensor. In Proc. of the ISER ’00 Seventh
International Symposium on Experimental Robotics, pages 395–404. Springer-
Verlag, December 2000.

5. M. Deffenbaugh, J. G. Bellingham, and H. Schmidt. The relationship between
spherical and hyperbolic positioning. In OCEANS ’96. MTS/IEEE. ’Prospects
for the 21st Century’. Conference Proceedings, volume 2, pages 590–595, 1996.

6. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for
mobile robots. In IEEE International Conference on Robotics and Automation
(ICRA99), volume 2, pages 1322–1328, May 1999.

7. J. Djugash, S. Singh, and P. I. Corke. Further results with localization and
mapping using range from radio. In International Conference on Field and
Service Robotics, July 2005.

8. D. P. Dobkin, J. Hershberger, D. G. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra. Algorithmica, 9(6):518–533, 1993.

9. L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex optimization methods
for sensor node position estimation. In INFOCOM, pages 1655–1663, 2001.

10. N. Eagle and A. Pentland. Reality mining: Sensing complex social systems.
Personal and Ubiquitous Computing, pages 1–14, September 2005.



16 Carrick Detweiler, John Leonard, Daniela Rus, and Seth Teller

11. M. Erdmann. Using backprojections for fine motion planning with uncertainty.
IJRR, 5(1):19–45, 1986.

12. V. Isler and R. Bajcsy. The sensor selection problem for bounded uncertainty
sensing models. In Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, pages 151–158, april 2005.

13. D. Johnson and D. Dudgeon. Array Signal Processing. Prentice Hall, 1993.
14. G. A. Kantor and S. Singh. Preliminary results in range-only localization and

mapping. In Proceedings of the IEEE Conference on Robotics and Automation
(ICRA ’02), volume 2, pages 1818–1823, May 2002.

15. D. Kurth. Range-only robot localization and SLAM with radio. Master’s thesis,
Robotics Institute Carnegie Mellon University, Pittsburgh PA, May 2004.

16. P. F. McLauchlan. A batch/recursive algorithm for 3d scene reconstruction.
In Proceedings of Computer Vision and Pattern Recognition, volume 2, pages
738–743, 2000.

17. D. Meizel, O. Leveque, L. Jaulin, and E. Walter. Initial localization by set inver-
sion. IEEE Transactions on Robotics and Automation, 18(3):966–971, December
2002.

18. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network lo-
calization with noisy range measurements. In Proc. 2nd ACM SenSys, pages
50–61, Baltimore, MD, November 2004.

19. E. Olson, J. Leonard, and S. Teller. Robust range-only beacon localization. In
Proceedings of Autonomous Underwater Vehicles, pages 66–75, 2004.

20. E. Olson, M. Walter, J. Leonard, and S. Teller. Single cluster graph partitioning
for robotics applications. In Robotics Science and Systems, pages 265–272, 2005.

21. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system. In MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 32–43, New York, NY,
USA, 2000. ACM Press.

22. A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha. Tracking moving
devices with the cricket location system. In MobiSys ’04: Proceedings of the
2nd international conference on Mobile systems applications and services, pages
190–202, New York NY USA, 2004. ACM Press.

23. J. R. Spletzer and C. J. Taylor. A bounded uncertainty approach to multi-robot
localization. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003), volume 2, pages 1258–1265, 2003.

24. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
25. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection,

storage, and retrieval with an underwater sensor network. In SenSys ’05: Pro-
ceedings of the 3rd international conference on Embedded networked sensor sys-
tems, pages 154–165, New York, NY, USA, 2005. ACM Press.


	Text1: Proc. WAFR (Seventh International Workshop on the Algorithmic Foundations of Robotics), New York, NY, July 2006


