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Abstract— We describe a semantic mapping algorithm that
learns human-centric environment models from by interpreting
natural language utterances. Underlying the approach is a
coupled metric, topological, and semantic representation of
the environment that enables the method to infer and fuse
information from natural language descriptions with low-level
metric and appearance data. We extend earlier work with a
novel formulation incorporates spatial layout into a topological
representation of the environment. We also describe a factor
graph formulation of the semantic properties that encodes
human-centric concepts such as type and colloquial name for
each mapped region. The algorithm infers these properties
by combining the user’s natural language descriptions with
image- and laser-based scene classification. We also propose
a mechanism to more effectively ground natural language
descriptions of spatially non-local regions using semantic cues
from other modalities. We describe how the algorithm employs
this learned semantic information to propose valid topological
hypotheses, leading to more accurate topological and metric
maps. We demonstrate that integrating language with other
sensor data increases the accuracy of the achieved spatial-
semantic representation of the environment.

I. INTRODUCTION

A challenge in realizing robots capable of working pro-
ductively alongside human partners is the development of
efficient command and control mechanisms. Researchers
have recently sought to endow robots with the ability to
interact more effectively with people through natural lan-
guage speech [1, 2, 3, 4, 5] and gesture understanding [6].
Efficient interaction can be facilitated when robots reason
over models that encode high-level semantic properties of the
environment. For example, such models could help a micro-
aerial vehicle interpret a first responder’s command to “fly
up the stairway on the right, go down the hall, and observe
the kitchen.”

Semantic mapping [7, 8, 9, 10] methods extend the metric
environment models traditionally employed in robotics to
include higher-level concepts, including types and colloquial
names for regions, and the presence and use of objects in the
environment. Such methods typically operate by augmenting
a standard SLAM metric map with a representation of the
environment’s topology, and a distinct representation of its
semantic properties, the latter of which is populated by
interpreting the robot’s sensor stream, through (e.g.) scene
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Fig. 1. Maximum likelihood semantic map of the 6th floor of Stata building
(pie charts denote the likelihood of different region categories).

classification. In this layered approach, the underlying met-
ric map induces and embeds the topological and semantic
attributes. However, while refinements to the metric map
improve the topological and semantic maps, most techniques
do not allow knowledge inferred at the semantic and topo-
logical levels to influence one another or the metric map.
Rather, semantic information has been inferred from LIDAR
and camera data, coupled with pre-trained scene appearance
models. Some efforts are capable of integrating egocentric
descriptions about the robot’s current location (e.g., “we
are in the kitchen”), but cannot handle allocentric spatial
language involving spatial relations between and labels for
potentially distant regions in the environment (e.g., “the exit
is next to the cafeteria”).

We addressed some of these limitations in previous
work [11] with an algorithm that maintains a joint distribu-
tion over a Semantic Graph, a coupled metric, topological,
and semantic environment representation learned from user
utterances and the robot’s low-level sensor data, during a
guided tour. Our framework was able to to learn properties
of the environment that could not be perceived with typical
sensors (e.g. colloquial names for regions, properties of areas
outside the robot’s sensor range) and use semantic knowledge
to influence the rest of the semantic graph, allowing robots
to efficiently learn environment models from users.

However, since that algorithm assumed that the environ-
ment is a collection of regions that take the form of fixed,
uniformly-sized collections of sequential nodes, it can result
in a topology that is inconsistent with human concepts of
space. Consequently, the representation may not model the
spatial extent to which the user’s descriptions refer, resulting
in incorrect language groundings. The semantic information
in the framework was limited to user-provided colloquial
names and did not provide a means to reason over properties



such as region type that can be inferred from LIDARs,
cameras, or other onboard sensors. Additionally, due to the
absence of other semantic information, the framework re-
quired that a landmark location be labeled by the user before
the utterance can be grounded (e.g., processing the phrase
“the kitchen is down the hallway”, requires the “hallway” to
have already been labeled).

This paper describes an extension of our earlier approach
to learn richer and more meaningful semantic models of the
environment. Whereas our earlier framework reasoned only
about the connectivity of deterministically created regions
(at fixed intervals), the current approach reasons over the
environment’s region segmentation as well as its inter-region
connectivity. Additionally, we propose a factor graph repre-
sentation for the semantic model that reasons not only over
each region’s labels, but also its canonical type. As before,
we infer region labels from user-provided descriptions, but
we also incorporate scene classification using the robot’s
onboard sensors, notably camera and laser range-finders, to
estimate region types. By modeling the relation between
an area’s type and its colloquial name, the algorithm can
reason over both region type and region label, even in
the absence of speech. This enables the method to more
effectively ground allocentric user utterances (e.g., when
grounding the phrase “the kitchen is down the hallway”, we
no longer require the user to explicitly label the “hallway”
beforehand). We also describe a mechanism by which the
algorithm derives a semantically meaningful topology of
the environment based upon the richer factor graph model,
where edges are proposed using a spatial-semantic prior
distribution. We show that the improved topology model then
allows the method to better handle ambiguities common in
natural language descriptions.

II. RELATED WORK

A number of researchers have focused on the problem
of constructing semantic representations [7, 10, 8, 9]. Most
approaches have augmented lower-level metric maps with
higher-level topological and/or semantic information. How-
ever, these typically follow a bottom-up approach in which
higher-level concepts are constructed from lower-level infor-
mation, without any information flow back down to lower-
level representations. In Walter et al. [11] we addressed this
by introducing a framework that uses semantic information
derived from natural language descriptions uttered by hu-
mans to improve the topological and metric representations.
Our proposed approach uses additional semantic cues to eval-
uate semantic similarity of regions to update the topology.

Several existing approaches [8, 10] have incorporated
higher-level semantic concepts such as room type and pres-
ence of objects with the use of appearance models. Pronobis
and Jensfelt [10] describe a multi-modal probabilistic frame-
work incorporating semantic information from a wide variety
of modalities including detected objects, place appearance,
and human-provided information. However, their approach is
limited to handling egocentric descriptions (e.g., “we are in
the living room”). Additionally, they infer topology based on
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Fig. 2. Example of a semantic graph: Two regions R; and R2 and
their constituent nodes n;’s; distributions over node poses x;; and the
corresponding factor graph.

door detections, a heuristic which works well only in certain
kinds of environments; they do not maintain a distribution
over likely topologies. In [11], we maintained a hypothesis
over the distribution of topologies, but the topology was
constructed from segments created at fixed spatial intervals,
which can be inconsistent with human concepts. In the
present work, we address this limitation by proposing a
method that maintains multiple hypotheses about region
segmentations and about connections among regions.

Mapping linguistic elements to their corresponding phys-
ical entities have been studied by several researchers [3, 4,
2, 12, 13, 14, 15, 16] in the robotics domain. However,
these efforts have not focused on constructing semantic
representations. In [11] we augmented our semantic graph
with complex language descriptions. However, this could be
accomplished only when the user had explicitly labeled a
location before describing another in reference to it (e.g.,
“the gym is down the hallway” requires prior labeling of
the hallway). The resulting representation contained only
labels obtained through language descriptions; it did not
integrate semantic cues from other sources (such as ap-
pearance models). The present method improves upon this
by integrating information from multiple semantic sources
and maintaining a distribution over a larger set of semantic
properties, rendering it capable of grounding language even
in the absence of pre-labeled landmark locations.

III. SEMANTIC GRAPH REPRESENTATION

This section presents our approach to maintaining a distri-
bution over semantic graphs, an environment representation
that consists jointly of metric, topological, and semantic
maps.

A. Semantic Graphs

We define the semantic graph as a tuple containing topo-
logical, metric and semantic representations of the environ-
ment. Figure 2 shows an example semantic graph for a trivial
environment.

The topology G, is composed of nodes n; that denote the
robot’s trajectory through the environment (sampled at 1 m



distances), node connectivity, and node region assignments.
We associate with each node a set of observations that
include laser scans z;, semantic appearance observations
a; based on laser [; and camera ¢; models, and available
language observations \;. We assign nodes to regions R, =
{n1,..,nm,} that represent spatially coherent areas in the
environment (such as rooms or hallways) compatible with
human concepts. Undirected edges exist between nodes
in this graph, denoting traversability between two nodes.
Edges (denoting connectivity) between regions are inferred
based on the edges between nodes in the graph. A region
edge exists between two regions if at least one graph edge
connects a node from one region to a node in the other. The
topological layer consists of the nodes, edges and the region
assignments for the nodes.

The pose of each node n; is represented by z; in a
global reference frame. The metric layer is conditioned on
the topology, where edges in the topology also include
metric constraints between the poses of the corresponding
nodes. Metric constraints are calculated by scan-matching
the corresponding laser observations of each region. A pose
graph representation is employed to maintain the distribution
over the pose of each node, conditioned on these constraints.
Occupancy maps can be constructed based on the distribution
of these node poses and their corresponding laser observa-
tions.

Semantic information is also conditioned on the topology
as shown in the Fig. 2. The semantic layer consists of a
factor graph, where variables represent properties in each
region (i.e., the type C, and labels A,), properties that
can be observed at each node (in each region), and factors
that denote the joint likelihood of these variables (e.g., the
likelihood of observing a label given a particular room type).
Observations of these region properties are made using laser-
and image-based scene classifiers and by grounding human
descriptions of the environment.

B. Distribution Over Semantic Graphs

We estimate a joint distribution over the topology G
(which includes the nodes, their connectivity, and their
region assignments), the vector of locations X;, and the
set of semantic properties S;. Formally, we maintain this
distribution over semantic graphs {G;, X;, S;} at time ¢
conditioned upon the history of metric exteroceptive sensor
data z' = {21,22,...,2}, odometry u' = {uy,uz,...,u},
scene appearance observations a’ = {a1, as,...,a;} (where
in our implementation a; = {l¢,4:}), and natural language
descriptions At = {1, A2, ..., At}

p(GthhSt|Zt7utaat,)‘t)' (1)

Each variable \; denotes a (possibly null) utterance, such
as “This is the kitchen,” or “The gym is down the hall.” We
factor the joint posterior into a distribution over the graphs
and a conditional distribution over the node poses and labels:

p(GtaXtvst‘Ztaatvuta )‘t) = p(St‘XtaGtaztvatvuta )\t)
x p(X¢|Gy, 25, at, ul ) AY) x p(Gy|2t, at, ul, A (2)

Algorithm 1: Semantic Mapping Algorithm

Pt(i)l , and (ug, z¢, ag, \¢), where

Input: P,_; =
GEQD Xt(i)h St(i)h wt@l}

P t(i)l =
Output: P, = {Pt(i)}

for i=11t ndo
1) Employ proposal distribution to propagate the

graph sample based on u;, A\; and a;.
a) Sample region allocation
b) Sample region edges
¢) Merge newly connected regions

2) Update the Gaussian distribution over the node
poses Xt(l) conditioned on topology.

3) Update the factor graph representing semantic
properties for the topology based on appearance
observations (I; and i;) and language ;.

4) Compute the new particle weight wgz) based
upon the previous weight wt(l_)1 and the metric
data z;.

end

Normalize weights and resample if needed.

As in Walter et al. [11], we maintain this factored distribu-
tion using a Rao-Blackwellized particle filter, mitigating the
hyper-exponential hypothesis space of the topology [11].

We represent the joint distribution over the topology, node
locations, and labels as a set of particles:

P, ={rM PP . pMy. 3)
Each particle Pt(i) € P, consists of the set
PO = {0 x(7,s0,wi}, )

where GEi) denotes a sample from the space of graphs;
Xt(i) is the analytic distribution over locations; Sffi) is the
distribution over semantic properties; and wil) is the weight
of particle i.

IV. SEMANTIC MAPPING ALGORITHM

Algorithm 1 outlines the process by which the method re-
cursively updates the distribution over semantic graphs (2) to
reflect the latest robot motion, metric sensor data, laser- and
image-based scene classifications, and the natural language
utterances. The following sections explain each step in detail.

A. The Proposal Distribution

We compute the prior distribution over the semantic graph
G, given the posterior from the last time step G;_1, by
sampling from a proposal distribution. This proposal distri-
bution is the predictive prior of the current graph given the
previous graph, sensor data (excluding the current time step),
appearance data, odometry, and language:

p(Gt|Gt—lazt717a’t7ut7>\t) (5)



We augment G;_1 to reflect the robot’s motion by adding
a node n; to to the topology and an edge to the previous
node n;_;, resulting in an intermediate graph G, . This
represents the robot’s current pose and the connectivity to
its previous pose. This yields an updated vector of poses
X, and semantic properties .S; . The new node is assigned
to the current region.

1) Creation of New Regions: We then probabilistically
bisect the current region R, using the spectral clustering
method outlined in Blanco et al. [17]. We construct the
similarity matrix using the laser point overlap between each
pair of nodes in the region. Equation 6 defines the likelihood
of bisecting the region, which is based on the normalized cut
value (IN.) of the graph involving the proposed segments.
The likelihood of accepting a proposed segmentation rises
as the N, value decreases, i.e. as the separation of the two
segments improves (minimizing the inter-region similarity):

1
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This results in more spatially distinct areas in the world
having a higher likelihood of being separate regions (i.e.,
more particles will model these areas as separate regions).
If a particle segments the current region, a new region R; is
created which does not include the newly added node.

2) Edge Proposals: When a new region R; is created,
the algorithm proposes edges between this region, and other
regions in the topology (excluding the current region R.).

P(s/Newt) =

Fig. 3. Example of region edges being proposed (black lines represents
rejected edge proposals; the red line represents an accepted edge)

The algorithm samples inter-region edges from a spatial-
semantic proposal distribution that incorporates the semantic
similarity of regions, as well as the spatial distributions
of its constituent nodes. This reflects the facts that close
regions and semantically similar regions are more likely to be
connected. We measure semantic similarity based upon the
label distribution associated with each region. The resulting
likelihood has the form:

Pa(GilGr . 2l ! XY = [ p(GYIGY)  (Ta)

jiei; @E—
x [ p=(GYIGy)ps(GYIGY)
j:eij ¢E7
where we have omitted the history of language observations
A!, metric measurements z'~!, appearance measurements
a', and odometry u' for brevity. Equation (7a) reflects
the assumption that additional edges expressing constraints

(7b)

involving the current node e;; ¢ E~ are conditionally
independent. While p,(G}’|G;) encodes the likelihood of
the edge based on the spatial properties of the two re-
gions, ps(Gy’|G; ) describes the edge likelihood based on
the regions’ semantic similarity. Equation (7b) reflects the
conditional independence assumption between the spatial and
the semantic likelihood of each edge.

For the spatial distribution prior, we define a variable d;; to
be the distance between the mean nodes of the two regions,
where the mean node is the node with its pose closest to the
region’s average pose:

p«(GY |Gy ) = / p(GP X7 Gl u)p(X|G) (82

X

- / (G|, G )p(dy|G). (8b)

dij
The conditional distribution p(GY|d;j, Gy_1, 2", ut) ex-
presses the likelihood of adding an edge between regions
R, and R; based upon the location of their mean nodes.
We represent the distribution for a particular edge between
regions R; and R; a distance d;; = |Xp, — Xg, |2 apart as:

1

p(Gi”dw,G;,Ztil,ut) X T’yd?j,

©))
where ~ specifies distance bias. For the evaluations in this
paper, we use v = 0.3. We approximate the distance prior
p(di;|Gy, 271, ut) with a folded Gaussian distribution.

For the semantic prior, regions with similar label A dis-
tributions will have a higher likelihood of having an edge
between them. The label distributions for the regions are
part of the semantic properties (of each region) modeled in
the semantic layer:

ps(GY1Gy) =Y p(GY1S;, Gy )p(Sy |Gy) (10a)
—

7 p(GYIAT A GO Ip(AT AT IGY).
A7 AT
(10b)

Equation (11) expresses the likelihood of an edge existing
between two regions, given the value of the regions’ respec-
tive label values:

O, if A=A,

11
0 ifA;#A;’ (i

p(GY 1A, A5) = {
where 6, denotes the label-dependent likelihood that edges
exist between nodes with the same label. In practice, we as-
sume a uniform saliency prior for each label. Equation (10b)
then measures the cosine similarity between the label distri-
butions.

After a region edge is sampled from the spatial-semantic
prior, a scan-match procedure attempts to find the best
alignment between the two regions. Upon convergence of
the scan-match routine, the edge is accepted and is used to
update the topology.



3) Region Merges: After a new region R; has been
created and edges to other regions have been checked and
added, the algorithm determines whether it is possible to
merge with each region to which it is connected. The newly-
created region is merged with an existing (connected) region
if the observations associated with the smaller of the two
regions can be adequately explained by the larger region.
This results in regions being merged when the robot revisits
already explored spaces (i.e., already-represented regions).
This merge process is designed to ensure that the complexity
of the topology increases only when the robot explores new
areas, leading to more efficient region edge proposals as well
as more compact language groundings.

B. Updating the Metric Map Based on New Edges

The algorithm then updates the spatial distribution of the
node poses X; conditioned on the proposed topology,

p(Xe| Gy, 28wt A = NTH X 20 me), (12)

where ¥, ! and 7, are the information matrix and infor-
mation vector that parametrize the canonical form of the
Gaussian. We use the iISAM algorithm [18], which iteratively
solves for the QR factorization of the information matrix.

C. Updating the Semantic Layer

Compared with Walter et al. [11], our updated repre-
sentation maintains a distribution about a larger set of
semantic properties associated with the environment. The
distribution over the semantic layer is maintained using a
factor graph [19] that is conditioned on the topology for
each particle.

Fig. 4. Semantic Layer (plate representation)

As Fig. 4 shows, the semantic layer maintains two vari-
ables associated with each region r, namely the region
category C,. (e.g., hallway, conference room, etc.) and the
labels associated with the region A,.. For example, a confer-
ence room can have multiple labels, such as meeting room,
conference room. The factor that joins these two variables
represents the likelihood of each room category generating
a particular label.

At each node n within a region, the robot can observe
one or more of these semantic properties. In our current
implementation, these are the region appearance observed
from laser scanners [,, or cameras i,, and the region labels
Ak (and the associated correspondence variables ®;). We run
belief propagation for each particle at each time step as new
variables and factors are added. We subsequently update the
category and label distributions for each region.

The following subsections outline how we integrate ob-
servations of these node properties to the semantic layer.

1) Integrating Semantic Classification Results: Each node
has an appearance variable a,, which is related to its re-
gion category. We outline several general appearance classes
(“room”, “hallway” and “open area”) that are then observed
using robot sensors. The factor that connects a region cate-
gory variable C. to an appearance variable a,, encodes the
likelihood of a region category generating an appearance
class (e.g., how often does a conference room appear as a
room). The category to appearance factor was trained using
annotated data from several other floors of the Stata building.

We make two observations of a, using the laser and
camera observations at node n. These are represented in
the factor graph as the laser appearance [,, and the image
appearance i,,. We use two pre-trained appearance models for
laser observations and camera images. The laser appearance
classification model has been trained using laser features
similar to those outlined in Mozos et al. [20], while the image
appearance model has been trained using CRFH [21]. Laser
and camera appearance variables [,, and i,, are connected to
the node’s appearance a,, using factors built from the con-
fusion matrix for the two trained models. The classification
results for the two sensors provide a distribution representing
the likelihood of the observations being generated from each
appearance category. The classifier outputs are integrated to
the factor graph as factors attached to variables /,, and %,,.

2) Integrating Language Observations: The robot can
also receive either ego-centric (e.g., “I am at the kitchen™) or
allocentric (e.g., “The kitchen is down the hall”) descriptions
of the environment from the user. We use these observations
to update the likelihood of observing labels in each region.
We maintain the label for each region as another variable
(A,) in our factor graph. The region label is related to the
region category, as each category is more likely to generate
some labels than others. For example, while a person might
describe a “cafeteria” as a “dinning hall”, it is unlikely that
he will describe it as an “office”. For our current experiments
we have identified a limited subset of labels associated
with each region category (e.g., the hallway category can
generate “hall”, “hallway”, “corridor”, or “walkway”) in our
representation. When building these factors (between labels
and room categories), for each category we assign higher
likelihoods for its associated labels and smaller likelihoods
for the other labels (capturing the likelihood of generating
these labels given a particular room category).

A node can have none, one, or multiple label observations,
depending on the way the person describes a location. We
represent each label observation with a variable )\; and a
correspondence variable ®;, which denotes the likelihood
that the label was intended to describe the current location.
The correspondence variable ¢ is a binary-valued variable
specifying whether or not the label describes the region. If
the label doesn’t correspond to that region (i.e., if & =
0), the observation Ay is uninformative about the region’s
label, and will have equal likelihood for each label value.
However, when the correspondence holds (® = 1), the factor
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encodes the likely co-occurrences between different labels.
For example, if the robot heard the label “conference room”,
with a high likelihood of ® = 1, it will result in other likely
labels (that often co-occur with “conference room”) having
high likelihoods (e.g., “meeting room”) as well. Currently
high co-occurrence is added for words that are synonyms
(e.g., “hallway” and “corridor”). In this way, we use the
correspondence variable to handle the ambiguity inherent
in grounding natural language descriptions. When a label is
grounded to a region, we create a label observation \; and
correspondence variable @y, and connect it to the associated
region’s label variable A, using a co-occurrence factor. We
integrate the correspondence observation ¢ by attaching a
factor encoding this likelihood. We treat the observed label
as having no uncertainty, as our current model does not
incorporate uncertainty arising from speech recognition.

We derive the factor denoting the observation of ® based
on the type of description given by the user. If the user
describes the current location (e.g., “I am at the living
room”), we have higher correspondence with spatially local
nodes. For such descriptions, we allocate a high likelihood
(0.8 probability of @ = 1) of correspondence with the current
region. For allocentric descriptions (e.g., “the kitchen is down
the hallway”, where the user describes the location of the
referent “kitchen” with relation to the landmark “hallway”),
we use the G2 framework [4] to calculate the correspondence
likelihood given the potential landmarks. We marginalize the
landmarks to arrive at correspondence likelihood of each
referent region in a manner similar to our previous approach.

In handling allocentric descriptions the current method im-
proves upon our earlier approach in two ways. Firstly, we no
longer require common landmarks to be explicitly described
before being able to ground the language correctly. We do
this by leveraging the richer semantic representation made
possible by integrating additional semantic information to
arrive at likely landmarks. Secondly, while some expressions
can be ambiguous (e.g., there could be multiple regions down
the hall), the presence of other semantic cues allows the
final label distribution to be more accurate because incorrect
groundings will have less impact if the region’s appearance
is different from the label observation.
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Maximum likelihood semantic map of a multi-building environment on the MIT campus.

D. Updating the Particle Weights and Resampling

Particle weights are updated and resampling carried out in
the same manner as Walter et al. [11].

V. RESULTS

We evaluate our algorithm through four experiments in
which a human gives a robotic wheelchair [9] a narrated
guided tour of the Stata building (S3, S4, S6) as well as
a multi-building indoor tour (MF). The robot was equipped
with a forward-facing LIDAR, a camera, wheel encoders, and
a microphone. In these experiments we drove the robot using
a joystick, and provided it with natural language descriptions
at specific salient locations by typing.

We evaluate the resulting semantic maps with regards to
their topological accuracy, compactness, segmentation accu-
racy and semantic accuracy. All experiments were run with
10 particles. The results show that our framework produces
more compact and more accurate semantic graphs than our
previous approach. They also demonstrate the improvement
in semantic accuracy due to language descriptions. We also
show the ability of our framework to ground complex lan-
guage even in the absence of previous labels for the referent
(e.g. it handles the expression “the lobby is down the hall”
even when the hall has not been labeled).

A. Topological accuracy

We compare the topological accuracy, conditioned upon
the resulting segmentation, by comparing the maximum
likelihood map with the ground truth topology. We define
a topology as matching ground truth if node pairs that are
spatially close (1 m) in a metrically accurate alignment are at
most one region hop away. This avoids penalizing occasional
regions that do not contain valid edges as long as a nearby
region was accurately connected (and possibly merged with
the nodes from a prior visit). This can happen when an edge
was not sampled or when scan-matching failed to converge.

The percentage of close node pairs that were more than
one region hop away from each other for the third, fourth and
sixth floor were 2.8%, 3.7% and 3.8%, respectively. Most
region-matching errors occurred in areas with significant
clutter, causing scan-matching failures. Metric maps derived
from the maximum likelihood particles were accurate for all
three floors.
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Fig. 6. Maximum likelihood semantic map of the 3rd floor of the Stata
building (pie charts denote the likelihood of different region categories).

TABLE I
REGION ALLOCATION EFFICIENCY (S¢)

Floor Proposed Old
Framework  Framework
Stata Floor 3 (S3) .67 29
Stata Floor 4 (S4) 77 37
Stata Floor 6 (S6) .69 .52

B. Topological Compactness

We compare the allocation of nodes to regions in the
current framework to the previous method. In the previous
approach, the topology update did not merge regions even
when the robot revisited a region; it simply created an edge
between the regions. The redundancy of the regions has sev-
eral negative implications. Firstly, it unnecessarily increases
the hypothesis space of possible region edges, reducing
the likelihood of a sample proposing valid region edges.
Secondly, it increases the hypothesis space for grounding
language, forcing the framework to consider more region
pairs as possible groundings for user descriptions.

We measure the duplicity of the region allocation as

Sc:Ns/Nta (13)

where N, is the number of close node pairs (< 1 m) assigned
to the same region and IV, is the total number of close node
pairs. If the topology is efficient at allocating regions, this
ratio should be high, as only nodes near region boundaries
should belong to different regions. Table I shows these scores
evaluated for each approach, on three floors. The new method
scores significantly higher in all three experiments. The
difference of this score becomes more pronounced as the
robot revisits more regions. Since the sixth floor dataset did
not have too many revisited regions, the scores for the two
approaches are closer.

C. Segmentation Accuracy

Table II outlines the segmentation accuracy (of the maxi-
mum likelihood particle) for two datasets, outlined according
to region type. We picked the best matches based on the
Jaccard index (number of intersecting nodes divided by the
number of union nodes) for each ground truth annotated
region and the resulting segmented region. Since our segmen-
tation method depends on the similarity of laser observations,
large cluttered region types such as lab spaces and lounges
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Fig. 7. Region category distribution (a) for a region with only appearance
information and (b) and with both appearance and language “the lounge is
behind us”. (category “lounge”: yellow).
TABLE II
REGION SEGMENTATION AND SEMANTIC ACCURACY

Region
Type

Segmentation Semantic Accuracy
Accuracy Without Lang ~ With Lang
S3 MF S3 MF S3 MF
Conference room  80.0  81.7 8.8 15.1 485 587
Elevator lobby 59.7 728 18.8 12.8 64.1 464

Hallway 494 557 445 58.5 444  58.0
Lab 528  30.1 11.8 272 142 30.6
Lounge 429 394 286 36.6 62.0 405
Office 625 76.1 78.1 45.6 98.6 60.2

tend to be over-segmented. Additionally long hallways tend
to be over-segmented by our method, which is reflected in
the lower scores for hallways.

D. Inference of Semantic Properties

Table II also outlines the semantic accuracy (of the
maximum likelihood particle) for two datasets. Semantic
accuracy was calculated for each ground truth region by
assigning each constituent node with its parent region’s
category distribution and taking the cosine similarity. We
observe that the semantic accuracy with language is higher
for most region types (hallways were rarely described and
as such show minimal improvement). Some regions such
as labs, which were labeled with egocentric descriptions,
have low scores because the regions are over segmented
and the language is attributed only to the current region.
Figure 7 compares the region category properties with and
without language. In the absence of language (Fig. 7(a)),
the appearance of the region gives equal likelihood for both
“elevator lobby” and “lounge”. In Fig. 7(b), the region was
grounded with the label “lounge” and the framework inferred
a higher likelihood of the region category being a lounge.

E. Grounding Allocentric Language Descriptions

We also tested our framework with allocentric language
descriptions. When handling phrases that include a landmark
and a referent (e.g., “the gym is down the hall”), our
earlier framework required the landmark to have already been
labeled before describing the referent location. With our new
framework, the robot is able to ground language when the
landmark corresponds to locations that may not have been
labeled, but can be inferred from other semantic cues (e.g.,
via appearance classification). We tested this situation using
several instances in our dataset.

Figure 8 shows instances in which allocentric language
utterances were grounded into the semantic graph. As the
label distributions for the surrounding regions demonstrate,
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Fig. 8. Resulting category distribution for complex language phrases (a)
“the elevator lobby is down the hall” and (b) “the lounge is down the hall”.

the framework is able to ground the referent with a high
degree of accuracy, even though the landmark was never
explicitly labeled. However, since there is more uncertainty
about the landmark region, the information derived from
the allocentric language has less influence on the semantic
properties on the region (since we marginalize the landmark
likelihood when calculating the grounding likelihood ).

VI. CONCLUSION

We described a framework enabling robots to construct
spatial-semantic representations of toured environments from
natural language descriptions and scene classifications. Com-
pared to earlier methods, our approach handles complex
natural language descriptions more efficiently, and produces
semantic representations that are richer and more compact.

Currently, our method grounds descriptive language under
the assumption that it refers to concepts that exist in the
robot’s representation, either due to previously interpreted
descriptions or to appearance classification. We are exploring
a mechanism that reasons about the presence of the referred
entities and grounds the utterance only when it is confident
about the validity of the grounding. We also plan to inte-
grate additional semantic cues that inform region labels and
categories, such as the presence of common objects found
indoors. In our current implementation, the factors between
region category and labels were constructed using a set of
predefined labels and relationships identified by us (using
synonyms for region types). In the future we plan to learn
these relationships using real-world datasets.

Our approach maintains multiple hypotheses regarding the
region assignments of the topology by using particles to
sample region assignments based on a prior that considers
the spatial similarity of nodes. However, particle weights
are calculated based only on laser data. This can lead to
valid segmentation hypotheses being discarded during re-
sampling if the laser observation likelihood is low. We plan
to incorporate region hypothesis scores based on appearance.
In the current approach, the robot passively accepts human
assertions about the environment. We also plan to explore
more interactive scenarios where the robot reasons over its
hypothesis space and asks questions of the human to resolve
ambiguities.
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