
Acquiring Maps from Natural Language Descriptions 

Estimate three-layered “Semantic Graph”.    

Maintain the posterior over semantic graph conditioned 

on the history of exteroception, odometry and language. 

 

 

 

 

 

Due to its complexity, the factored posterior is 

maintained using a Rao-Blackwellized particle filter. 

 

 

 

 

Topology is assumed to be concentrated around a 

limited set of possibilities allowing accurate 

representation through particles, similar to PTM 

framework by Ranganathan et al. (2008). 
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Human-robot teams promise improved efficiency and 

safety. 

 

 

 

Robots need to share our world model to be effective 

partners. 

Humans can efficiently convey rich world models. 

Give a guided tour of spaces with natural language 

spoken descriptions. 

      Odometry, exteroception (lidar, camera, ..). 

      Natural language descriptions. 

Build accurate semantic maps. 

Input: 

for each particle i 

1 
Proposal: Add new node & edges to          

according to distributions over labels         and 

poses 

2 
Update Gaussian over poses according to new 

constraints 

3 
Update Dirichlet over local nodes according to 

language 

4 
Compute importance weight          

based on  

Normalize and resample if required 

Return:  
 Metrical (Xt) 

Topological (Gt) 
Semantic (Lt) 
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Conclusions 

Our framework incorporates language to create 

consistent metric, topological and semantic maps. 

We exploit language to improve not just semantic but 

also metrical and topological representations. 

 It can also correctly handle ambiguous label distributions 

(e.g. the presence of multiple elevator lobbies) using 

scan-matching to reject incorrect edges and with the use 

of particles.  

We plan to carry out user studies to evaluate our 

framework. 

We also hope to generalize the framework to 

encapsulate additional semantic aspects of the 

environment such as affordances.  

Performance was evaluated 

on indoor/outdoor datasets, 

where language was able to 

improve the result by 

proposing additional loop 

closures. 

For each graph, a new node is added based on motion, 

and is connected to the previous node.  

Graph edges are proposed using  

        Spatial distribution of node poses,  

       Label distribution of nodes. 

Simple language (e.g. “I am at the gym”) updates the 

current node 

Complex language (e.g. “The gym is down the hallway”) 

is processed using Generalized Grounding Graphs by 

Tellex et al. (2010). 

The likelihood of graph Gt is evaluated based on the 

current observation (zt) used to update the particle 

weight. 
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