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Building High-Level Representations Posterior over Semantic Graph Rao-Blackwellized Particle Filter
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« Humans can efficiently convey rich world models.
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= Give a guided tour of spaces with natural language maintained using a Rao-Blackwellized particle filter. constraints
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« Build accurate semantic maps
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framework by Ranganathan et al. (2008).
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= For each graph, a new node Is added based on motion, « Performance was evaluated - Our framework incorporates language to create
and Is connected to the previous node. on indoor/outdoor datasets, |; A consistent metric, topological and semantic maps

- Graph edges are proposed using where language was able to
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« Simple language (e.g. “| am at the gym”) updates the

« We exploit language to improve not just semantic but
also metrical and topological representations.

« [t can also correctly handle ambiguous label distributions
(e.q. the presence of multiple elevator lobbies) using
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current node Without Language scan-matching to reject incorrect edges and with the use
» Complex language (e.g. “The gym is down the hallway”) = of particles.
IS processed using Generalized Grounding Graphs by . ,\ \We plan to carry out user studies to evaluate our
obby. i 05 framework.

Tellex et al. (2010).

= The likelihood of graph G; is evaluated based on the
current observation (z,) used to update the particle
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« \We also hope to generalize the framework to
encapsulate additional semantic aspects of the
environment such as affordances.




