
Moving-Baseline Localization

Jun-geun Park Erik D. Demaine Seth Teller
MIT Computer Science and Artificial Intelligence Laboratory

{jgpark, edemaine, teller}@csail.mit.edu

Abstract

The moving-baseline localization (MBL) problem arises
when a group of nodes moves through an environment in
which no external coordinate reference is available. When
group members cannot see or hear one another directly,
each node must employ local sensing and inter-device com-
munication to infer the spatial relationship and motion of
all other nodes with respect to itself.

We consider a setting in which nodes move with
piecewise-linear velocities in the plane, and any node can
exchange noisy range estimates with certain sufficiently
nearby nodes. We develop a distributed solution to the MBL
problem in the plane, in which each node performs robust
hyperbola fitting, trilateration with velocity constraints, and
subgraph alignment to arrive at a globally consistent view
of the network expressed in its own “rest frame.” Changes
in any node’s motion cause deviations between observed
and predicted ranges at nearby nodes, triggering revision
of the trajectory estimates computed by all nodes.

We implement and analyze our algorithm in a simulation
informed by the characteristics of a commercially avail-
able ultra-wideband (UWB) radio, and show that recover-
ing node trajectories, rather than just locations, requires
substantially less computation at each node. Finally, we
quantify the minimum ranging rate and local network den-
sity required for the method’s successful operation.

1. Introduction
Location determination is a fundamental problem, at-

tracting human attention since antiquity. Today, GPS
(Global Positioning System [8]) infrastructure enables inex-
pensive hand-held receivers to determine earth-relative po-
sition to within a few meters, in outdoor environments with
sufficient sky visibility. However, location determination
remains an incompletely solved problem in “GPS-denied”
environments, where GPS service is unavailable or of low
quality: indoors; underground (e.g. in tunnel, bunker, or
cave networks); underwater; and in sky-obstructed outdoor
environments (e.g. valleys, forests, and urban canyons). Ef-

fective location and motion estimation in such environments
is the focus of the present paper.

A central goal of localization research and development
is to realize a user-borne device capable of reporting the
user’s location and orientation accurately during excursions
of arbitrary length and duration within GPS-denied envi-
ronments. One strategy is to use inertial sensing to per-
form dead-reckoning. However even devices incorporating
heavy, expensive inertial sensors can incur unbounded posi-
tion errors of 0.1 percent of the total distance traveled; more
typical errors are between one and ten percent [23]. Relative
position errors between many nodes, each performing dead-
reckoning, would diverge even faster. Some GPS-denied lo-
calization methods depend upon previously or concurrently
deployed infrastructure, such as passive or active fiducial
markers or beacons, imposing a deployment burden that is
unacceptable or impractical in many application domains.

This paper addresses the problem of determining posi-
tions and velocities for a group of devices (or nodes) mov-
ing within a GPS-denied environment. Like others, we take
inspiration from real devices that can measure their range
to, and communicate with, some subset of other nodes, and
we propose a distributed algorithm that reconstructs a glob-
ally consistent view of the network derived solely from lo-
cal observations. However, we depart from previous work
in this area by supposing that all nodes are in motion, while
also assuming no external coordinate reference and no pre-
viously deployed infrastructure. This scenario arises from
real-world settings in which, for example, a group of people
or robots moves cooperatively through a GPS-denied envi-
ronment to perform some task (e.g., emergency response).
We refer to localization methods operating in the absence
of a fixed reference frame as moving-baseline localization
(MBL) methods.

1.1. Algorithmic Setting

We consider an instance of MBL in which each moving
node can repeatedly generate a time-stamped measurement
of the range, or separation distance, between it and cer-
tain other sufficiently nearby nodes, and can discover the
unique identifier (i.e., integer ID) of, and exchange infor-



Figure 1. MBL as a local-to-global estima-
tion problem. Available data (a) consists of
a time series of range measurements at each
node. Problem solution (b) consists of an es-
timate of all nodes’ motions in each node’s
rest frame (solution for node 1 shown).

mation with, any node to which it can range. This choice
of setting is motivated by existing devices with these capa-
bilities, such as Crickets [16] and UWB (ultra-wideband)
radios [12]. The problem we face is then to combine a col-
lection of local measurements (time-series range data, with
node identifiers) into a single, global estimate of all node
motions (Fig. 1). Our method estimates a trajectory for each
node that is consistent with recent range measurements in-
volving that node.

We develop a distributed algorithm for MBL in the plane.
We start by analyzing the mathematical abstraction in which
each node moves with a fixed velocity, then generalize to
piecewise-linear trajectories. We assume that range data is
inherently noisy, and model ranging noise as a distribution
determined by experiments with real UWB devices. We
show that MBL can be solved in this setting through robust
hyperbola fitting, trilateration, and subgraph alignment. We
implement and analyze the algorithm in simulation, and dis-
cuss its extension to less restricted settings.

2. Related Work
For static nodes and noise-free ranging, a theoretical

foundation for network localization has been elucidated
in terms of graph rigidity theory [5], but has not, to our
knowledge, been extended to settings in which all nodes are
moving. When ranging is noisy, researchers have formu-
lated Kalman filters that incorporate single noisy range or
bearing measurements arriving asynchronously, performing
“single-constraint-at-a-time” tracking [22]. To combat ge-
ometric ambiguity in trilateration, researchers have formu-
lated a uniqueness criterion for network localization, sup-
pressing localization of nodes with ambiguous position so-
lutions [7]. One distributed localization method uses “ro-
bust quadrilaterals” (well-shaped 4-cliques in the network
ranging graph) to combat noisy ranging, achieving localiza-
tion accuracy that is a small multiple of ranging noise when
all nodes, or all but one node, are fixed [14]. A “mobile-

assisted” localization method uses ranges from one moving
node to align fixed, localized but otherwise partitioned sub-
clusters [15]. An “anchor-free” localization method treats
settings where inter-node hop counts are well-correlated
with inter-node metric distance [17]. None of these meth-
ods handles all-node motion other than by re-localizing the
entire network.

Ranging noise is not, in general, the only source of local-
ization error; solution methods themselves introduce error
due to their differing algorithms for computing local (sub-
graph) embeddings and propagating information about local
solutions through the network in order to relate nodes sep-
arated by many hops. This phenomenon has been analyzed
to produce lower bounds for network localization error [19],
and used as a basis for comparison of a variety of localiza-
tion methods [24].

Researchers have also studied localization for mobile
sensor networks. Sequential Monte-Carlo localization, de-
veloped for mobile robot localization, was adapted for mo-
bile networks in range-based [4] and range-free [10] set-
tings. Another algorithm maintains the intersections of con-
vex polygons to estimate node locations [3]. However, these
approaches assume the existence of anchor nodes or exter-
nal coordinate references. There is a method that does not
rely on anchor nodes [26], but it requires an accelerometer
for each node, and does not recover velocity information.

Several MBL methods have been proposed to support
autonomous underwater vehicle (AUV) operations. One
method integrates acoustic communication and ranging to
achieve localization, but requires deployment of three fixed,
surveyed beacons to serve as position references [6]. Other
researchers equip a subset of AUVs with relatively expen-
sive, high-quality proprioceptive sensors (e.g., inertial mea-
surement units), which transmit their dead-reckoning navi-
gation estimates to cheaper, less-capable vehicles [21]. All
vehicles are thus subject to position errors that grow without
bound [23]. This approach has also been pursued in the sen-
sor network community, with distributed filtering for fusing
position estimates [20].

One MBL method developed to support collaborative au-
tonomous robotics proceeds in rounds, in each round des-
ignating some nodes as nonmoving “portable landmarks”
while allowing other nodes to move [11]. This framework
does not support independent or spontaneous motion, for
example by human individuals operating as a team, and in-
troduces communications latency as nodes coordinate their
movements. Another method enables all nodes to move si-
multaneously, but requires that each node be able to observe
range and bearing to all other nodes [18]; no known long-
range sensor can provide such measurements in the pres-
ence of complex occlusion.

The thrust of the present paper differs from the work de-
scribed above in three significant ways.



First, our primary goal is not to recover a motion esti-
mate for all nodes in an absolute frame, but rather, for each
node, motion estimates for all other nodes expressed in the
frame in which that node is at rest. This goal arises from our
desire to provide situational awareness for a person moving,
with others, within a GPS-denied space.

Second, we make no use of external coordinates or pre-
ferred anchor nodes, nor do we require any infrastructure
deployment or configuration prior to localization.

Third, we treat the case in which all nodes are moving,
rather than treating each time instant as a separate static lo-
calization problem to be solved in isolation, or designating
some nodes as fixed and some as moving. We model all
nodes as moving along piecewise-linear trajectories, and re-
cover descriptive parameters for those trajectories.

3. Moving-Baseline Localization
We assume that each node: has a unique integer identi-

fier; can discover, range to, and communicate with nearby
nodes; and maintains the time t, either locally or through
a network synchronization method (e.g. [13]). These pair-
wise interactions induce a dynamic network in which two
nodes i and j share an edge ij when and only when they
can exchange information. Finally we assume that when
ij exists, a discrete sequence of range measurements rij(t)
is available at node i, describing the measured range from
node i to node j at time t, as observed at node i (Fig. 2).

Node i

Node j

Observation window

Figure 2. Time-series range data rij(t).

We start with the simplest instance of MBL: planar mo-
tion, with each node moving along a straight-line path at
constant speed. We can then cast the problem of recov-
ering node trajectories as a low-dimensional optimization
(Fig. 3). Specifically, we must recover four DOFs (degrees
of freedom) per node: the quantities ~pi and ~vi in the expres-
sion

~Li(t) = ~pi + t · ~vi (1)

where ~pi and ~vi represent the (2-DOF) origin and (2-DOF)
velocity vector of the ith node’s motion, and ~Li(t) is the
location of that node at time t. The observed ranges rji(t)
between two nodes ~Li(t) and ~Lj(t) then lie on a hyperbola
defined by:

rji(t)2 = m2
ji + (t− tcji)

2s2
ji (2)

where tcji denotes the time at which nodes i and j make
their closest approach, mji denotes the node separation

~vi

rij(t)~pi

~Li(t)

~pj

~Lj(t) ~vj

Figure 3. MBL recovers four DOFs per node.

(t− tcij) · sij

~Lj(t)

rij(t)

~Li(t)

mij

0 1 2 3 4
0

1

2

3

4

5

6

Time

D
is

ta
nc

e

s = 1

s = 2

s = 3

Figure 4. The distance between two points
~Li(t) and ~Lj(t) moving with constant veloci-
ties traces a hyperbola with respect to time t.

distance at this time, and sji denotes the relative speed
‖~vj − ~vi‖ (Fig. 4). We define Hij = (sij , t

c
ij ,mij) as

the motion hyperbola parameters for nodes i and j. (Note
that Hij = Hji, and rji at any specific time can be com-
puted from Eqn. 2.) Our goal is to construct, from all avail-
able motion hyperbola parameters, an optimal global mo-
tion solution relative to a global isometry (i.e., an arbitrary
rigid translation, rotation, reflection and inertial or constant-
velocity coordinate transformation).

We chose to recover node trajectories, rather than esti-
mating all node locations independently (i.e., solving the
static problem in isolation) at each time-step, for three rea-
sons. First, our approach requires recovery of fewer pa-
rameters (4N versus 2M for N nodes, M range measure-
ments, and M � N ). Second, we can use the motion model
for both interpolation and prediction, using fewer computa-
tional resources and compensating for communication and
computation latency at each receiver (and at each user dis-
play). Third, we can use the recovered velocities for high-
level reasoning, rejecting physically nonsensical motions.

3.1. Overview
Each node estimates motion path geometry in its own

inertial coordinate system. We define a cluster to be any
connected set of nodes, and a local cluster as a cluster con-
taining a node and its neighbors. We defined above the mo-
tion hyperbola parameters for node j as observed from node
i given three or more range samples rji(t). Once these pa-
rameters have been estimated (§ 3.2), each node estimates
the relative motion of each of its neighbors (§ 3.3), then con-
structs a local cluster by aligning computed positions and



velocities (§ 3.4). Each node broadcasts its local cluster so-
lution, enabling every other node to construct its own global
view of the network (§ 3.5).

Ranging noise corrupts low-level motion estimation,
causing error in the computed localization solution. Each
node monitors error by comparing predicted and observed
ranges, and reinitiates localization (thus revising its esti-
mates of all other nodes’ trajectories) whenever the ob-
served error exceeds a threshold (§ 3.6).

As noted above, in the absence of an external coordi-
nate reference, the most we can hope to recover is some
set of motion paths that are consistent with all range mea-
surements, but ambiguous up to an isometry. The isome-
try’s translation, rotation and reflection components can be
resolved only with additional information, such as GPS or
anchor coordinates at three or more nodes. The inertial am-
biguity is not an issue in our setting, because each node’s
MBL solution is expressed within its own inertial frame.

3.2. Hyperbola Estimation
In this section, we address the problem of estimating the

motion hyperbola parameters Hij = (sij , t
c
ij ,mij) from

time-stamped range measurements. Since the motion model
(Eqn. 2) is quadratic, given a sequence of n discrete range
observations between two nodes, (rz, tz), z = 1, ..., n, we
consider the following quadratic model

r2
z = yz = γt2z + βtz + α + εz. (3)

Parametric regression methods such as ordinary least-
squares estimation are often used to estimate γ̂, β̂, and
α̂. However, ordinary least-squares estimation is not ro-
bust when the data contain significant noise and outliers
(modeled as εi), as in our setting. We therefore apply
nonparametric robust quadratic fitting [2], which performs
well even when the error term is not normally distributed.
For n ≥ 3, the motion hyperbola parameters representing
the relative motion of two nodes can be calculated from
Eqns. 2 and 3 as:

ŝ =
√

γ̂; t̂c = β̂/(−2γ̂); m̂ =
√

α̂− β̂2/(4γ̂).

The recovered parameters s, tc, and m define the slope
of the hyperbola’s asymptote, the x coordinate, and the y
coordinate of the hyperbola’s vertex (Fig. 4) respectively.
Estimation accuracy increases in general for more samples
and for samples closer to the hyperbola vertex (i.e., the time
of the nodes’ closest approach). After calculating the mo-
tion hyperbola parameters, each node communicates them
to its 1-hop neighbors so that they can make use of them in
estimating their own local clusters.

3.3. Path Estimation Geometry
The parameters estimated in the previous section capture

the relative position and motion of a pair of nodes. With

sji

rji(t)

sji(t−tc
ji)

mji

(a)

ski

rki(t)

ski(t−tc
ki)

mki

(b)

sji

rji(t)

rkj(t)

rkj(t)

rki(t)

rki(t)
ski

ski

ski

ski

(c)

~v
(1)
kj

~v
(2)
kj

~v
(3)
kj

~v
(4)
kj

(d)

skj
rkj(t)

skj(t−tc
kj)

mkj

~v′
kj

(e)

~v′
kj

~v
(1)
kj

~v
(2)
kj

~v
(3)
kj

~v
(4)
kj

(f)

sji

rji(t)

ski

rki(t)

rkj(t)

(g)

Figure 5. Recovering positions and velocities
for nodes i,j,k in the rest frame of node i.

three relations among three nodes i, j, and k, we can infer
the relative motion of the node triangle. Our approach, for
each node i, amounts to fixing i at its own origin and deter-
mining the motions of j and k in i’s frame. First, we exploit
the fact that, when two nodes i and j move linearly, at the
time of closest approach tcji the velocity of j with respect
to i with magnitude sji must be tangent to a circle of radius
mji centered at node i (Fig. 5(a)). Therefore, in node i’s
frame at any time t, node j has position (mji, sji(t − tcji))
and velocity (0, sji).

Likewise, the relative motion between nodes i and k can



be established in i’s frame (Fig. 5(b)) up to an unknown
reflection.

Now, we apply the remaining distance constraint rkj ,
which can be calculated from Eqn. 2 when Hkj is known,
to solve for the position of node k in the frame defined by
nodes i and j. This step yields two possible positions for
node k, and two possible relative velocities for nodes i and
k, giving a total of four possibilities (Fig. 5(c)).

Fig. 5(d) depicts relative velocities of all four cases in
Fig. 5(c) with respect to the node j. This ambiguity can be
resolved by considering the relationship between nodes j
and k, i.e. the Hkj (Fig. 5(e)). By comparing the motions
~v

(l)
kj to ~jk, l = 1, 2, 3, 4, with k’s velocity, ~v′kj , to ~jk in

Fig. 5(e), one can identify the correct solution.
We do so by decomposing each vector ~v

(l)
kj in Fig. 5(d)

into its vector projection on ~jk and its (nonnegative) orthog-
onal component, and calculate the magnitude of the corre-
sponding difference vector from the decomposed ~v′kj in the
jk frame (Fig. 5(f)). The vector associated with the smallest
difference is chosen as the final solution. This disambigua-
tion determines the position and velocity of node k in the
frame defined by i and j (Fig. 5(g)).

If the motion hyperbola parameters were exact, this pro-
cedure would always select the correct motion. In practice,
however, estimation error corrupts the recovered positions
and velocities of nodes j and k, making the disambigua-
tion step imperfect. We employ the following heuristic to
suppress erroneous estimates:

min
l=1,2,3,4

‖~v(l)
kj − ~v′kj‖ > Cv (4)

where Cv is a selection threshold. Any triangle that does
not meet this criterion is not used for local cluster construc-
tion. Because ~v

(l)
kj and ~v′kj are both estimated values for

which parametric distributions are generally unknown, we
selected the 81st-percentile value Cv = 0.5 m/s empirically
from a Monte Carlo simulation (for 81 percent of the trian-
gle construction steps in the simulation, one of ~v

(l)
kj matches

~v′kj within 0.5 m/s).

3.4. Local Cluster Localization
The algorithm above constructs each triangle in its own

frame. Next, each node localizes its neighbors using a pro-
cess analogous to chained trilateration.

Let us consider adding a triangle (i, j, k) to a local clus-
ter, given common nodes i and j (Fig. 6). To align i and j,
we (1) translate the triangle in order to bring the positions of
i into alignment; (2) rotate the frames to bring the positions
of j into alignment; (3) determine whether the triangle must
be flipped or not, using distances from k to the other nodes
in the local cluster; and finally (4) apply a vector offset to
equalize the two views of ~vi and ~vj . By repeatedly aligning
triangles along shared edges in an arbitrary spanning tree,

Figure 6. Aligning a local cluster and a new
triangle sharing two nodes i and j by (a)
translation, (b) rotation, (c) possible reflec-
tion, and (d) an inertial frame (velocity) shift.

each node computes a position and motion estimate for all
other nodes in the local cluster (pseudocode in Alg. 1).

Algorithm 1 Local cluster localization
1: INPUT Node i: The node self.
2: INPUT Neighbors: {Neighbors to be localized.}
3: OUTPUT LocalCluster: {A set of (ID, position, veloc-

ity) tuples of localized nodes.}
4:
5: InNodes = ∅: {Nodes already localized.}
6: Add arbitrary nodes j0, k0 to InNodes.
7: Initialize LocalCluster as arbitrary triangle (i, j0, k0).
8:
9: for node j ∈ InNodes do

10: for node k ∈ Neighbors\InNodes do
11: if Hji, Hki, Hkj are available then
12: Construct triangle (i, j, k).
13: Merge (i, j, k) into LocalCluster.
14: Add k to InNodes.
15: end if
16: end for
17: end for

3.5. Global View Construction
To construct a consistent view of the network, we repeat-

edly find the best alignment for each pair of local clusters
that share three or more noncollinear nodes along an arbi-
trary spanning tree, each time adding a local cluster to the
MBL solution. The alignment operation requires extrapo-
lating the cluster to be added to a common time, then find-
ing the translation, rotation, reflection, and velocity offset
that transform positions and velocities within one cluster to
those within another. An efficient method for solving this
“absolute orientation” problem is known [9].

We consider the absolute orientation problem of align-
ing a cluster (denoted 2) to another cluster (denoted 1). We
denote node i’s position and velocity in cluster 1 and 2 as



(P (1)
i , V

(1)
i ) and (P (2)

i , V
(2)
i ) respectively. As in local clus-

ter localization, we solve for the Euclidean transformation
(translation, rotation, and reflection) and velocity offset sep-
arately. We recover the Euclidean transformation from P (2)

to P (1) by minimizing the sum of squared residuals

(R′, T ′) = argmin
R,T

∑
i

∥∥∥P
(1)
i −R(P (2)

i )− T
∥∥∥2

, (5)

where R is a rotation (and possible reflection) and T is a
translation. Eqn. 5 can be solved efficiently in closed form
by eigen-decomposition [9], in this case of 2× 2 matrices.

After solving for (R′, T ′), we solve

V ′ = argmin
V

∑
i

∥∥∥V
(1)
i −R′(V (2)

i )− V
∥∥∥2

=
∑

i

V
(1)
i −

∑
i

R′(V (2)
i )

to yield the velocity offset V ′ that best shifts velocities in
cluster 2 to align with those of cluster 1.

3.6. Local Cluster Update
Using the method above, each node can compute a view

of the network using Eqn. 1. The error of any node’s view,
however, will grow over time as uncertain trajectory esti-
mates are extrapolated in time. One simple way to combat
growing error would be for each node to relocalize the net-
work continuously. However, this would waste computation
and communication resources when observed and predicted
ranges match. In our implementation, each node triggers re-
localization whenever the most recent three range measure-
ments disagree with prediction by more than one meter. Af-
ter relocalization, each node broadcasts its new local cluster
solution. (We require three mismatching ranges, rather than
just one, to combat false positive relocalization events due
to one or two outlier range measurements.)

4. Experimental Results
We evaluated the proposed method on a discrete-event

simulator developed using Python and C (Fig. 7).

4.1. UWB Radio Node Characterization
Starting in January 2007, we characterized a current-

generation UWB radio, the Time Domain Corporation
(TDC) PulsOn 210. While UWB time-of-arrival ranging
is generally accurate and resilient to multipath fading [25],
large distance errors can occur when line-of-sight between
radios is blocked [12] or when the amplitude of an impulse
received along a direct path drops below the device’s detec-
tion threshold [1]. We observed these phenomena during
our experiments, and found (following [1]) that we could
model the distance errors in practice as a sum of a high-
probability small error and a low-probability large error as:

d̂ = d + ε = d + εs + εu (6)

Figure 7. MBL simulator, showing true
(green) and estimated (magenta) trajectories.

where d̂ is the measured distance, d is the true distance, εs

is the small error, and εu is the large error. We used this
model throughout our simulation studies.

To model εs and εu separately, we partitioned observed
range errors into small and large errors. We modeled the
small error as a Gaussian random variable with a mean de-
pendent on the true distance (Fig. 8(a)) and standard de-
viation of 3cm (Fig. 8(b)). Therefore, the small error is
modeled as εs ∼ N(b(d), 0.03) with b(d) determined ex-
perimentally as

b(d) = 0.022 ln(1 + d)− 0.038.

We observed that large errors occurred with low proba-
bility and did not follow any characteristic parametric dis-
tribution. Thus we modeled the large error simply as a uni-
form random variable εl over [0, 10] meters and assigned
its probability of occurrence as a binary random variable η:
εu = η εl where η has probability mass function

pη(x) =
{

POL if x = 1,
1− POL if x = 0.

Here POL represents the probability of occurrence of large
error and is chosen conservatively as 0.05 (Fig. 8(c)).

TDC devices can range within a radius of about 30 me-
ters around obstacles with the above error characteristics.
The devices use a time-division scheme to schedule ranging
requests, with the ranging protocol requiring about 50 mil-
liseconds, yielding a maximum achievable ranging rate in
any vicinity of approximately 20 Hz. Our simulation uses a
ranging frequency of 5 Hz to roughly capture the constraint
that nearby nodes cannot range simultaneously. We adopted
these parameters in our simulation using a unit-disk graph
model and a variety of node speeds from slow walking (at



0 5 10 15 20
−0.05

0

0.05

Distance (m)

M
ea

n 
of

 r
an

ge
 e

rr
or

 (
m

)
b(d) = 0.022 log(1+d) − 0.038

(a) Bias

0 5 10 15 20

0.01

0.02

0.03

Distance (m)

St
d.

 d
ev

. o
f r

an
ge

 e
rro

r (
m

)
(b) Standard deviation

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Distance (m)

Pr
ob

ab
ilit

y 
of

 o
cc

ur
re

nc
e 

of
 la

rg
e 

er
ro

r

(c) Probability of large error

Figure 8. Ranging behavior of a pair of commercially available UWB devices.

0 0.5 1 1.5 2 2.5

4

6

8

10

12

14

Time (sec)

D
is

ta
nc

e 
(m

)

Robust quadratic fit

Least−squares fit

Figure 9. Hyperbola fitting to noisy range
data (× marks) with least squares (dashed)
and robust quadratic fitting (solid).

0.5 m/s or ∼1 mph), walking (at 1 m/s or ∼2 mph), and
jogging (at 3 m/s or ∼6.5 mph).

4.2. Hyperbola Fitting
We used simulated noisy range data drawn from Eqn. 6

to compare the hyperbola fitting method [2] with ordinary
least squares (Fig. 9). Due to the extreme outliers, least
squares performed poorly, while robust quadratic fitting
(§ 3.2) recovered an accurate hyperbola. Table 1 compares
the recovered motion parameters to ground truth.

True Robust fitting Least squares

s 1.869 1.874 0.7382
tc −0.4492 −0.4381 −0.02734
m 3.890 3.924 2.274

Table 1. Hyperbola estimation with least
squares and robust quadratic fitting.

4.3. Trajectory Refinement
This section illustrates the temporal characteristics of

the MBL algorithm in a small-network example (Fig. 10).
Fig. 10(a) shows the evolution of node 1’s global view

(manually aligned to ground truth for comparison). Because
the first global view calculation was scheduled to occur at
t = 5 seconds, trajectories were available only after that
time. Trajectory re-estimation was triggered according to
prediction error as described earlier. Figures 10(b), 10(c),
and 10(d) respectively show the error in position, speed, and
heading estimates over time.

4.4. Accuracy, Precision, and Availability
We assessed the performance of our MBL method using

three quantitative performance metrics. The Accuracy met-
ric characterizes the median error in trajectory estimation
with respect to ground truth. The Precision metric charac-
terizes the standard deviation in recovered trajectory param-
eters. The Availability metric characterizes the fraction of
nodes for which trajectories are successfully recovered.

We simulated 50 nodes moving for 15 seconds with
a randomly selected constant velocity (uniform in 0.5-
1.5 m/s, average 1 m/s) in a degree-15 network while rang-
ing at 5 Hz. Each node gathers range measurements for
about 3 seconds and computes an initial view of the network
about 5 seconds from the start of simulation. We evaluated
the Accuracy and Precision metrics for position, speed, and
heading over a variety of ranging sample frequencies, aver-
age node speeds, and average node degrees. Both metrics
are shown as box plots, in which the box center represents
Accuracy and the box height represents Precision. Avail-
ability is shown in a separate plot. Each box is computed
from 50 Monte-Carlo simulation runs. Because the MBL
algorithm revises its trajectory estimates over time, we com-
puted each metric using time-averages.

Our MBL algorithm recovers trajectories with position,
speed, and heading RMS error around 1 meter, 0.2 m/s,
and 15◦ respectively, for ranging frequencies above 1 Hz
(Fig. 11). Likewise, the algorithm estimates trajectories
for almost all nodes when ranging occurs faster than 1 Hz
(Fig. 11(d)). For lower ranging frequencies, most nodes
were unable to localize, collecting too few range samples



−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X (m)

Y
 (m

)

5

4

1

3

2

(a) Ground truth (red) and esti-
mated (blue) trajectories

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (sec)
R

M
S

 p
os

iti
on

 e
rr

or
 (m

)

(b) Position error

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

R
M

S
 s

pe
ed

 e
rr

or
 (m

/s
)

(c) Speed error

0 5 10 15
0

5

10

15

20

Time (sec)

R
M

S
 h

ea
di

ng
 e

rr
or

 (
de

g)

(d) Heading error

Figure 10. A small-network MBL example.

1 3 5 7 9
0

2

4

6

8

10

R
M

S 
er

ro
r (

m
)

Ranging frequency (Hz)

(a) Position error

1 3 5 7 9
0

0.2

0.4

0.6

0.8

1

R
M

S 
er

ro
r (

m
/s

)

Ranging frequency (Hz)

(b) Speed error

1 3 5 7 9
0

10

20

30

40

50

60

70

R
M

S
 e

rr
or

 (
de

g)

Ranging frequency (Hz)

(c) Heading error

1 3 5 7 9
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ec

ov
er

y 
(%

)

Ranging frequency (Hz)

(d) Percent nodes recovered

Figure 11. Time-averaged trajectory error and node availability as ranging rate increases.

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

R
M

S 
er

ro
r (

m
)

Average node speed (m/s)

(a) Position error

1.0 1.5 2.0 2.5 3.0
0

0.2

0.4

0.6

0.8

1

R
M

S 
er

ro
r (

m
/s

)

Average node speed (m/s)

(b) Speed error

1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

50

60

70

R
M

S
 e

rr
or

 (
de

g)

Average node speed (m/s)

(c) Heading error

1.0 1.5 2.0 2.5 3.0
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ec

ov
er

y 
(%

)

Average node speed (m/s)

(d) Percent nodes recovered

Figure 12. Time-averaged trajectory error and node availability as node speed increases.

within any observation window.
We also evaluated the growth and variation in recov-

ered trajectory error as node speed increases (Fig. 12). As
expected, faster node motions generally degrade the algo-
rithm’s position and speed estimates and availability since
fewer ranging observations can be gathered while any given
node is within communications range. However, increasing
node speed does have one beneficial effect: a longer effec-
tive triangulation baseline between successive range mea-
surements that yields more accurate heading estimates.

Finally, we evaluated growth and variation in recovered
trajectory error as the node degree increases (Fig. 13), from

five (sparse) to twenty-five (dense). The availability tran-
sitions rapidly from low to high at approximately degree
ten. Because our algorithm employs a thresholding heuris-
tic when generating triangles, low-degree networks tend to
produce insufficiently many shared triangles for propaga-
tion of localization information. In other words, the algo-
rithm prefers to achieve high-quality localization, even if
only part of the network can be localized, than to localize
the entire network with lower accuracy. This behavior is
similar to that observed with earlier “robust quadrilateral”
criteria [14], with an availability transition similar to that
observed in other settings [24].



5 10 15 20 25
0

2

4

6

8

10

R
M

S
 e

rr
or

 (
m

)

Node degree

(a) Position error

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

R
M

S
 e

rr
or

 (
m

/s
)

Node degree

(b) Speed error

5 10 15 20 25
0

10

20

30

40

50

60

70

R
M

S
 e

rr
or

 (
de

g)

Node degree

(c) Heading error

5 10 15 20 25
0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 r

ec
ov

er
y 

(%
)

Node degree

(d) Percent nodes recovered

Figure 13. Time-averaged trajectory error and node availability as node degree increases.

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

X (m)

Y
 (

m
)

Figure 14. True node positions at t = 75 sec-
onds (dots), and ranging radius (circle).

4.5. Large-Network Example

We simulated a network of 40 nodes moving for 100 sec-
onds within a square one hundred meters on a side (Fig. 14).
Each node repeatedly generates path segments by randomly
selecting an axis-aligned velocity and distance (Fig. 15).
We adjusted the velocity distributions to force motion tran-
sitions to occur in closely-spaced bursts separated by about
30 seconds (Fig. 16), 10 seconds (Fig. 17), and 3 seconds
(Fig. 16) of transition-free motion. Table 2 summarizes the
algorithm’s performance in each of the three regimes.

4.6. Faster Ranging

We also simulated operation of a hypothetical future
UWB device capable of ranging an order of magnitude
faster than today’s devices (i.e., at 50 Hz vs. 5 Hz). In the
most difficult regime where nodes change direction roughly
every 3 seconds, we found that with a 1-second (vs. 3-
second) observation window, the algorithm localized nodes

−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

X (m)

Y 
(m

)

Figure 15. True (black) and estimated (col-
ored) trajectories for four of 40 nodes.

30 sec. 10 sec. 3 sec.

Position Median 1.30 1.21 1.33
error Std. dev. 0.950 2.66 1.56
(m) Maximum 9.12 17.197 21.7

Speed Median 0.136 0.137 0.174
error Std. dev. 0.124 0.139 0.179
(m/s) Maximum 0.771 1.05 1.36

Heading Median 10.0 8.94 13.9
error Std. dev. 17.2 12.3 10.6
(deg) Maximum 103 76.0 84.6

Table 2. Performance of large-network MBL.

to within 1.05 m on average (about 25% better).

4.7. Frequent Updates

Finally, we considered the effect of our adaptive update
rule that triggers localization only when observed ranges



0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r (
m

)

0 20 40 60 80 100
0

1

2

3

M
ed

ia
n 

ve
lo

ci
ty

 e
rro

r (
m

/s
)

0 20 40 60 80 100
Time (sec)

Figure 16. 30-sec. smooth motion intervals.

0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r (
m

)

0 20 40 60 80 100
0

1

2

3
M

ed
ia

n 
ve

lo
ci

ty
 e

rro
r (

m
/s

)

0 20 40 60 80 100
Time (sec)

Figure 17. 10-sec. smooth motion intervals.

0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r (
m

)

0 20 40 60 80 100
0

1

2

3

M
ed

ia
n 

ve
lo

ci
ty

 e
rro

r (
m

/s
)

0 20 40 60 80 100
Time (sec)

Figure 18. 3-sec. smooth motion intervals.

deviate significantly (1 m) from prediction (§3.6). While
this rule saves computation time, it sacrifices about 1 m of
positioning accuracy. Thus we ran the large-network exper-
iment with periodic updates forced at 2 Hz. Table 3 sum-

0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r (
m

)

0 20 40 60 80 100
0

1

2

3

M
ed

ia
n 

ve
lo

ci
ty

 e
rro

r (
m

/s
)

0 20 40 60 80 100
Time (sec)

Figure 19. 30-sec. intervals, 2 Hz updates.

0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r 
(m

)

0 20 40 60 80 100
0

1

2

3

M
ed

ia
n 

ve
lo

ci
ty

 e
rr

or
 (

m
/s

)

0 20 40 60 80 100
Time (sec)

Figure 20. 10-sec. intervals, 2 Hz updates.

0 20 40 60 80 100
0

5

10

15

20

25

M
ed

ia
n 

po
si

tio
n 

er
ro

r (
m

)

0 20 40 60 80 100
0

1

2

3

M
ed

ia
n 

ve
lo

ci
ty

 e
rro

r (
m

/s
)

0 20 40 60 80 100
Time (sec)

Figure 21. 3-sec. intervals, 2 Hz updates.

marizes the resulting algorithm’s performance in each of the
three regimes. Figs. 19, 20, and 21 show the corresponding
plots of error over time. The computation cost grew roughly
six-fold (58,221 vs. 10,071 triangles considered), but the er-



rors are significantly smaller and the peaks caused by mo-
tion changes are clearer. For 90% of the estimates, positions
are within 1.4 m, speeds are within 0.3 m/s, and headings
are within 25◦ of ground truth.

30 sec. 10 sec. 3 sec.

Position Median 0.158 0.304 0.518
error Std. dev. 1.32 0.643 0.944
(m) Maximum 12.1 7.92 6.46

Speed Median 0.111 0.120 0.173
error Std. dev. 0.107 0.085 0.129
(m/s) Maximum 0.645 0.732 1.57

Heading Median 5.69 8.59 13.5
error Std. dev. 37.0 8.29 11.3
(deg) Maximum 161 81.6 64.9

Table 3. Large-network MBL, 2 Hz updates.

5. Discussion
Our proposed method recovers motion trajectories well

over a range of (simulated) operating conditions, but fails
when ranging is too slow, when nodes move too quickly,
when relative motions are too small, or when the network is
sparse (i.e. when too few nodes lie within ranging radius).

Even when the ranging rate and network density are ad-
equate, two real-world factors prevent our algorithm from
achieving perfect instantaneous estimates of all node trajec-
tories. The first is measurement noise. Even small rang-
ing errors of a few centimeters degrade recovered motion
and alignment parameters, producing trajectory estimates
that lose accuracy over time. The second factor is latency
of communication and computation; it takes time for any
change in a node’s motion to be sensed by other nodes and
incorporated into their computations, and for the results to
propagate throughout the network. We envision adopting a
“best effort” methodology (as in [14]) in which each node
frequently broadcasts its latest information to its neighbors,
by piggybacking alignment information onto ranging pulses
(which would be exchanged frequently in any case). In
this way, updated motion solutions will propagate rapidly
through the network, and every node will have not perfect,
but at least reasonably timely, estimates of the motion of all
other nodes within its connected component.

At the heart of our solution is a hyperbola fitting method
for estimating the relative motion between two nodes. The
fitting method that we use removes outliers, but is vulner-
able to noise in the remaining data, which we believe re-
duces the quality of predictions based on the fit. Further
smoothing may reduce the system’s noise sensitivity, yield-
ing better predictions and ultimately improved end-to-end
localization. Another weakness of the fitting method be-
comes evident when the relative motion of two nodes is

small, making the computed time of closest approach am-
biguous and sensitive to noise. It may improve matters to
detect and handle this scenario explicitly.

When devices move along complex motion paths, we
can introduce higher-order parametric terms, e.g., time-
dependent acceleration terms, and estimate them using ad-
ditional range measurements. Also, a combinatorial algo-
rithm could determine where best to split motion paths into
lower-dimensional segments.

We also envision integration of inertial sensing to handle
transient loss of range measurements, due to channel con-
tention, intervening material and attenuation, or excessive
distance to neighbors. Transient errors in trajectory estima-
tion, when node velocities change over short time scales,
can also be smoothed using filtering [22]. Inertial data could
also be used to stabilize, for each user, the coordinate frame
in which that user’s MBL solution is displayed.

The network itself can provide predictive feedback to
help ensure some minimum quality of service. For exam-
ple, leaders could receive guidance to slow down, laggards
to speed up, so as to keep the network sufficiently dense for
operation in the regime required by MBL.

We believe that the fundamental parameters determin-
ing the method’s performance in any real-world setting in-
clude ranging rate, ranging radius, ranging noise, maxi-
mum node speed and acceleration, expected network den-
sity, inter-node communications latency, and the computa-
tional resources available at each node. We hope to dis-
cover the quantitative relationship among these parameters
and use it predictively, for example to determine what user
motions are recoverable using a given UWB device with a
specified behavior, or conversely to select among some set
of available UWB devices given some characterization of
the group’s motion.

6. Conclusion
This paper described a method for localizing a network

of moving, range-capable nodes. The method is the first
to our knowledge to estimate persistent node trajectories,
rather than instantaneous node positions. This choice en-
ables the method to make good use of time-windowed range
data, although at a cost of increased latency in system re-
sponse to changes in the motions of individual nodes.

The proposed method combines three computations to
achieve localization: hyperbola fitting; a form of trilatera-
tion; and subgraph alignment. We implemented each com-
ponent within a simulation model informed by the rang-
ing characteristics of a commercially available UWB radio.
When nearby node pairs can achieve sustained ranging fre-
quencies of 5 Hz over distances up to about 30 m with stan-
dard deviation of a few centimeters, our method localizes
nodes moving at typical walking speeds to within 0.2–1 m
of their correct position (depending on the frequency of mo-



tion changes and recomputation), within 0.2 m/s of their
correct speed, and within 15◦ of their correct heading. The
method fails when ranging is too slow, the network is too
sparse, or when node motions are too fast or too correlated.

Our preliminary results, based largely on simulation
data, are promising but not determinative. We hope to eval-
uate our method soon using actual UWB ranging devices
and real-world group motions.

Acknowledgements
We thank the technical staff of Time Domain Corp. for

useful discussions of their UWB devices. We also thank
Moe Win, Henk Wymeersch, Wesley Gifford, and Jaime
Lien for their help with UWB device characterization.

Jun-geun Park is supported by a fellowship from the
Kwanjeong Educational Foundation, and by the National
Science Foundation through award NSF ITR ANI-0205445.

References
[1] B. Alavi and K. Pahlavan. Modeling of the ToA-based

distance measurement error using UWB indoor radio mea-
surements. IEEE Communications Letters, 10(4):275–277,
2006.

[2] S. Chatterjee and I. Olkin. Nonparametric estimation for
quadratic regression. Statistics and Probability Letters,
76(11):1156–1163, 2006.

[3] S. Datta, C. Klinowski, M. Rudafshani, and S. Khaleque.
Distributed localization in static and mobile sensor net-
works. In IEEE Int’l Conf. on Wireless and Mobile Com-
puting, pages 69–76, 2006.

[4] B. Dil, S. Dulman, and P. Havinga. Range-based localization
in mobile sensor networks. In Third European Workshop
on Wireless Sensor Networks, volume 3868, pages 164–179.
Springer, 2006.

[5] T. Eren, D. Goldenberg, W. Whiteley, Y. R. Yang, A. S.
Morse, B. D. O. Anderson, and P. N. Belhumeur. Rigidity,
computation, and randomization in network localization. In
Proc. IEEE INFOCOM, pages 2673–2684, March 2004.

[6] L. Freitag, M. Johnson, M. Grund, S. Singh, and J. Preisig.
Integrated acoustic communication and navigation for mul-
tiple UUVs. In Proc. MTS/IEEE Oceans, pages 290–294,
Honolulu, HI, USA, Sept. 2001.

[7] D. K. Goldenberg, A. Krishnamurthy, W. C. Maness, Y. R.
Yang, A. Young, A. S. Morse, A. Savvides, and B. D. An-
derson. Network localization in partially localizable net-
works. In Proc. IEEE INFOCOM, pages 313–326, Miami,
FL, March 2005.

[8] B. Hoffmann-Wellenhof, H. Lichtenegger, and J. Collins.
Global Positioning System: Theory and Practice, Fourth
Edition. Springer-Verlag, 1997.

[9] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-
form solution of absolute orientation using orthonormal
matrices. Journal of the Optical Society of America A,
5(7):1127–1135, 1988.

[10] L. Hu and D. Evans. Localization for mobile sensor net-
works. In Proc. MobiCom, pages 45–57. ACM Press New
York, NY, USA, 2004.

[11] R. Kurazume, S. Nagata, and S. Hirose. Cooperative posi-
tioning with multiple robots. In Proc. IEEE Int’l Conf. in
Robotics and Automation, pages 1250–1257, Los Alamitos,
CA, USA, May 1994.

[12] J.-Y. Lee and R. Scholtz. Ranging in a dense multipath en-
vironment using an uwb radio link. IEEE J. Selected Areas
in Communications, 20(9):1677–1683, Dec. 2002.

[13] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding
time synchronization protocol. In Proc. SenSys, pages 39–
49, New York, NY, USA, 2004. ACM Press.

[14] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust
distributed network localization with noisy range measure-
ments. In Proc. SenSys, pages 50–61, New York, NY, USA,
2004. ACM Press.

[15] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller.
Mobile-Assisted Localization in Wireless Sensor Networks.
In Proc. InfoCom, pages 172–183, March 2005.

[16] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket Location-Support System. In Proc. MobiCom,
Boston, MA, Aug. 2000.

[17] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller.
Anchor-free distributed localization in sensor networks
(poster abstract). In Proc. SenSys, pages 340–341, Los An-
geles, California, USA, November 5–7 2003.

[18] S. Roumeliotis and G. Bekey. Synergetic localization for
groups of mobile robots. In Proc. IEEE Decision and Con-
trol, pages 3477–3482, Sydney, Australia, Dec. 2000.

[19] A. Savvides, W. Garber, S. Adlakha, R. Moses, and M. B.
Srivastava. On the error characteristics of multihop node
localization in ad-hoc sensor networks. In Proc. IPSN, pages
317–332, Palo Alto, CA, April 2003.

[20] E. Stump, B. Grocholsky, and V. Kumar. Extensive represen-
tations and algorithms for nonlinear filtering and estimation.
In Proc. WAFR, New York, NY, July 2006.

[21] J. Vaganay, J. Leonard, J. Curcio, and S. Willcox. Exper-
imental validation of the moving long base-line navigation
concept. In AUV 2004, pages 555–556, Nagoya, Japan, June
2004.

[22] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller, and
D. Colucci. The HiBall tracker: High-performance wide-
area tracking for virtual and augmented environments. In
Proc. ACM Symp. on Virtual Reality Software and Technol-
ogy, December 1999.

[23] L. Whitcomb, D. Yoerger, H. Singh, and J. Howland. Ad-
vances in Underwater Robot Vehicles for Deep Ocean Ex-
ploration: Navigation, Control and Survey Operations. In
The Ninth Int’l Symposium on Robotics Research, Springer-
Verlag, London, 2000.

[24] K. Whitehouse and D. Culler. A robustness analysis of
multi-hop ranging-based localization approximations. In
Proc. IPSN, pages 317–325, Nashville, TN, April 2006.

[25] M. Z. Win and R. A. Scholtz. On the robustness of ultra-
wide bandwidth signals in dense multipath environments.
IEEE Communications Letters, 2(2):51–53, 1998.

[26] Y. Xu, Y. Ouyang, Z. Le, J. Ford, and F. Makedon. Mo-
bile anchor-free localization for wireless sensor networks.
In Distributed Computing in Sensor Systems, 2007.


