
Growing an Organic Indoor Location System

Jun-geun Park†, Ben Charrow†, Dorothy Curtis†, Jonathan Battat†,
Einat Minkov§, Jamey Hicks§, Seth Teller†, Jonathan Ledlie§

†MIT CSAIL, Cambridge, MA, USA
§Nokia Research, Cambridge, MA, USA

†{jgpark, dcurtis, teller}@csail.mit.edu, †{bcharrow, battat}@alum.mit.edu
§{einat.minkov, jamey.hicks, jonathan.ledlie}@nokia.com

ABSTRACT

Most current methods for 802.11-based indoor localization
depend on surveys conducted by experts or skilled techni-
cians. Some recent systems have incorporated surveying by
users. Structuring localization systems “organically,” how-
ever, introduces its own set of challenges: conveying un-
certainty, determining when user input is actually required,
and discounting erroneous and stale data. Through deploy-
ment of an organic location system in our nine-story build-
ing, which contains nearly 1,400 distinct spaces, we evaluate
new algorithms for addressing these challenges. We describe
the use of Voronoi regions for conveying uncertainty and rea-
soning about gaps in coverage, and a clustering method for
identifying potentially erroneous user data. Our algorithms
facilitate rapid coverage while maintaining positioning ac-
curacy comparable to that achievable with survey-driven in-
door deployments.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distrib-
uted Systems—Distributed Applications; H.5.3 [Informa-
tion Interfaces and Presentation]: Groups and Organiz-
ation Interfaces—Collaborative Computing

General Terms
Algorithms, Experimentation, Human Factors, Measurement

Keywords
Localization, Crowd-Sourcing, Location-Based Services

1. INTRODUCTION
Incorporation of information about a user’s location can

enhance a variety of applications, including calendars, re-
minders, navigation assistants, and communication tools.
For example, the Locale application automatically adjusts
mobile phone behavior based on location [18]. However,
most current location-aware applications are restricted to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

outdoor operation; they depend upon GPS [15], which re-
quires clear sky visibility and may take minutes to provide
a location estimate.

Much of the research into alternatives to GPS has con-
verged on methods that rely on existing wireless and cellular
infrastructure (e.g., [2,13,21]). These methods share under-
lying elements: first, create a database that associates ambi-
ent wireless or cellular signals, or fingerprints, with physical
locations; next, to localize, find the most similar fingerprint
in the database to what one’s device currently observes, and
return the associated location as the result. While these
methods can localize indoors to within a few meters in re-
gions with high infrastructure coverage [13], they have a
high deployment burden. Surveyors must methodically walk
from room to room, gaining access to all areas of a build-
ing to create the required fingerprint database [11]. For a
moderately-sized office building, this process can take sev-
eral days and cost tens of thousands of dollars, and must be
repeated when the wireless infrastructure changes.

Because this deployment cost is prohibitive for all but
the most managed environments (e.g., airports), researchers
have developed systems in which users perform the required
surveying activity [3–5, 35]. While these organic location
systems reduce deployment and management burden signif-
icantly, they also introduce a new set of challenges. For
example, if the fingerprint database is initially empty and
grows in a piecemeal fashion, thus providing location esti-
mates of spatially-varying quality, how can the system mean-
ingfully convey to users both the need for more data, and
the relative accuracy of its current location estimate? How
can the system determine when to prompt user-surveyors for
input? Insufficient prompting will not produce enough fin-
gerprint data for a useful system, while too much prompting
will annoy users. Additionally, user-surveyors will provide
data of varying quality; how can the system sift through
users’ contributions to retain accurate contributions while
discarding stale, erroneous or even malicious data? This
paper addresses these questions through the following con-
tributions:

• A Voronoi diagram-based method for conveying local-
izer uncertainty and increasing coverage;

• A clustering-based method that automatically discards
erroneous user input through outlier detection in the
signal space; and

• An evaluation of these methods during a nine-day trial
with nineteen users.

Seth Teller
Typewritten Text
In Proc. 8th Annual International Conference on Mobile Systems, Applications and Services (MobiSys), June 2010, San Francisco CA

Seth Teller
Typewritten Text



The next section provides the necessary background re-
quired to understand the algorithmic and systems contri-
butions of the paper. Section 3 describes our Voronoi-based
method for characterizing localization uncertainty. Section 4
describes how RF scan data can be clustered and how these
signal-space clusters can be used to detect outliers arising
from erroneous user input. Section 5 discusses our sys-
tem implementation and user interface. Section 6 details
our evaluation of these new algorithms and our system as a
whole through simulation and a live nine-day deployment.
Section 7 reviews related work. Section 8 concludes and
discusses future work.

2. BACKGROUND
GPS receivers [15] estimate position by trilateration from

a set of government-managed satellites. Because GPS func-
tions well only in outdoor regions with sufficient sky visibil-
ity, researchers have explored alternative means for indoor
localization. Most proposed approaches require dedicated
infrastructure, such as fixed beacons, to support localiza-
tion [28,38].

One non-GPS localization approach relies on ambient wire-
less and cellular network signals [2, 14]. Because this “in-
frastructure”comes as a side-effect of providing network cov-
erage and incurs no additional cost, the research and com-
mercial communities have become interested in this type of
method for a variety of applications. Several positioning
systems, including the system described in this paper, have
adopted a fingerprint-based approach to associate ambient
network signals with particular spaces.

2.1 Fingerprint-based Localization
Fingerprint-based localization methods exploit the spatial

variation in available radio frequency (RF) signals, such as
802.11 and cellular broadcasts, compiling this information
into a map [2,21]. The location of a mobile device can then
be estimated by identifying the space within the map whose
fingerprint best matches the fingerprint recently observed by
the device. Researchers have previously reported room-level
location accuracy of 95% within a building-sized testbed re-
gion using this approach [13].

The observed per-MAC signal strengths constitute the fin-

gerprint for a particular space. Figure 1 depicts four such
fingerprints. Each of the four access points (APs) may be
received in each space with varying strengths. Due to walls,
distance, and other factors, the signals observed within a
particular space differ substantially from those observed in
other spaces, even those that are directly adjacent.

Together, the RF signals observed in a given space form
that space’s fingerprint; many spaces collectively make up
a signal strength map. Because most indoor RF sources are
geographically fixed, fingerprints are fairly consistent over
time, unless of course APs are repositioned, added, or re-
moved.

2.1.1 Bayesian Localization

Given a database of fingerprinted locations L and a set of
observations o, the goal of localization is to infer the most
likely location l̂ of the mobile device. Specifically, in 802.11
localization systems, an observation o typically consists of a
set of per-AP signal strengths, {si|i ∈ AP}.

The Bayesian localization method addresses this problem
using Bayes’ rule, computing the degree of belief in the hy-

Figure 1: RF fingerprints. The bars in each space
illustrate the RSSI from each in-range AP. Even
though room 337 is physically close to access point
0x6d2 (in blue), RF signals from that AP are damp-
ened by structures in the environment.

pothesis that the mobile device is located at location l ∈ L
given the available evidence. Given an observation o, the
degree of belief, or posterior probability, of being in location
l is given by:

P (l|o) =
P (o|l)P (l)

P (o)
. (1)

According to this model, l̂ is the location with the maxi-
mum posterior probability. Since the observation likelihood

P (o) is fixed across all candidate locations, the decision rule
becomes:

l̂ = argmax
l∈L

[P (o|l)P (l)] . (2)

Therefore, it remains to estimate the class-conditional prob-

ability, P (o|l), and the prior probability, P (l), for each can-
didate location l ∈ L. For a location l, we assume that each
signal strength si is conditionally independent of every other
strength sj for j 6= i, yielding the näıve Bayes model:

l̂ = argmax
l∈L

"

Y

i

P (si|l)P (l)

#

. (3)

Finally, the conditional distribution P (si|l), which models
signal strength per AP i for a given location l, can be es-
timated from labeled observations and stored in a database
(§ 5.3). Similarly, the prior probability of each location P (l)
can be evaluated from labeled data.

2.2 Expert vs. Organic Surveying
To collect the fingerprints necessary for indoor localiza-

tion, most previous approaches have utilized expert survey-
ing. Methods based on expert surveying have practical, cul-
tural and technical downsides preventing them from achiev-
ing widespread use. On the practical side, such methods
have a high fixed cost, as they require an initial site survey
to build and populate the signal strength map. This deploy-
ment burden typically requires a few person-days of careful



and spatially-comprehensive survey effort by skilled techni-
cians. This approach faces a cultural barrier as well, as mem-
bers of a community may feel reluctant to allow strangers
into certain areas such as private offices. A technical chal-
lenge is that site survey data may become outdated over
time, e.g. through access point reconfiguration, reposition-
ing or replacement, each of which may degrade or invalidate
subsequent location estimates.

These factors led to the development of user-generated,
or organic localization systems, where the initial, compre-
hensive site survey is replaced with ad hoc, incremental col-
lection of data by individual users [3–5, 35]. Organic lo-
calization merges the “survey” and “use” phases that were
distinct in earlier work [2,13] into a single state, where the
users of the system are also prompted to construct the sig-
nal strength map. After a handful of early users populate
the map for a building environment, a typical user will en-
joy high-quality location discovery with minimal individual
effort.

2.3 System Overview
We have developed the Organic Indoor Location (OIL)

system for user-supported localization system. In OIL, client
software running on each user’s mobile device periodically
gathers a fingerprint of nearby wireless sources. This finger-
print is checked against a client-maintained signal strength
map cache, populated asynchronously from a shared server.
The software attempts to determine the user’s location. If it
cannot, it prompts the user to indicate his/her current loca-
tion on a displayed map. This on-the-fly surveying binds the
fingerprint observed by the user to the relevant space. Each
such addition to the signal strength map is soon reflected
globally, resulting in improved localization for other users.

OIL has several distinctive characteristics compared with
other user-generated localization systems. First, OIL is de-
signed to run primarily as a daemon process on the cli-
ent, estimating the device location and sharing this infor-
mation with location-based applications and services run-
ning on the device. Managing localization as a background
process means that we cannot rely on the user to proac-
tively contribute or notice positioning mistakes. Instead,
OIL must determine on its own when explicit human in-
put is necessary. Second, we assume that human users, who
are occasionally prompted to provide explicit location infor-
mation, are supplied with a map. The map need not be
precise, but it must be sufficient to convey a user’s posi-
tion. This requirement does not appear to be overly bur-
densome because manual and automatic map-making tools
are available [31, 39]. Lastly, we assume the existence of an
accessible shared server that receives bind information from
clients, and sends updated signal strength maps to clients.
In a real-world setting, this server must include redundancy
and be highly available. However, because storage and pro-
cessing can be partitioned based on physical topology or RF
sources, scaling the server is manageable. In addition, be-
cause there is client-side caching, devices can continue to
localize even if they cannot contact the server, so long as
the needed fingerprints are in the cache.

Given this outline of our organic localization system, a
main challenge stems from the fact that the signal strength
map, constructed from user-provided information, may be
incomplete and may include erroneous data. In the next
section we propose a mechanism for evaluating confidence

when inferring a specific location, which takes into account
possible gaps in coverage. In addition, we suggest a pol-
icy, based on this confidence measure, in which users are
prompted to provide additional binds in order to improve
coverage. Section 4 discusses methods for identifying erro-
neous binds in order to improve localization accuracy.

3. VORONOI-BASED USER PROMPTING
In survey-based positioning, the survey provides a snap-

shot of ambient RF for all spaces where client positioning
is desired. Based on the obtained signal strength map, a
standard localizer can then find the space that matches the
fingerprint observed by a client device with the highest prob-
ability. Organic positioning, however, begins with an empty
database which is gradually populated with user-provided
fingerprints. If the fingerprint database is empty or if the
database does not include any of the RF sources that a client
sees, then the organic localizer outputs an “unknown loca-
tion”response. However, when the database is only partially
populated, the localizer’s use of incomplete information may
bias its predictions. For example, consider the extreme case
where only a single bind has been made; if a database of
known fingerprints contains a single location, the localizer
will output that space as its prediction, even if the wireless
scan observed by the device only slightly overlaps the finger-
print associated with that location. We therefore require a
method for conveying the localizer’s spatial confidence in its
output prediction. This confidence measure can be displayed
along with the location estimate in a way that is intuitive
to contributors and non-contributors alike. We can also use
the confidence measure as the basis of a policy for request-
ing user input. For organic systems, in order to increase
coverage, it is useful to occasionally prompt users for their
location. However, there is a trade-off between providing
imprecise estimates due to lack of coverage, and irritating
users with too many bind requests, especially when the fin-
gerprint database is only partially populated. When should
a user be prompted with an explicit location request? Our
system prompts whenever localizer confidence falls below a
threshold.

During the development of OIL, we considered several
prompting policies and their implications for coverage. The
simplest policy is to prompt all users at regular intervals, re-
gardless of their location or estimate confidence. However,
this method was intrusive and conflicted with our goal of
having knowledgeable “locals” be the primary data genera-
tors. An alternative policy was to prompt with frequency
inversely proportional to coverage: as more spaces in a build-
ing are associated with fingerprints, user prompting decreases.
However, we found via simulation that this approach re-
sulted in a high false prompting rate, such that users were
prompted in spaces that did not require it. A third policy
– inserting interpolated, artificial fingerprints for unbound
spaces – requires good coverage of nearby spaces to obtain
meaningful results. We therefore arrived at a user prompt-
ing policy based on spatial uncertainty.

3.1 Spatial Uncertainty
In an organic localization system, if a user is in an un-

bound space, the most likely space to be selected by the
localizer is the nearest bound space. This is because the RF
fingerprint of the unbound space is likely to be similar to
those of physically nearby spaces (Figure 2). If the localizer



Figure 2: Signal distance vs. physical distance. As
users add binds from more physically distant spaces,
signal distance (Eq. 5) between binds increases.

predicts the user to be in a space with unbound neighbors,
the user’s true location may be one of the surrounding spaces
and not the bound space. To convey this spatial uncertainty,
we can display to the user the set of possible spaces, includ-
ing unbound ones. We can also prompt the user to bind in
one of the unbound neighbors, as he or she is likely to be
nearby.

In order to estimate uncertainty, we employ discrete Voronoi
diagrams. In a standard, continuous two-dimensional Voronoi
diagram [9], a set of point sites exists on a plane. Each site
is associated with a Voronoi cell containing all points closer
to that site than to any other site.

In our solution, bound spaces are sites, and unbound spaces
become members of the cell associated with the nearest
bound space (Figure 3). As a space shifts from being un-
bound to bound, it becomes a site and adds nearby unbound
spaces to its newly-formed cell. The underlying intuition is
that if a user is in an unbound space, the space most likely
to be selected by the localizer will be the nearest bound
space – the Voronoi site associated with the user’s true lo-
cation. Therefore, the size of the bound space’s Voronoi cell
naturally captures the spatial uncertainty associated with
prediction of the bound space.

More formally, let L denote the set of all locations in a
given floor, and B be the set of bound locations. Let Lc and
Bc be sets of centroid coordinates of L and B, respectively.
The Voronoi diagram for Bc is a planar subdivision of R

2

in which every point x in the plane is assigned to p ∈ Bc if
d(x, p) ≤ d(x, p′) ∀p′ ∈ Bc, p′ 6= p. The set of points that
are assigned to p is denoted as V (p), the Voronoi cell of p.

For every bound location b ∈ B with centroid p, we de-
fine a spatial uncertainty region U(b) to be a subset of L,
as follows: every location l ∈ L is assigned to one of the
uncertainty regions, U(b), if the Euclidean distance from its
centroid lc is smaller to p than to any other p′ ∈ Bc; equiv-
alently, lc belongs to the Voronoi region of p, lc ∈ V (p).
In essence, we maintain a generalized Voronoi diagram as a
collection of mutually disjoint spatial uncertainty regions.

For each spatial uncertainty region U(b) for a bound space
b and its centroid p, we define two spatial uncertainty met-
rics: the number of unbound locations, n(b), and the maxi-

Figure 3: Spatial uncertainty. The user sees the
bound space (green) as the Voronoi site, along
with its Voronoi cell (stippled). This helps non-
contributing users understand localization preci-
sion, and helps contributing users know which binds
would improve coverage and/or accuracy.

mum uncertainty radius r(b) defined as:

r(b) = max
lc∈V (p)

d(lc, p) (4)

which is the maximum distance from the Voronoi site to
the farthest unbound location in U(b). The number of un-
bound locations is used for the user prompting algorithm
(Algorithm 1), giving the spatial uncertainty metric. The
maximum uncertainty radius r(b), used when drawing a cir-
cle centered on the corresponding bound space b, conveys
uncertainty to the user.

As noted above, when a space changes from being un-
bound to bound, the floor’s Voronoi diagram must be up-
dated. The update operation is efficient; it is linear in the
number of spaces held by any adjacent cells. This update is
performed on the server, then propagated to the clients.

3.2 User Prompting Algorithm
OIL requests user input in order to improve either cover-

age or accuracy. To this end, each client monitors a pair of
hypotheses in determining whether further user input will
improve the fingerprint database. Specifically, each time a
location estimate is produced, the device evaluates the fol-
lowing questions:

1. If the user binds a nearby location, will the system’s
coverage increase?

2. If the user binds his/her current location, will the sys-
tem’s accuracy increase for this location?

The first question is answered by considering the spatial
uncertainty of the current location estimate n(b). High spa-
tial uncertainty means that many nearby locations remain
unbound; thus adding user input for nearby spaces will en-
hance the overall coverage of the fingerprint database. If
the spatial uncertainty metric exceeds a threshold, the user
is prompted for input. The second question is answered by
checking whether recent location estimates for the user’s cur-
rent location have been stable. Because the duration of each
user contribution can be short and wireless signal strength
can vary rapidly, a user in a space with a sparse finger-
print might experience unstable and inaccurate localization
results. The user is also prompted in this case. Algorithm 1



Algorithm 1 User prompting algorithm. Cmax
s and Cmax

i

are thresholds to determine (in)stability, and n∗ is a pre-
defined spatial uncertainty threshold. Note that prompting
based on high spatial uncertainty occurs only when the lo-
cation estimate is stable.
1: Input: location estimate l, uncertainty region U(l)
2: Output: prompt = { true, false }
3: States: stability counter Cs, instability counter Ci, pre-

vious location estimate lp
4: Initialization: Cs ← 0, Ci ← 0, lp ← Nil

5:
6: if lp = Nil then
7: lp ← l, prompt ← false, return
8: else
9: if lp = l then

10: Cs ← Cs + 1, Ci ← max{Ci − 1, 0}
11: else
12: Ci ← Ci + 1, Cs ← max{Cs − 1, 0}
13: end if
14: if Cs > Cmax

s and n(l) > n∗ then
15: prompt ← true, Cs ← 0, Ci ← 0
16: else if Ci > Cmax

i then
17: prompt ← true, Cs ← 0, Ci ← 0
18: else
19: prompt ← false, lp ← l
20: end if
21: end if
22: return

shows the method used in OIL to answer these two ques-
tions. If the decision is to prompt the user, the user can
see local coverage rates on the UI (Figure 3), and (a) de-
cide whether to bind in the current space, (b) bind in an
adjacent space, or (c) request not to be bothered again for a
short or long duration (5 minutes and 4 hours respectively
in our current implementation).

4. FILTERING ERRONEOUS USER INPUT
An organic localization system is expected to encounter

some level of noisy user contributions. In particular, users
will not always indicate the right room when they are prompted
to make a“bind.” Early tests of our system showed that both
ordinary and skilled users did indeed make mistakes.

Across organic location systems, mistaken contributions
fall roughly into three categories: (1) when selecting the lo-
cation from a map – as in OIL – the user may select the
wrong room or floor; (2) when entering a user-defined space
name – as in RedPin [5], for example – the user may type
an incorrect or atypical name; and (3) while making a long
interval bind, a user may move, polluting a bind with scans
acquired in distinct spaces (see § 5.2.1). Identifying erro-
neous contributions is a key problem in organic localization
because, without high-quality binds, database and position-
ing accuracy will suffer.

While we focus on the first type of error in our algorithm
description and evaluation, variations on our method would
also identify the other two types of errors. While we believe
our method would also filter out uncoordinated malicious
input, combating a pervasive attack – with many spoofed
APs [36], for example – is beyond the scope of this paper.

Since location fingerprints are generated organically, there
is no a priori model available for identifying correct binds.

Figure 4: Correct binds made in the same physical
space tend to cluster in signal space. By observing
outliers in the signal space, we can detect and elim-
inate erroneous binds. Correct binds are denoted as
e.g. ao; incorrect binds are denoted as e.g. ax.

Error detection should therefore be managed in an unsu-
pervised fashion. Our approach for handling erroneous user
inputs hinges on outlier detection in signal space – the ob-
served RF signal strengths for each access point (Figure 4).
We rely on the fact that independent correct binds made
at the same location are similar, and tend to cluster. We
apply a clustering algorithm to detect outlier binds, which
are suspected to be erroneous.

When a new user bind is received, it is processed in two
steps. First, a clustering algorithm identifies, for the an-
notated location, a group of binds that are similar in signal
space. Then, our proposed erroneous bind detection method
tags the new bind as correct or erroneous. Later, localiza-
tion incorporates only those binds tagged as correct. The
fingerprint for each location, however, maintains all binds
assigned to it (regardless of correctness), so that all data
can be used to periodically reclassify clusters and outliers
for that location. Sections 4.1 and 4.2 describe our approach
in detail.

While we focus on erroneous bind detection in this section,
we anticipate using a similar approach to address other prob-
lems in organic localization, such as detecting AP addition,
deletion, and movement. Currently, we consider a collec-
tion of binds from a limited time window, to detect outliers
within that window. The same approach can be employed
across time windows of different granularity to detect true
changes in the RF environment, such as AP movement. If
clusters of correct binds formed in consecutive windows for
the same location vary substantially, this is indicative of a
change in the environment. In this case, localization accu-
racy may be increased by discarding old binds. We leave
exploration of this issue to future work.

4.1 Erroneous Bind Detection
We represent a bind as a signal-strength vector in a k-

dimensional signal space, with k the number of observed
APs. Given multiple scans per bind, the bind’s i-th dimen-
sion is populated with the mean RSSI per APi. APs for
which no signal is observed in the input scans (due to range
or channel collision) are assigned a fixed value of -100 dBm.

Given multiple binds made at location l, our goal is to
arrange these binds into meaningful clusters. We apply an
agglomerative hierarchical clustering approach [17] to group
binds by similarity. In this approach, clusters are succes-



Algorithm 2 Erroneous bind detection method.

1: Input: new bind bN to location l, set of all binds Bl for
location l, neighbor locations Nl

2: Output: set of correct binds C∗
l

3:
4: Add bN to Bl.
5: if |Bl| = 1 or Nl = ∅ then
6: C∗

l ← Bl {No information for detection is available.}
7: return

8: else
9: Cl ← Hierarchical clustering of Bl (Eq. 5 and Eq. 6).

10: if |Cl| > 1 then
11: C∗

l ← Identification of the correct cluster (Eq. 7).
12: else
13: C∗

l ← Cl

14: end if
15: end if

sively merged in a bottom-up fashion, based on a similarity
metric, until no clusters are similar enough to be merged.
We define the distance (dissimilarity) metric between two
bind vectors bs = (bs

1, ..., b
s
k) and bt = (bt

1, ..., b
t
k) as the nor-

malized signal-space Euclidean distance:

ds(b
s, bt) =

"

1

M

k
X

i=1

(bs
i − bt

i)
2

#1/2

(5)

where M ≤ k is the number of APs for which a signal has
been detected in either bind bs or bt. The normalization
term yields proper “per-AP” distances because, in any real
setting, each bind will involve only a small subset of the
observed APs.

Further, the distance between two clusters Cs and Ct,
referred to as the linkage function, is defined as the average
distance between inter-cluster bind pairs as follows:

DS(Cs, Ct) =
1

|Cs||Ct|

X

(bs,bt)∈
(Cs,Ct)

ds(b
s, bt) (6)

Clustering continues until the linkage function between all
pairs of clusters falls below a pre-defined cut-off distance
d∗. We use independent labeled data to obtain a priori

knowledge about intra- and inter-location signal distance to
set d∗. This procedure is described in detail in Section 4.2.

Once binds are grouped into clusters, the system must
identify which cluster includes the correct binds (the rest of
the clusters are assumed to contain erroneous binds). If we
assume that most users make correct binds, it is natural to
take the largest cluster as the correct one. However, in a
previous deployment we found that more than 75% of the
spaces had three or fewer associated binds [35]. When the
organic system has not yet obtained good coverage, majority
voting is not feasible. Instead, we use the observation that
signal distance between two locations is positively correlated
with physical distance between them (cf. Figure 2). There-
fore, we identify the correct cluster of binds C∗

l given a set
of bind clusters at location l, Cl, according to the following
criterion:

C∗
l = argmin

C∈Cl

X

m∈N (l)

Ds(C, C∗
m) (7)

where N (l) is the set of locations neighboring location l, and

Figure 5: Determination of the clustering cut-off
threshold. To achieve minimum probability of er-
ror, we choose H0 if d < d∗ and H1 otherwise.

C∗
m is the cluster of correct binds at the neighboring location

m at the time of computation. Algorithm 2 outlines our
approach.

4.2 Clustering Threshold Tuning
The quality of the clusters formed dictates the perfor-

mance of erroneous bind detection. This section describes
how the linkage function threshold d∗ is determined.

During clustering, cluster pairs for which the value of the
linkage function is larger than d∗ are kept distinct. Thus,
an optimal threshold is one that is effective at separating
binds associated with different locations. If comprehensive
labeled data is available, then the cut-off threshold can be
set empirically, e.g. by cross-validation, to maximize the lo-
calizer performance. In practice, it is hard to obtain such
large labeled datasets (indeed, this is the primary reason for
pursuing organic localization). Instead, we assume that a
handful of scans are available from a variety of locations.
This data can be collected by the system designers or ex-
tracted from early user input. Using this data, we can cast
the threshold tuning problem as a Bayesian decision prob-
lem, testing whether or not two binds originate from the
same location.

Formally, suppose there are two binds bs and bt. We wish
to evaluate the hypotheses:

H0 : bs and bt are from the same location; and

H1 : bs and bt originate at different locations.
(8)

Let d denote the distance defined in Eq. 5. In clustering,
d < d∗ implies that H0 holds; otherwise it is estimated that
H0 is false (i.e., that H1 is true). We assume the cost of false
positives is the same as false negatives. Then, according to
the Bayesian decision rule, H0 is accepted if

P (H0|d) > P (H1|d)⇐⇒
P (d|H0)P (H0)

P (d|H1)P (H1)
> 1. (9)

That is, we will select H0 and judge that bs and bt are from
the same location if P (H0|d)/P (H1|d) > 1 (Figure 5). A
system designer can use the small amount of bind data to es-
timate the distributions P (d|H0) and P (d|H1). The optimal
threshold, d∗, is the point at which the two posterior proba-
bility distributions cross. To estimate the posterior distribu-



Figure 6: OIL System Architecture. OIL client soft-
ware on a mobile device collects signal strengths
from nearby APs, time-stamping and periodically
transmitting them to an OIL server. There, they
are aggregated, checked for accuracy, and sent out
to other clients. The server updates Voronoi regions
as part of the aggregation process.

tion, one must estimate the prior probabilities P (H0) and
P (H1) (Eq. 9). We tested two different ways of modeling
the hypothesis prior. One possibility is to consider the hy-
potheses equally likely; this leads to a Neyman-Pearson-type
likelihood-ratio test, P (d|H0)/P (d|H1) > 1. Alternatively,
one can model the assumption that most binds associated
with any location l are correct; in other words, hypothesis
H0 is more likely in an operative system. For example, if we
assume that 90% of binds are correct and that the erroneous
binds are not mutually correlated, then P (H0) ≈ 0.92 and
P (H1) ≈ 1 − 0.92. When we tested our data with each of
these two assumptions, we obtained d∗ = 12 dB and d∗ = 15
dB, respectively. Each of these values was used as a stopping
criterion in the hierarchical clustering algorithm (§ 6.4). The
first value closely matches Bhasker et al.’s empirical close-
ness threshold [4].

5. IMPLEMENTATION
This section presents our implementation of OIL, describ-

ing in detail its client and server architecture (Sections 5.1
and 5.2). Because the success of OIL relies on facilitating
user input, building a responsive interface was important,
so that users could quickly view the effects of data that
they had contributed. This led us to performing local cache
updates and performing localization computations on the
user’s device (Figure 6). User updates are subsequently mi-
grated to the server and then to other users. In our experi-
ments, the observed latency of data updates across users was
in the range of thirty seconds to five minutes. While not the
focus of our work, another benefit of on-device localization
is improved user privacy, compared with commercial system
implementations, e.g. Skyhook [32], which perform localiza-
tion computations on the server and thus can track users. In
order to perform on-device operations efficiently, our imple-
mentation aims at optimizing the storage and computation
resources required at the client. We cover the details of our
localization algorithm in Section 5.3.

5.1 Server
The cooperative nature of organic localization necessi-

tates a repository for bind aggregation and exchange. We
currently implement the repository as a stand-alone server
with which the OIL client exchanges data in order to share
contributions and facilitate location discovery. The server’s
main roles are: (1) to store scans and binds reported by
OIL clients and (2) to provide OIL clients with fingerprints
for nearby locations, and corresponding Voronoi region in-
formation. Our current implementation also records clients’
localizer estimates. By comparing client estimates with user
binds, we can produce a real-time stream of ground truth
measurements for evaluation purposes.

5.1.1 Building Fingerprints and Voronoi Diagrams

The primary role of the server is to aggregate scans and
binds into fingerprints and Voronoi diagrams. Using a light-
weight protocol, the server receives scans and associated
binds from clients. The server updates the appropriate fin-
gerprint with the newly-received scan. In addition, the floor’s
Voronoi diagram is updated with bind information when ap-
propriate. Changes to Voronoi diagrams are piggy-backed
onto normal communications with clients so that they can
update any invalid cached Voronoi diagram information. In
order to differentiate data from multiple users, each message
to the server is stamped with the client’s MAC address. (Cli-
ent privacy could be increased by using temporary cookies
in place of client MAC addresses.)

5.1.2 Fingerprint Pre-Fetching

To enable client localization and caching, the server’s API
provides access to location fingerprints and their associated
Voronoi regions. Our system uses a mechanism that limits
the data sent to a subset of relevant locations. This en-
sures that the localization service does not overwhelm the
client devices, which have limited computation and storage
resources.

We determine location relevancy using a similarity metric,
where our goal is to identify a set of “nearby” locations.
Considering the collection of scans sent by the user as an
input fingerprint, we evaluate its similarity to fingerprints
in the dataset. Formally, the server calculates a similarity
score c(l, q) ∈ [0, 1] for each candidate location l ∈ L and the
client-provided fingerprint q. Let A and B represent the set
of MAC addresses in the fingerprints of l and q, respectively.
We compute the following similarity score:

c(l, q) ≡
1

2

„

|A ∩B|

|A ∪B|
+
|A ∩B|

|B|

«

The first term in the formula is the Jaccard index [16]. Since
B is typically much smaller than A, we added the second
term to model asymmetric similarity. A location l is passed
to the user if c(l, q) ≥ θ, where θ is a predefined thresh-
old. In our experiments we found a threshold of θ = 1

3
to

be effective. Overall, this mechanism allowed us to reduce
the amount of data cached at the client without excluding
relevant fingerprints.

5.2 Client
Our design goals dictate that our client infrastructure fa-

cilitate the contribution of user data, communicate this data
to the server promptly, and maintain a cache of location fin-
gerprints for localization.



We implemented our client in Python on Nokia N810 In-
ternet Tablets. Users are presented with a clickable map,
where polygonal space contours and space names have been
automatically extracted from AutoCAD files [39].

5.2.1 Data collection and sharing

The client collects three main types of data. They are
grouped by type and sent to the server periodically.

• A scan is a set of access point MAC addresses and
time-stamped signal strengths as observed by the de-
vice. Scans are collected at about 1

3
Hertz.

• A location estimate is a time-stamped estimate gen-
erated by the localization algorithm. Our prototype
estimates its position once every fifteen seconds.

• An interval bind is a user-selected location name to-
gether with start, end, and time-of-bind time stamps,
as described below.

In earlier versions of our system, binds were momentary:
they merely associated the most recent scan sent by the
device with the user-indicated location name. However, be-
cause at least a few minutes of scanning is required to pro-
duce stable fingerprints, instantaneous binds required signif-
icant user effort to cover a single space. Since contributors
were often in the same space for minutes at a time or longer,
we altered the binding user interface to allow the user to
specify a time interval in addition to a location. Our con-
tributing users all had the same type of device. However, we
do not anticipate device heterogeneity to be a major issue,
since scan data can be calibrated to a common scale [13].

A user creates an interval bind by indicating a space on
the map, how long s/he has been in that location, and how
long s/he intends to remain in that location. All scans made
within the imputed time interval are then associated with
the selected location. The interval bind also includes the
actual time of the user action. This allows the fingerprint
aggregation process to reconstruct a complete ordering for
each user’s set of binds and handle contradictions. We in-
troduced interval binds in earlier work [35]; Bolliger et al.

independently developed a similar mechanism called “inter-
val labeling” [6].

Our interface also allows users to cancel previously-made
binds and mark spaces as inaccessible, suppressing further
prompts for user input in these spaces.

5.3 Localization Algorithm
Our implementation included two significant changes to

the standard Bayesian localization method presented in Sec-
tion 2.1.1. First, because the locations of organic binds can
be highly skewed – e.g., near users’ offices – we set the prior
distribution P (l) to a uniform distribution over all candi-
date locations. Second, we approximate the conditional
probability of signal strength, P (si|l), using a histogram
of signal strengths that have been observed in location l
for access point APi. Given a histogram of the observed
signal strengths at location l, a common approach to com-
puting the conditional probability of the signal strength is
to use the maximum likelihood estimate (MLE), i.e., rela-
tive counts. However, because the histograms in an organic
system can be sparse, MLE can be inaccurate. Instead, we
use a smoothed m-estimate, which provides a regularization
effect [10]. Specifically, let k denote the number of readings

for signal strength si for access point APi at location l, and
n denote the number of total readings Then the m-estimate

is given by:

P̂ (si|l) =
k + mpk(si)

n + m
(10)

where pk(si) encodes the prior probability for the probabil-
ity we wish to evaluate, and m determines how much weight
we attribute to the prior pk(si). Observations (scans) trans-
form the prior histogram into a histogram specific to that
location; the effect of the prior histogram will vanish as ob-
servations are added [8]. Our implementation set pk(si) to
a uniform distribution for simplicity, and m to the number
of effective histogram bins (we used m = 70 since signal
strength typically ranges from -94 to -25 dBm).

6. EVALUATION
We plan to deploy OIL broadly on our campus and even-

tually to larger areas. For this reason, we examined the
algorithmic foci of the paper both in detailed simulation,
where we could explore parameter changes easily, and in a
live deployment, where we could gather real user input and
feedback.

We first describe how the live deployment was conducted
and provide overall results from it, including changes in cov-
erage and accuracy over time. Section 6.3 examines our
claims that Voronoi diagram-based prompting improves cov-
erage rates and helps explain localization precision. Sec-
tion 6.4 evaluates our erroneous bind detector with organic
user input. Lastly, Section 6.5 examines how users partic-
ipated in the deployment and how their behavior matches
that of users in other collaborative settings.

6.1 Test Deployment
We launched a test deployment of OIL, inviting building

residents to participate. Nineteen people participated, in-
cluding two administrators, three people from a non-technical
department, and four members of our group. We gave each
participant a mobile tablet with the OIL client and building
map installed and showed them how to make interval binds
and operate the client in general. We asked users to respond
to the tablet’s prompts when they were able to do so, but
not to go out of their way to provide coverage. Users were
encouraged to take the tablets with them, including out of
the building if they wished.

At the start of the deployment, we also installed four-
teen stationary “spot check” tablets in different rooms in
the building. We did not make any binds on these tablets,
but left them to run and report their location estimates back
to the server.

Table 1 summarizes the users’ contributions as of the end
of the study.

6.2 System Utility
We studied the interval binds and logged location esti-

mates to characterize the utility of the system according to
several metrics.

The Coverage metric characterizes the fraction of map
spaces to which readings had been bound by the user com-
munity (Figure 7). One day into the deployment, our user
group had covered 57, or about 4.1%, of the 1, 373 spaces
in the corpus. Four days later, that figure had grown to
95 (about 6.9%). By the end of the deployment, almost



(a) First 3 Hours

(b) Rest of Day One

(c) Days 2 - 9 Inclusive

(d) Days 1 - 9 Inclusive

Figure 7: Organic contributions to Floors 3, G5 and G9 during the first three hours (a); hours 4-24 of the
first day (b); days 2-9 (c); and for the entire nine-day deployment (d). Color indicates number of bound
scans per space; uncolored spaces accumulated no bound scans during the displayed interval.



Map Spaces 1, 373
Contributing Users 19
Bind Intervals (from users) 604
Scans (from devices) 1, 142, 812
Bound Scans 108, 418 (9.4%)
Spaces with Bound Scans 116 (8.4%)

Table 1: Statistics for our 9-day test deployment.

all covered spaces had sufficiently many readings to sup-
port accurate localization. More broadly, in a building with
approximately a thousand daily occupants, some nineteen
users – fewer than two percent of the occupants – covered
almost ten percent of the building in just over a week.

The User Accuracy metric characterizes the quality of
the location estimate computed by participants’ tablets. The
ground truth for these estimates was established by looking
at location estimates directly before a user made a bind. At
the start of the deployment, the user accuracy was zero, as
there were no locations known to the system. The user ac-
curacy increased thereafter, to the point that on the final
day of the deployment the mean error between the centroid
of the estimated room and the centroid of the true room was
less than 4.5m. (The average distance from one space to its
closest adjacent space is 5.3m.) This error is comparable to
error rates seen in survey-driven indoor deployments [13].

The Spot Check Accuracy metric characterizes the
quality of the location estimates computed by the spot check
tablets. Of these 14 tablets, 11 of their rooms were bound
at some point during the deployment, yielding an accuracy
comparable to that seen by mobile users (Figure 8(a)).

Figure 8(b) shows the distribution of bind-minutes per
space per day. The data show that as bind-minutes increase,
mean localization error decreases.

6.3 Voronoi-based User Prompting
During initial planning for our deployment, we had several

ideas for improving coverage rates. We evaluated them via
simulation (§ 6.3.1), selected the most promising for deploy-
ment, then interviewed participants for feedback (§ 6.3.2).

6.3.1 Improving Coverage Rates

Our basic proposals for requesting user input included pe-

riodic prompting, where users are prompted at regular inter-
vals, and inverse coverage, where prompting rates decline as
more spaces on a floor are bound. These methods are sim-
ple, but do not direct users to where user input is actually
needed. Instead, the dynamic Voronoi diagram approach
captures the fact that a user is likely to be located in, or
near, a space that requires more coverage. Our opinions
were split on how we should expect contributors to act: were
users active (willing to move to an adjacent space), or pas-
sive (willing to provide input only where they were when
prompted)?

We compared four proposals via a simple simulation. We
moved users randomly across an artificial 100 × 100 grid
floor. To test the performance of prompting methods in-
dependently of a localization algorithm, we assume perfect
accuracy. We also assume that users always bind when
prompted. We let our “active” Voronoi users be willing to
move to adjacent locations with probability 1

2
per request.

(a) Spot check Accuracy

(b) Cumulative Per-Space Bind-Minutes

Figure 8: Organic growth: overall localization accu-
racy grew directly with user contributions.

We examined coverage per number of user prompts, be-
cause the purpose of efficient user prompting is to improve
coverage while minimizing user effort. Figure 9 shows the
results of running each method 300 times. Voronoi-based
prompting outperforms the other methods, especially if the
active user model is assumed. Periodic prompting suffers
from prompting too much – irritating users – because it
does not consider the current coverage or location estimate.
While the inverse coverage method adapts to increasing global
coverage, it does not do as well as the Voronoi-based meth-
ods. Voronoi-based prompting considers both coverage and
local spatial uncertainty, reducing unnecessary user prompts.
When users provide binds in nearby locations, as assumed
with the active user model, the effectiveness of Voronoi prompt-
ing further increases. Our OIL client asked users to bind in
adjacent rooms, in effect suggesting to users that they adopt
the active user model.

6.3.2 Conveying Spatial Uncertainty

After completing our test deployment, we interviewed par-
ticipants about the Voronoi prompting mechanism. Overall,
the responses were mixed. Of the top two contributors (see
Figure 12) one said the prompts were the main reason that
she made so many binds. She also found the Voronoi re-
gions, as in Figure 3, were useful for quickly locating the
room that she was in as well as assessing how well the tablet
knew her current location. The other top contributor said
that the prompting mechanism had no effect on his behav-
ior. One less active user found the prompting irritating as he
rarely left his office, had little interest in making binds, and
continued to be prompted. Although he could have marked
the unbound spaces surrounding his office as inaccessible, he
did not do so – but he did turn off prompting.



Figure 9: Voronoi-based user prompting signifi-
cantly increases coverage at low user effort as com-
pared to other methods in our simulations. Active
users, who are willing to move to an adjacent un-
bound space to contribute a bind, provide the most
benefit.

Figure 10: After each space’s fingerprint acquires a
sufficient number of binds, detection success signifi-
cantly increases. In addition, conservative detection
(12dB) improved both precision and recall in our
experiments.

These observations suggest that while Voronoi prompting
can be helpful, it could be made more adaptive and person-
alized. For users who make few binds or do not bind when
prompted, the system could prompt them less, whereas the
system could continue to prompt users if it appears to be
advantageous to do so.

6.4 Erroneous Bind Detection
We studied the performance of our erroneous bind detec-

tor. First, we examined the effect of time on the outlier
detection. Next, we evaluated the end-to-end effect on ac-
curacy as we varied the fraction of erroneous binds. Both
evaluations were performed using simulation on organic data
from an earlier OIL deployment, which had 16 users and
lasted for 20 days [35].

6.4.1 Effect of Time on Detection

We used a discrete event simulator to see if erroneous
binds could be detected after each space’s fingerprint con-

Figure 11: Filtering Erroneous Binds. We varied the
fraction pe of erroneous binds given to the system
and computed overall system accuracy.

tained enough binds to measure a valid signal distance to its
physical neighbors. We also varied the clustering threshold
(Section 4.2) to observe its effect on overall detection. At
each round of simulation, a correct bind is taken from the
data set. Before being added to the fingerprint database,
its location is changed to a random one with probability pe,
emulating an erroneous bind. Then, the bind is added to
the fingerprint of the potentially-erroneous space.

Figure 10 shows the precision and recall for conservative
(12dB) and lenient (15dB) thresholds, which correspond to
physical separations of approximately 50 and 125 feet, re-
spectively. Precision is the fraction of truly erroneous binds
detected over all binds. Recall is the fraction of erroneous
binds identified over all erroneous binds. We used pe = 0.1
for this test.

The data show that the bind detection algorithm’s perfor-
mance increases as the fingerprint database becomes more
populated. In detecting erroneous binds for a certain loca-
tion l, initially the algorithm just accepts binds until there is
sufficient information to make an estimate. As fingerprints
of the neighboring spaces become more populated, the al-
gorithm more readily identifies inconsistent binds. In this
sense, the fingerprint database is self-repairing. After 300
rounds, the conservative threshold achieved a precision of
0.85 and recall of 0.68.

6.4.2 Localization Accuracy

We next wanted to examine the effect that different levels
of error-proneness among contributors would have on overall
accuracy. To do so, we varied the fraction of erroneous binds
presented to the system, from none to all wrong, and mea-
sured localization accuracy. Figure 11 shows localization
performance in three cases: an “oracle”(perfect) detector,
our clustering detector, and no detection. The data demon-
strate why filtering out erroneous binds is essential: erro-
neous user input greatly compromises accuracy. The pro-
posed detector enhances localization accuracy by 5–9% over
a wide range of pe. Unsurprisingly, at high error rates, the
algorithm results in low accuracy because the fingerprints of
neighbor locations also contain many erroneous binds.

We are in the process of adding erroneous bind detection
to our live OIL deployment.



Figure 12: Fingerprints per user. Like Wikipedia
and other resources dependent on user contribu-
tions, a handful of users were significantly more ac-
tive contributors than the rest.

6.5 User Participation
We studied the resulting logged binds in order to charac-

terize user behavior. One notable example of an organically-
grown resource is the Wikipedia on-line knowledge reposi-
tory [42]. Previous studies of user-contributed repositories
have described a 1/9/90 classification of users by contribu-
tion level [40]. In our setting, we expected a few users to
perform at least one large-scale survey or to contribute data
nearly everywhere they go. Some users might perform a few
small-scale surveys, for instance walking the corridors on one
floor of their building or providing updates after a change to
the local network. The remaining majority of users might
not contribute any data at all; these“free riders”would enjoy
the service based on the efforts of the more active minority.

While the size of our user study is too small to state con-
clusively that this breakdown of user behavior would persist
at larger scale, we did in fact observe an approximation of
this behavior in the number of fingerprints contributed per
user (Figure 12). Other slices of the data, such as the dis-
tinct spaces covered per user, showed a similar distribution.
Our previous deployment showed the same effect [35].

This suggests that the majority of data used by an organic
location service will not be from a uniform cross-section of
users. Instead, the data will more likely consist of multiple,
overlapping, small-scale amateur“surveys.” That is, because
this 1% will become relatively experienced at contributing
data, their contributions will, in general, be high-quality –
more like those of expert surveyors. A preliminary conclu-
sion is that the majority of the data in the database used
by an organic location service will likely resemble multiple,
overlapping, small-scale surveys. Alternatively, as Reddy et

al. propose, we could alter user prompting and recruiting
strategies based on user geographic and temporal coverage
patterns [29], assuming these patterns could be kept private.
The main advantage of our service is that it can integrate
both kinds of contributions without interfering with the user
experience.

7. RELATED WORK
We review four areas of prior work: RF-beacons and fin-

gerprints, Voronoi diagrams, robustness and clustering, and
user-generated systems, all in the context of localization.

7.1 RF Beacons and Fingerprints
Early work on localization that relied on existing RF in-

frastructure assumed that the location of RF transmitters
was known and fixed. This research centered on determin-
ing a client’s location relative to these beacons. For example,
Hightower et al. focused on removing the need for fixed in-
frastructure through rapid, flexible RF deployments [14]. A
major difficulty in these approaches is that reflection, diffrac-
tion, multipath fading, and the presence of new objects, e.g.

people, often stymied signal models and, in turn, distance
and angle estimates [25]. The RADAR system circumvented
the problems of signal modeling and triangulation by shift-
ing to RF fingerprints [2]. As constructing fingerprints re-
quires a large amount of human effort, methods to reduce the
training burden while maintaining accuracy were proposed,
e.g., by Madigan et al. [24] and Lim et al. [23]. More re-
cent work has focused on ubiquitous alternatives to RF: for
example, power lines [26], cell towers [21, 37], and ambient
optical, acoustic, and motion attributes [1]. Like Krumm
and Platt [20] and Haeberlen et al. [13], we focus on room-
granularity positioning, rather than on gridding methods.

7.2 Voronoi Diagrams
The Voronoi diagram is one of the fundamental geomet-

ric structures in computational geometry and has been used
in many other different fields including computer graphics,
robotics, physics, and sensor networks [9]. In the context of
indoor positioning, Swangmuang and Krishnamurthy used
closely related proximity graphs – Delaunay triangulation,
Gabriel graphs, and relative neighborhood graphs – to ob-
tain an analytical model for the localization error probability
of a given fingerprint [33]. In contrast, we use the Voronoi
diagram to approximate the spatial uncertainty that natu-
rally arises from organic user contributions.

7.3 Robustness and Clustering
As localization using RF infrastructure has become wide-

spread, researchers recently investigated its susceptibility to
spoofing attacks. Chen et al. examined the robustness of
several localization algorithms against signal strength at-
tenuation attacks [7]. Tippenhauer et al. [36] and Saroiu et

al. [30] studied various types of attacks including AP im-
personation and spoofing as well as injection and corruption
of the fingerprint database. Although our focus is on user
input errors, malicious attacks are closely related because,
in both cases, incorrect wireless signals can be entered into
the fingerprint database.

Cluster analysis has been widely used for anomaly detec-
tion. For example, Portnoy et al. use clustering to detect
anomalies in network traffic [27]. Clustering has been used
for several purposes in localization systems: for example,
Swangmuang and Krishnamurthy use it to improve perfor-
mance prediction [34] and Lemelson et al. use clustering as
a measure for error prediction [22]. To our knowledge, clus-
tering has not previously been used to detect erroneous user
input to localization systems.

7.4 Organic Localization
Recently, the idea of relying primarily on user input to cre-

ate a location database has been proposed for both outdoor
and indoor localization. Outdoors, GPS coordinates can be
used to annotate user input and build the fingerprint-to-
place mapping. This process, called wardriving [21], gener-



ates fingerprints that can later be used for location deter-
mination by devices that lack GPS but have WiFi [32, 41].
Wardriving can be considered a form of organic data collec-
tion, but its dependence on GPS limits it to outdoor use.

User input has also been employed in indoor positioning
systems. ActiveCampus [4, 12] uses a prediction-correction
mechanism: first, the system builds a coarse-grained finger-
print, then users can correct a location estimate by providing
a “virtual AP”. OIL is different from ActiveCampus system
in three ways: (1) OIL constructs a fingerprint database
from scratch, relying only on user input; (2) it maintains
probabilistic fingerprints, which are more expressive; and
(3) it works without knowing AP physical locations.

Bolliger [5] developed the RedPin localization system which
uses WiFi, GSM, and Bluetooth as sensing devices. Like
OIL, RedPin does not require an expensive training phase
and generates location fingerprints from user input. Krumm
and Hinckley’s NearMe infers proximity – not absolute lo-
cation – by comparing user-generated WiFi signatures [19].
Barry et al. [3] conducted a year-long study of a user-trained
localization system and showed its utility. None of these
systems addressed challenges associated with organic input,
such as spatial uncertainty and labeling errors.

8. CONCLUSION
While the concept of organically constructing a localiza-

tion system is simple, building a working system in prac-
tice presents significant challenges. This paper addressed
two issues that arise in “growing” an organic indoor loca-
tion system: modeling uncertainty, and handling erroneous
user input. We proposed a method, based on Voronoi di-
agrams, that suggests to active contributors what spaces
around them need coverage, and conveys to all users the
level of localization precision they can expect in their current
vicinity. We also described a method that watches for erro-
neous user contributions and automatically discounts them.
This method, based on outlier detection through cluster-
ing, allows an organic positioning system to maintain its
accuracy over time. We examined the proposed methods in
simulation and through a test deployment. We found that
they contributed positively to coverage, and yielded average
localization accuracy on the order of meters, comparable to
that of survey-driven indoor deployments.

In the future, we plan to continue examining the role of
time in organic indoor localization. In addition to discerning
erroneous binds, our bind clustering method appears gener-
alizable to other problems in organic localization. For ex-
ample, we anticipate using it to detect addition, deletion,
and movement of APs. Another interesting topic would be
to investigate combining contributions from both trusted
and untrusted surveyors. Building on the ActiveCampus
approach [12], less trusted, organic refinements could com-
plement an initial, trusted survey of mostly public spaces.

Acknowledgements

We thank: Nokia Research Center Cambridge for their fi-
nancial support of, and technical engagement with, this ef-
fort; the early adopters in the Stata Center who volunteered
to test the system; and Russell Ryan for his contributions
to the implementation of the OIL server.

9. REFERENCES

[1] M. Azizyan, I. Constandache, and R. R. Choudhury.
SurroundSense: Mobile Phone Localization via
Ambience Fingerprinting. In Proc. MobiCom, pages
261–272, Beijing, China, Sept. 2009.

[2] P. Bahl and V. N. Padmanabhan. RADAR: An
In-Building RF-Based User Location and Tracking
System. In Proc. INFOCOM, pages 775–784, Tel Aviv,
Israel, Mar. 2000.

[3] A. Barry, B. Fischer, and M. Chang. A Long-Duration
Study of User-Trained 802.11 Localization. In
Proc. Mobile Entity Localization and Tracking in

GPS-less Environments, pages 197–212, Orlando, FL,
Sept. 2009.

[4] E. S. Bhasker, S. W. Brown, and W. G. Griswold.
Employing User Feedback for Fast, Accurate,
Low-Maintenance Geolocationing. In Proc. PerCom,
pages 111–120, Orlando, FL, Mar. 2004.

[5] P. Bolliger. RedPin: Adaptive, Zero-Configuration
Indoor Localization. In Proc. Location and Context

Awareness, pages 55–60, Oberpfaffenhofen, Germany,
Sept. 2008.

[6] P. Bolliger, K. Partridge, M. Chu, and
M. Langheinrich. Improving Location Fingerprinting
through Motion Detection and Asynchronous Interval
Labeling. In Proc. Location and Context Awareness,
pages 37–51, Tokyo, Japan, May 2009.

[7] Y. Chen, K. Kleisouris, X. Li, W. Trappe, and
R. Martin. The Robustness of Localization Algorithms
to Signal Strength Attacks: A Comparative Study. In
Proc. Distributed Computing in Sensor Systems, pages
546–563, San Francisco, CA, June 2006.

[8] J. Cussens. Bayes and Pseudo-Bayes Estimates of
Conditional Probabilities and Their Reliability. In
Proc. European Conference on Machine Learning,
pages 136–152, Vienna, Austria, Apr. 1993.

[9] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms

and Applications. Springer, Third edition, 1997.

[10] S. Džeroski, B. Cestinik, and I. Petrovski. Using the
M-Estimate in Rule Induction. Journal of Computing

and Information Technology, 1(1):37–46, 1993.

[11] Ekahau Positioning Engine. http://www.ekahau.com.

[12] W. G. Griswold, P. Shanahan, S. W. Brown, R. T.
Boyer, M. Ratto, R. B. Shapiro, and T. M. Truong.
ActiveCampus: Experiments in Community-Oriented
Ubiquitous Computing. IEEE Computer,
37(10):73–81, 2004.

[13] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys,
D. S. Wallach, and L. E. Kavraki. Practical Robust
Localization over Large-Scale 802.11 Wireless
Networks. In Proc. MobiCom, pages 70–84,
Philadelphia, PA, Sept. 2004.

[14] J. Hightower, R. Want, and G. Borriello. SpotON: An
Indoor 3D Location Sensing Technology Based on RF
Signal Strength. Technical Report UW CSE
2000-02-02, University of Washington, Feb. 2000.

[15] B. Hofmann-Wellenhof, H. Lichtenegger, and
J. Collins. GPS Theory and Practice. Springer, 1997.

[16] P. Jaccard. Étude comparative de la distribution
florale dans une portion des Alpes et des Jura.

http://www.ekahau.com


Bulletin de la Société Vaudoise des Sciences

Naturelles, 37:547–579, 1901.

[17] A. K. Jain and R. C. Dubes. Algorithms for Clustering

Data. Prentice-Hall, 1988.

[18] C. Jernigan, C. Bayley, J. Lin, and C. Wright. Locale.
http://people.csail.mit.edu/hal/

mobile-apps-spring-08/, May 2008.

[19] J. Krumm and K. Hinckley. The NearMe Wireless
Proximity Server. In Proc. UbiComp, pages 283–300,
Nottingham, England, Sept. 2004.

[20] J. Krumm and J. Platt. Minimizing Calibration Effort
for an Indoor 802.11 Device Location Measurement
System. Technical Report MSR-TR-03-82, Microsoft
Research, Nov. 2003.

[21] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. E. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, J. Tabert, P. Powledge, G. Borriello, and
B. N. Schilit. Place Lab: Device Positioning Using
Radio Beacons in the Wild. In Proc. PERVASIVE,
pages 116–133, Munich, Germany, May 2005.

[22] H. Lemelson, M. B. Kjærgaard, R. Hansen, and
T. King. Error Estimation for Indoor 802.11 Location
Fingerprinting. In Proc. Location and Context

Awareness, pages 138–155, Tokyo, Japan, May 2009.

[23] H. Lim, L.-C. Kung, J. C. Hou, and H. Luo.
Zero-Configuration, Robust Indoor Localization:
Theory and Experimentation. In Proc. INFOCOM,
pages 1–12, Barcelona, Spain, Apr. 2006.

[24] D. Madigan, E. Einahrawy, R. P. Martin, W.-H. Ju,
P. Krishnan, and A. S. Krishnakumar. Bayesian
Indoor Positioning Systems. In Proc. INFOCOM,
volume 2, pages 1217–1227, Miami, FL, Mar. 2005.

[25] K. Pahlavan, P. Krishnamurthy, and J. Beneat.
Wideband Radio Propagation Modeling for Indoor
Geolocation Applications. IEEE Communications

Magazine, 36(4):60–65, Apr. 1998.

[26] S. N. Patel, K. N. Truong, and G. D. Abowd.
PowerLine Positioning: A Practical Sub-Room-Level
Indoor Location System for Domestic Use. In
Proc. UbiComp, pages 441–458, Orange County, CA,
Sept. 2006.

[27] L. Portnoy, E. Eskin, and S. J. Stolfo. Intrusion
Detection with Unlabeled Data Using Clustering. In
Proc. ACM CSS Workshop on Data Mining Applied to

Security, Philadelphia, PA, Nov. 2001.

[28] N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The Cricket Location-Support System. In
Proc. MobiCom, pages 32–43, Boston, MA, Aug. 2000.

[29] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. H.
Hansen, and M. B. Srivastava. Using Context
Annotated Mobility Profiles to Recruit Data
Collectors in Participatory Sensing. In Proc. Location

and Context Awareness, pages 52–69, Tokyo, Japan,
May 2009.

[30] S. Saroiu and A. Wolman. Enabling New Mobile
Applications with Location Proofs. In
Proc. HotMobile, Santa Cruz, CA, Feb. 2009.

[31] SketchUp. http://sketchup.google.com.

[32] Skyhook Wireless. http://www.skyhookwireless.com.

[33] N. Swangmuang and P. Krishnamurthy. Location
Fingerprint Analyses Toward Efficient Indoor

Positioning. In Proc. PerCom, pages 100–109, Hong
Kong, Mar. 2008.

[34] N. Swangmuang and P. V. Krishnamurthy. On
Clustering RSS Fingerprints for Improving Scalability
of Performance Prediction of Indoor Positioning
Systems. In Proc. Mobile Entity Localization and

Tracking in GPS-less Environments, pages 61–66, San
Francisco, CA, Sept. 2008.

[35] S. Teller, J. Battat, B. Charrow, D. Curtis, R. Ryan,
J. Ledlie, and J. Hicks. Organic Indoor Location
Discovery. Technical Report CSAIL TR-2008-075,
Massachusetts Institute of Technology, Dec. 2008.

[36] N. O. Tippenhauer, K. B. Rasmussen, C. Pöpper, and
S. Čapkun. Attacks on public WLAN-based
positioning systems. In Proc. MobiSys, pages 29–40,
Kraków, Poland, June 2009.

[37] W. ur Rehman, E. de Lara, and S. Saroiu. CILoS: a
CDMA Indoor Localization System. In
Proc. UbiComp, pages 104–113, Seoul, Korea, Sept.
2008.

[38] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The
Active Badge Location System. ACM Transactions on

Information Systems, 10(1):91–102, 1992.

[39] E. Whiting, J. Battat, and S. Teller. Generating a
Topological Model of Multi-Building Environments
from Floorplans. In Proc. Computer-Aided

Architectural Design Futures, pages 115–128, July
2007.

[40] S. Whittaker, L. G. Terveen, W. C. Hill, and
L. Cherny. The Dynamics of Mass Interaction. In
Proc. CSCW, pages 257–264, Seattle, WA, Nov. 1998.

[41] Wigle: Wireless Geographic Logging Engine. http://
wigle.net.

[42] Wikipedia. http://www.wikipedia.org.

http://people.csail.mit.edu/hal/mobile-apps-spring-08/
http://people.csail.mit.edu/hal/mobile-apps-spring-08/
http://sketchup.google.com
http://www.skyhookwireless.com
http://wigle.net
http://wigle.net
http://www.wikipedia.org

	Introduction
	Background
	Fingerprint-based Localization
	Bayesian Localization

	Expert vs. Organic Surveying
	System Overview

	Voronoi-based User Prompting
	Spatial Uncertainty
	User Prompting Algorithm

	Filtering Erroneous User Input
	Erroneous Bind Detection
	Clustering Threshold Tuning

	Implementation
	Server
	Building Fingerprints and Voronoi Diagrams
	Fingerprint Pre-Fetching

	Client
	Data collection and sharing

	Localization Algorithm

	Evaluation
	Test Deployment
	System Utility
	Voronoi-based User Prompting
	Improving Coverage Rates
	Conveying Spatial Uncertainty

	Erroneous Bind Detection
	Effect of Time on Detection
	Localization Accuracy

	User Participation

	Related Work
	RF Beacons and Fingerprints
	Voronoi Diagrams
	Robustness and Clustering
	Organic Localization

	Conclusion
	References



