A Methodology for Geometric Algorithm Development

Seth J. Teller

ABSTRACT

Much current development of geometric algorithms is performed in a batch fashion, even though
the algorithms themselves are often intended for highly interactive and visual applications. This
predominance of batch techniques has resulted in lessened intuition about, experimentation
with, and productivity of geometric algorithms.

We describe a methodology for the development of robust geometric algorithms. First, we
propose that algorithm development should be, and can be, performed in a visually and in-
teractively rich environment, and that this environment facilitates robustness, intuition, and
pedagogy. We relate some experience that bolsters our claims of increased robustness. Second,
we argue that geometric computations should be designed to “prove” the validity of their con-
clusions to the practitioner via data objects called geometric witnesses that have direct visual
representations. Third, we show that an interactive “template” program for algorithm devel-
opment is easy to construct on currently available workstations, and that it is well worth it
to do so. Finally, we enumerate several other development principles, touching on interaction
techniques and the use of temporal coherence to detect subtle algorithmic flaws.

Key Words: Algorithm visualization, geometric computation, robustness, interaction tech-
niques, geometric witnesses.

1 INTRODUCTION

Practitioners of computer graphics, computational geometry, computer-aided geometric design,
and related fields routinely design, implement and use sophisticated geometric algorithms.
In contrast to the eventual ways in which these algorithms are used (typically in complex
modeling or geometric visualization or simulation applications), the environments in which
such algorithms are implemented are often relatively unsophisticated. One reason for this
phenomenon may be that interaction techniques are widely (and erroneously) thought to be
“expensive;” that is, to require many person-hours of implementation effort and an expensive
hardware platform. Thus the activities of implementing the components of the system, and of
using the system, tend to remain separate in practice.

Geometric Algorithms Are Often Developed in Batch Mode

A specific example of the problem might be a computational geometry practitioner developing
a convex hull algorithm. The practitioner writes an algorithm that reads a file of input points,
computes the convex hull, and writes a textual representation of it to another file. This file is
then read by another program that displays the points and the hull described in the file. If a
problem is observed, the code is modified, and another iteration of execution and inspection
begun.

This procedure is essentially a batch computation, since it runs from start to finish with no

interaction. The convex hull algorithm has no access to the graphical environment in which
the algorithm is “used” (i.e., its output displayed). This separation tends to have at least
two deleterious effects. First, the slowness and rigidity of the development process tends to
discourage experimentation and intuition. Second, algorithms developed in this manner tend
to have bugs that show up “later” than is desirable (e.g., after the algorithm is subsumed
into some larger application), for the simple reasons that relatively few test inputs to the
algorithms are generated and exercised, and the algorithm is not tested in the fashion in which
it will be used (i.e., repeatedly). Since exhaustive enumeration of all inputs is computationally
infeasible, even if systematic or randomized testing is performed, there is no reason to suppose
that it will find troublesome input cases. In short, batch computations discourage intuition
and experimentation.

A New Way of Developing and Testing Geometric Algorithms

In this paper we propose that the design and use of geometric algorithms be combined in a
single interactive environment. By this, we do not mean that development and application
tools be combined into one monolithic application, but rather that algorithm development
should be, and can be, performed in a visually and interactively rich environment. Moreover,
the availability of such an environment makes possible a novel methodology for algorithm
development. We have constructed an algorithm visualization system in which the practitioner
interacts with visual representations of the input and output of a geometric algorithm, which is
re-invoked whenever the input is modified (Figure 1). The environment was straightforwardly
constructed on an existing workstation, and is a “template”; it can be easily reused whenever
a new geometric algorithm is to be developed.

geometric programmatic link - geometric
input algorithm
selection
modification
ractitioner visual
P view transformation representation

Figure 1: The interaction model. The practitioner modifies the geometric inputs through
selection and direct manipulation. The visual representations of both inputs and outputs are
displayed and inspected via directly-manipulable viewing transformations.

Specific Recommendations for Practitioners

Interactive operation allows efficient, high-level directed search of a many-dimensional input
space, and (with suitable techniques such as alignment and snapping (Bier 1990) allows easy
generation of highly degenerate input. The combination of these techniques probably bests
stochastic or (non-exhaustive) systematic search of the input space, since it can be interactively
directed by the practitioner.

In addition to our recommendation that batch techniques be replaced by interactive methods,
we make the following recommendations:

e Geometric Witnesses. Geometric computations should be designed to prove their
conclusions with visually representable data objects. These objects should be computa-
tionally verifiable by some agent other than the original algorithm.

e Integrated Development and Use. While under development, The algorithm inputs
should be manipulated with a user interface at least as sophisticated as that of the
algorithm’s intended application.

e Interaction techniques. All geometric inputs should be mapped to a directly ob-
servable and manipulable representation. Moreover, the space embedding the problem
instance should be directly manipulable (i.e., via viewing transformations). Interaction
should be direct and non-modal to the extent possible. This allows any aspect of the
input to be examined, regardless of scale or position.

e Data Invariants. Valid properties of data should be checked at input and enforced by
all subsequent operations to maintain a correctness invariant.

e Temporal Coherence. A rapid succession of interactively generated images allows
the visual system to detect errors that are almost impossible to notice in single-frame
renderings.

We argue that the construction of a simple, but powerful, interactive environment, and the
adoption of these principles regarding algorithm design, visualization, and interaction tech-
niques, will substantially improve the practitioner’s intuition about geometric algorithms, and
the robustness of the algorithms themselves. Moreover, we argue that the general opinion of
interactive environments as “too hard” to construct is in error, and perhaps due more to the
enormous amount of bad system software than to reality.

Geometric Algorithm Development is Analogous to Scientific Visualization

Other investigators have developed interactive systems that are used, for example, to visualize
scientific data. A strong analogy can be made between scientific visualization and interactive
algorithm development. Scientific visualization is a method by which attributes of complex data
are transformed into a visual or aural representation. The primary goal of the representation
is to make these data primarily accessible to the high-bandwidth sense organs of a human
observer, in order that the physical processes by which the data are generated can be better
understood. Analogously, interactive algorithm development and inspection is a technique
in which a space of algorithm inputs is navigated and continuously subjected to a geometric
computation — the algorithmic process. The goal of the interaction is to understand, verity,
and perhaps extend the computation. The computation is the analogue of the physical process.

Motivation From a Real-World Visual Simulation System

Our need for robust geometric algorithms operating on real-world data arose as part of a group
development effort of a system for constructing and simulating extremely complex architectural
models (described extensively in Teller, 1991; Khorramabadi, 1991; Funkhouser, 1992; Teller,
1992b). The system, based on a techniques for three-dimensional spatial subdivision, visibility
computation and database management, achieves interactive display rates for models that,
without such techniques, would require several seconds or even minutes to render even on the
fastest workstations currently available. The fact that the algorithms are in daily use for actual
design, evaluation, modification, and visual simulation of a complex architectural model served
as a strong incentive to make the algorithms quite robust.

This paper presents several examples of the use of the proposed methodology during the con-
ception, development, and verification of complex geometric algorithms. Throughout, the
examples illustrate the value of a graphical environment in visualizing the operation of an in-
teractive geometric algorithm, and how this visualization affords verification that the algorithm
is operating correctly.

Geometric Witnesses

The notion of “geometric witnesses” is central to the methodology that we propose. The term
“witness” has long been used among computational geometers to connote a data object that
evinces the outcome of a geometric computation. These computations are typically existence
computations, in that they determine (for a given input) whether or not there exists a geometric

datum satisfying some collection of constraints. Perhaps the simplest example of a geometric
witness occurs for the computation of an intersection between two line segments in the plane.
If the segments intersect, a witness to their intersection is a point lying on both segments. If
the segments do not intersect, a witness to this fact is a line separating the two input segments.
In either case, the witness serves as visual “proof” that the answer computed by the algorithm
is correct. Moreover, the witness can be computationally verified by an agent other than the
intersection routine: the witness point can be compared against the interiors of the input line
segments, or the two halfspaces of the witness separating line can be compared against the
segment endpoints.

Many of the details of the geometric algorithms developed for the walkthrough system are
outside the scope of this paper. However, the algorithms can be characterized by the fact
that they require geometric input and produce geometric output. The geometric libraries
were developed using an interactive graphics environment that supplies a uniform interface
for algorithm inspection. A template graphics program operates solely in terms of a “region
of interest” (typically a 3D bounding box), and arranges this area as the graphical center of
attention, by default. To be useable in this template, a data object need only be able to report
its bounding region. At run time, this region appears centered in the window, scaled to a
reasonable window-filling size, with reasonable perspective, and preserved aspect ratio. The
environment then enters a standard command loop in which the area of interest can be scaled,
rotated, and translated via mouse actions. The command loop also supports selection and
modification actions, which depend on the dimensionality and type of the input.

2 THE WALKTHROUGH SYSTEM

The architectural simulation system takes as input a building model consisting of a set of
large planar polygonal occluders, and a set of bounding volumes of complex detail objects
(Khorramabadi 1991; Teller 1991; Funkhouser 1992; Teller 1992b). The occluders represent
the gross structural detail of the building, whereas the detail objects represent complex entities
such as personal items and furnishings, which typically cause little occlusion. The space of
the model is then partitioned into convex cells, and any non-opaque portions of shared cell
boundaries are explicitly represented as convex portals (Figures 2 and 3). Each portal stores
with it an identifier for the cell to which the portal leads. We call a spatial subdivision with
explicitly enumerated portals a conforming spatial subdivision.

8
. 1 il
8 \
8 | \
» 1
——— 1 '|
| \
8 i W\
R 1 |
8 |]
8 1 1
> 1
R |
: 8 i
- 0 L
H G [
=) L
% é&" !
: |

Figure 2: A conforming spatial subdivision in Fisure 3: A conforming spatial subdivision

2D, and its corresponding adjacency graph.
Portals are (dashed) line segments. An ob-
server is schematically represented at the
lower left, and a sightline (broken) stabs a
portal sequence of length three.

with five convex cells in 3D. Occluders are
rendered as gray polygons. Four convex
polygonal portals (the white central areas in
each subdivision plane) are shown.

The cell and portal abstraction for the spatial subdivision is effectively a directed graph whose
vertices are cells, and whose edges are portals. A number of useful static (observer-independent)

and dynamic (observer-dependent) visibility computations can be framed as constrained depth-
first searches (DFS) of this graph. For example, if a given portal is treated as a light source,
then the region illuminated by this light source in the remainder of the subdivision constitutes
an upper bound on the visibility of an observer situated on or behind the plane of the portal.
This “antipenumbral” region (Teller 1992a) is exactly the bundle of lines that stabs, or pierces,
all portal sequences originating at the light source (Figure 4).

Data Invariants

Note that the construction of a valid spatial subdivision amounts to enforcing a data invariant
on the input model, in that during construction, all overlapping and interpenetrating polygons
are found, as are any gaps or cracks between polygons. FErrors found at this stage can be
reported and/or corrected; the “correctness” (manifold properties) of the model can therefore
be ensured at the beginning of the program, and assumed by all further operations.

Figure 4: The regions visible to an observer constrained to the leftmost cell.

Since the illuminated region is an upper bound on visibility, only objects whose bounding
volumes are spatially incident on this region can possibly be visible to an observer known to
be in the source cell. In sufficiently occluded environments, therefore, significant rendering
accelerations can be achieved by an offline computation of potentially visible object sets for
each cell of the spatial subdivision. During a later interactive phase, the precomputed visibility
data is retrieved and subjected to a more discriminating dynamic culling operation based on the
known position and field of view of the observer. Only the objects surviving this cull need be
rendered. These objects typically form a small fraction of the entire model data; we achieved
rendering speedups of about one hundred using a model of a seven-story structure with an
atrium, terraced balconies, scores of hallways, hundreds of rooms, thousands of textures and
detail objects, and nearly a million individual polygons (Khorramabadi 1991; Funkhouser 1992;
Teller 1992b).

3 A CASE STUDY

Our development environment consisted of Silicon Graphics workstations with varied comput-
ing and graphics capabilities. A shared repository of geometric libraries comprised routines for
manipulating: points, vectors, planes, hyperplanes, etc.; linear programs of general dimension;
planar convex polygons; convex polytopes of general dimension; spatial subdivisions; stab-
bing problems; and visibility data structures. Routines were designed and implemented for
two-, three-, and higher-dimensional operands as needed. This paper is concerned with the

development of spatial subdivision abstractions and dynamic visibility computations, which
are discussed below.

The hardware platform provided a C-language interface, the “SGI GL” or graphics library, for
operations such as: specification of perspective and modeling view transformations; simulated
point light sources; immediate-mode issuance of drawing commands for such primitive objects
as points, wires, and polygons. Rendering is typically double-buffered for smooth animation,
although single-buffering and immediate-mode graphics are sometimes useful. The hardware
and software also support a graphical selection operation in which objects rendered near the
mouse position could be reported to the application.

Dynamic Eye-Based Culling

The dynamic culling operation is an interactive and highly geometric computation. Given a
model and spatial subdivision, and an instantaneous observer position and field of view, the
dynamic culling operation must compute the set of cells and detail objects potentially visible
to the observer. Moreover, the dynamic culling operation must complete in time comparable
to interactive frame rates: about one twentieth of a second. In the remainder of this paper,
the dynamic culling algorithm is used as an illustrative vehicle for our recommendations about
algorithm development.

The precomputation of antipenumbral bundles has only approximate knowledge of the observer
position, and can therefore produce only gross upper bounds on the visibility of any particular
observer. During the real-time walkthrough phase, however, the simulation system tracks the
precise instantaneous position and field of view of the observer. The observer variables can be
modeled as an eye-centered view pyramid, defined as the common interior of four halfspaces
in three dimensions (Figure 5). In the context of algorithm inspection, the observer variables
form the algorithm input; the set of potentially visible objects form the algorithm output.

azimuthal opening angle
up vector

eye symmetry axis
(view direction)
altitudinal

opening angle

Figure 5: The observer variables in three dimensions.

Linear Programming

The dynamic culling operation employs a constrained depth-first search of the subdivision
graph. A list of constraints is initialized to the four halfspaces whose intersection is the view
frustum. The source cell is placed on a stack, and a recursive search begins. Fach portal
leading out of the current cell is considered in turn. Each portal edge encountered contributes
a single linear constraint to the sightline specification; the edge and the eye span a plane, whose
orientation is chosen so that its positive halfspace contains the interior of the associated portal
(Figure 6). The DFS advances recursively only as long as the current portal sequence admits
a sightline through the eye.

These constraints are cast as a two-dimensional linear program as follows. If the k'* plane
constraint has normal nj;, any stabbing line through the eye and the active portal sequence
must have a direction vector v such that

ng-v >0, for all k.

Note that the linear program is two-dimensional since all of the planes contain the eyepoint;
therefore, we need only compute a vector that has a non-negative dot product with each

dfs termination
4—/‘

Figure 6: Encountering a portal in the eye-to-cell DFS.

of the plane normals. We examine this collection of three-coefficient linear constraints for a
feasible solution in linear time using a linear programming algorithm (Seidel 1991). If the linear
program fails to find a stabbing line through the eye, the most recent portal is impassable, the
reached cell is not visible through the current portal sequence, and the active branch of the
DFS terminates.

Otherwise, the cell is at least partially visible; its contents (the incident detail objects) are
then examined for sightlines. Recall that only the axial bounding boxes of objects are retained.
Convex objects always have convex silhouettes; in the case of axial boxes, the silhouette edges
are easily obtained via a table-lookup of the eye position. Generically, a cube has a hexagonal
silhouette; again, each silhouette edge spans a plane with the eye, oriented so as to contain the
object centroid in its positive halfspace. The augmented set of linear constraints is examined
for a sightline using linear programming, as before.

Geometric Witnesses for Linear Programming

We wish to define geometric witnesses for both the success and failure cases in the DF'S;
i.e., geometric “proot” data for the instances in which eye-based sightlines do and do not
exist. The witness for the success case is straightforward: the linear program computes and
returns a vector whose inner product with all of the active constraints is positive (this can be
straightforwardly checked by examining this product for each active constraint). The witness
in this case has an obvious visual representation: a line segment, originating at the eye, and
ending at the plane of the newly encountered portal (Figure 10).

The witness for the failure case is slightly more complex. We must consider the linear pro-
gramming algorithm (the discussion here follows that of Seidel 1991). The algorithm is given
a set hjy of halfspaces, and a linear objective function to minimize. Recursively, the algorithm
removes a halfspace H from the set, and computes the optimum with respect to the remaining
halfspaces. The removed halfspace is then replaced, and the computed optimum is examined
with respect to this halfspace. If the optimum is in the halfspace, we are done. If it is not,
then, if there is any feasible solution, there must be a solution on &, the bounding hyperplane
of H (this is true by convexity of the feasible region). Thus, the algorithm projects the ac-
tive constraints onto h and solve the d — 1-dimensional linear program there. Infeasibility is
established when the algorithm projects to a one-dimensional problem instance and the active
constraints are found to be infeasible. For our problem, this means that three constraints are
necessary: one that is the current subspace, and two that together produce an infeasible region
in this space.

Visual Representations and Visual Correctness

Figure 7 depicts the dynamic eye-based culling operation as seen from “outside” of the model,

i.e., above the room containing the observer (backfacing polygons have been removed so that
we can see through the ordinarily opaque walls and ceiling). Note the visual representations
of the observer, a one-eyed stick-figure, and the instantaneous view frustum, emanating from
the center of the observer’s head. Portals are depicted as x shapes. The window portal is
successfully stabbed by a sightline through the eye and inside the view frustum. The object
bounding boxes shown are those surviving the eye-based visibility cull (the objects’ many
constituent polygons are not displayed as they are irrelevant to the culling operation).

Figure 7: An outside view of the point ob- Figure 8: The point observer’s view. Note
server. contracted view frustum.

Figure 8 shows the same situation, from the point of view of the observer. The window portal,
and the object bounding boxes shown, are clearly incident on the view frustum. However, the
view frustum is displayed so that it does not fill the display window. This is so that, from the
inside view, we can ascertain visually that A) portals and objects outside the view frustum
are discarded, as desired, and B) no portals or objects outside the view frustum are traversed.
This is difficult to do from the outside view, and would be impossible from the observer’s view
if the frustum were to fill the display window (as it does in the intended application).

Figure 9: Objects failing the cull are drawn Figure 10: The outside view, with witness
in wireframe. object sightlines.

Figure 9 illustrates the utility of the contracted view frustum. Objects surviving the visibility
cull are drawn as solid parallelepipeds, whereas objects failing the visibility cull are drawn in
wireframe. The witness for the failure case is three edges, where one edge defines an extremal
edge of the visible region, and two further edges show that there are no feasible points on that
edge. One such witness is shown for the wireframe object at the lower left; the leftmost edge of
the view frustum is constraint on which the recursive linear programming algorithm “bottomed
out,” and the oppositely directed (horizontal) edges clearly exclude any feasible points on this
edge. The three witness edges are rendered as thick white line segments.

The correctness of the visibility cull is evident; all wireframe objects are outside of the view
frustum. Finally, Figure 10 shows the outside view of the same situation. The wireframe
objects are again seen (the witness from the previous figure is visible as a white line segment
on the top of the wireframe object at lower left). For each object surviving the cull, a witness
sightline is drawn from the observer to some point on the object (in Figure 9, each sightline
appears as a single pixel, since it necessarily contains the eye).

We distinguish the technique of outside/inside views presented above from traditional “multi-
view” systems. In traditional systems, some dataset is traversed with different display routines,
and the resulting differing visual representations are simultaneously displayed. The technique
above is subtly different, in that the traversal (i.e., culling and rendering) routine that generates
the pictures is ezactly identical in both cases; only the viewing transformations differ. This
means that the resulting visual representations must agree. This ensures consistency of repre-
sentations in a somewhat stronger sense than does a traditional system, which must arrange
that differing traversal codes produce isomorphic representations of the traversed data.

Temporal Coherence

The above figures represent a single observer position out of the many thousands generated by
a typical interaction session with the walkthrough system. When many successive positions on
the observer’s path are considered, a new and useful phenomenon becomes evident: temporal
coherence. The human visual system is extremely sensitive to sudden changes in the visual
field. In ordinary human experience, objects tend to change position and appearance slowly
and smoothly. Therefore, we are well-equipped to detect transient or rarely-occurring errors
in geometric algorithms, simply by changing the input smoothly, and watching the output for
non-smooth behavior. We found several important errors in exactly this manner, when a user
of the system noticed objects within the view frustum “flashing” on and off in the visual field.
Moreover, scripting of the user’s path allowed the error to be reliably reproduced.

During the constrained depth-first search, each portal edge encountered gives rise to a halfspace
spanned by that edge and the eye (cf. Figure 6). These halfspaces can be drawn explicitly, for
example as shaded triangles. However, there is a more effective way to visualize their aggregate
effect. When the DFS successfully arrives at a cell, a single portal sequence (and thus set of
halfspaces) is active. These halfspaces are appended to the list of halfspaces bounding the
reached cell, and their common intersection is computed (using a standard three-dimensional
convex hull algorithm). The result is a necessarily convex volume that bounds the region of the
reached cell potentially visible to the observer through the active portal sequence (Figure 11).
Computing and drawing these convex regions in real time gives a powerful visual confirmation
that the DF'S is operating correctly, and that the correct potentially visible regions are being
enumerated by the dynamic culling algorithm.

Robustness

As a piece of evidence that the techniques proposed here actually help to make code more
robust, we relate the following experience. In our system, there are several versions of libraries
to compute the convex hull of a set of points in three dimensions. Each of the libraries functions
differently, but is encapsulated by a code “wrapper” that presents a uniform interface to the
calling code. This wrapper code also performs consistency checks on the hull data structure,
checking for example that it satisfies Euler’s relation (V — E 4+ F = 2), that every edge is
shared by two faces, that every vertex is used (referenced) by at least three faces, etc. If the
computed data structure does not pass all of these tests, an error bit is set in the hull data
structure. When the hull is later drawn, its color is overridden and set to bright red to indicate
the existence of the error. This visual cue alarms the practitioner, and the problem can be
isolated.

After (an estimated) several hundred thousand interactive invocations of the convex hull code,
a list processing bug became apparent, in code that had been used by “fifty people around the
world” and was said to be “bug-free,” i.e., to handle all possible inputs correctly (O’Rourke

Figure 11: The polyhedral regions potentially visible to the observer.

1992a); this was a reasonable statement to make, because the algorithm operates in integer
coordinates. The author of the code explained:

Found the bug and fixed it. It was.... a basic list-processing bug, which I wonder
if now is not elsewhere in the code. The vertex list at a certain point consists of
(0,6,5,4,3,2,1), and 0 and 6 are marked for deletion. The loop deletes 0, but since
0 is the head, the head gets changed to 6, and the loop [terminates].... so 6 never
gets deleted.

This bug turned out to be very subtle, and had gone undetected by scores of other users of the
code. We claim that it was found largely because of the particular interactive fashion in which
the code was exercised.

Interaction Techniques

Finally, it is worthwhile to examine the method by which the algorithm developer generates ob-
server positions from the “outside” view. Figures 12 through 14 show three successive observer
positions, fields of view, and dynamic cull results. The observer is depicted as a stick-figure
and frustum as before. The observer’s position in the architectural model is derived from the
mouse position by intersecting a line from the eye to the mouse (in model coordinates) with
a horizontal plane containing the last-known observer position (the graphics library makes the
aggregate viewing transformation constantly available, so the conversion of the line to model
coordinates requires a 4 x 4 matrix inversion). The observer’s field of view is derived by com-
puting a weighted average of the mouse-motion vector with the current view-direction, using a
small adjustable coefficient (usually about 0.05) for the mouse term. Thus the observer’s view
direction smoothly and exponentially relaxes to the predominant direction of mouse motion,
and the observer can be directed anywhere in the model by the developer. Finally, the inter-
face is slightly modal in that, when an interesting user position is found, it can be “frozen”
with a key-press; further mouse motion does not change the observer position, and can be
used, for example, to effect view transformations. This freeze technique was used to generate
Figures 7 through 10; the inside/outside views were toggled via a key-press, or they can be
simultaneously displayed.

Figure 12: Frame A. Figure 13: Frame B. Figure 14: Frame C.

CONCLUSION

Practitioners can develop robust geometric algorithms more effectively by transferring inter-
active functionality typically found only in applications to graphical environments used for
algorithm development and inspection. We discussed some simple but important elements of
a successful algorithm visualization framework, and presented some examples of the use of
each element. This system was used to develop a robust architectural simulation application
that depends on the correct operation of many non-trivial complex geometric algorithms. We
maintain that these algorithms were much easier to develop and verify using the proposed in-
teraction techniques than they would have been otherwise, and that the interaction techniques
were employed for little incremental effort over that needed to develop the geometric algorithms
themselves.

ACKNOWLEDGMENTS

The author is grateful to Carlo Séquin and to Ari Rappoport for their encouragement and
helpful comments.

The general-dimensional linear programming code was supplied by Michael Hohmeyer of U.C.
Berkeley from a description in (Seidel 1991). The fast three-dimensional convex hull code was
adapted from integer code supplied by Joe O’Rourke of Smith College (O’Rourke 1992).

BIBLIOGRAPHY

Bier, E (1990) Snap-dragging in three dimensions. In: ACM Symposium on Interactive 3D
Graphics, pp 193-204.

Funkhouser, T, Séquin, CH, Teller, SJ (1992) Management of large amounts of data in inter-
active building walkthroughs. In: Proc. 1992 Workshop on Interactive 3D Graphics, pp
11-20.

Khorramabadi, D (1991) A walk through the planned CS building. Technical Report UCB/CSD
91/652, Computer Science Department, U.C. Berkeley.

O’Rourke, J (1992a) Personal Communication, November 1992.

O’Rourke, J (1992b) Computational geometry in C: Chapters 3 & 4 convex hulls. Technical
Report TR # 017, Department of Computer Science, Smith College.

Seidel, R (1991) Small-dimensional linear programming and convex hulls made easy. In:
Discrete and Computational Geometry, pp 423-434.

Teller, SJ (1992a) Computing the antipenumbra cast by an area light source. In: Computer
Graphics (Proc. SIGGRAPH °92), 26(2):139-148.

Teller, SJ (1992b) Visibility Computations in Densely Occluded Polyhedral Environments.
PhD thesis, Computer Sciences Department, U.C. Berkeley.

Teller, SJ and Séquin, CH (1991) Visibility preprocessing for interactive walkthroughs. Com-
puter Graphics (Proc. SIGGRAPH ’91), 25(4):61-69.

Seth J. Teller is currently a postdoctoral re-
searcher in the Institute of Computer Science
at the Hebrew University of Jerusalem. His
research interests include computer graphics
and computational geometry. Teller received
his BA in Physics from Wesleyan University
in 1985, and his MSc and PhD in Computer
Science from the University of California at
Berkeley in 1990 and 1992, respectively. He
has also been a part-time member of the
Research and Development group at Silicon
Graphics since 1988.

Address: Institute of Computer Science,
Hebrew University of Jerusalem, Givat Ram,
Jerusalem, 91904, Israel. Phone: +972-
585867; Fax: +972-585439.

