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Abstract

We describe a dataset of several thousand calibrated,

geo-referenced, high dynamic range color images, ac-

quired under uncontrolled, variable illumination in an

outdoor region spanning hundreds of meters. All im-

age, feature, calibration, and geo-referencing data are

available at http://city.lcs.mit.edu/data.

Calibrated imagery is of fundamental interest in a

wide variety of applications. We have made this data

available in the belief that researchers in computer

graphics, computer vision, photogrammetry and digital

cartography will find it useful in several ways: as a test

set for their own algorithms; as a calibrated image set

for applications such as image-based rendering, met-

ric 3D reconstruction, and appearance recovery; and

as controlled imagery for integration into existing GIS

systems and applications.

The web-based interface to the data provides inter-

active viewing of: high-dynamic-range images and mo-

saics; extracted edge and point features; intrinsic and

extrinsic calibration, along with maps of the ground

context in which the images were acquired; the spatial

adjacency relationships among images; the epipolar ge-

ometry relating adjacent images; compass and absolute

scale overlays; and quantitative consistency measures

for the calibration data.

1. Introduction

This paper describes data produced by a system for
calibrated, terrestrial image acquisition in urban areas.
The system is end-to-end, in the sense that it acquires
uncalibrated images as input, and produces accurately
calibrated, geo-referenced images as output, with no
human interaction other than operation of the sensor.

Four key ideas distinguish our approach [27] from
other methods. Every image is annotated with an ab-
solute, GPS-based position estimate as it is acquired,
enabling efficient discovery of adjacent (and likely re-

lated) images in subsequent processing. The sensor
acquires omni-directional images for more robust re-
covery and accurate estimation of scene structure and
camera motion. Probabilistic, projective uncertainty
models are used throughout the system to represent
noisy features and camera pose. Finally, all of the sys-
tem’s algorithmic components have asymptotically lin-
ear time and space requirements, enabling their appli-
cation to very large datasets. Detailed descriptions of
the system, sensor, and processing components can be
found elsewhere [25, 26, 11, 12, 10, 6, 7, 27].

An extensive collection of calibrated, high dynamic
range (HDR) image data produced by the system is
now available for interactive viewing and download
at http://city.lcs.mit.edu/data. We envision at
least three ways in which the data may be useful to
other researchers. First, the uncalibrated imagery (i.e.,
raw sensor data) can be used as a test dataset by other
researchers developing intrinsic or extrinsic calibration
methods. Second, the registered imagery (i.e., data
produced by our registration algorithms) can be used
in a variety of applications including image-based ren-
dering, scene reconstruction and texture estimation. In
either context, the scale and extent of the data should
pose an interesting collection of challenges. Finally,
geo-referenced (Earth-relative) extrinsic calibration en-
ables the imagery to be readily incorporated into a vari-
ety of existing GIS and digital cartography applications
(e.g. OpenGIS [4], TerraServer [5], and the National
Spatial Data Infrastructure [3]).

The paper is organized as follows. Section 2 de-
scribes the acquisition and processing stages used to
produce the dataset. Section 3 describes several quan-
titative consistency measures for the image metadata.
Section 4 describes a web interface to the dataset. (In-
formation about file formats and organization is de-
ferred to an Appendix, and documented on-line.) Sec-
tion 5 describes existing acquisition methods for geo-
referenced imagery. Section 6 summarizes the contri-
butions of the paper.



2. Acquisition and Processing Stages

The sensor, consisting of an actuated pan-tilt head
and navigation instrumentation [10], is deployed in ses-
sions typically lasting a few hours each. The operator
repeatedly positions the sensor and initiates node ac-
quisition. A node is a set of images with common opti-
cal center, acquired under pure rotation of the pan-tilt
head from a stationary platform. After each session,
the sensor is returned to the lab where the data is up-
loaded and subjected to a series of processing stages
culminating in a geo-referenced image dataset. The
remainder of this section describes the steps involved.

2.1. Intrinsic Calibration

We use a fixed lens for each session, but small vari-
ations in lens attachment, temperature, etc. can per-
turb intrinsic parameters, requiring re-calibration. At
the start of each acquisition session, several images are
taken of a calibration pattern to produce initial esti-
mates of the camera intrinsics and the radial lens dis-
tortion parameters. We use a public-domain implemen-
tation of Zhang’s calibration algorithm [29] to estimate
the camera’s focal length, aspect ratio, skew, center of
projection, and the first and second radial distortion
parameters.

2.2. Photometric Calibration

The amount of light entering the camera varies as
the reciprocal of f2, where the f -number is the ratio
of focal length to aperture diameter. A second off-line
calibration step recovers an absolute radiance level for
each HDR pixel value, as a function of shutter aperture,
up to a single absolute scale factor [14]. This allows
image pixels acquired through different apertures to be
compared. (Dependence on exposure time is removed
by the HDR calibration process.)

Absolute radiance calibration need be done only
once for a particular camera CCD. For calibration we
expose it to a bright indoor light source (not the sun)
and acquire a HDR image, then set an absolute radi-
ance scale such that the brightest pixel value maps to
1.0 (i.e., zero on a log scale). Dark image calibration is
not necessary since the magnitude of heat noise at our
longest exposure time (1/10th second) is insignificant.
A pixel value of zero is under-saturated and does not
have a valid radiance value; such pixels are ignored in
further processing. In practice very few such pixels are
present in the data set, since images are acquired in
daylight.

2.3. Mosaic Tiling Design

A rough estimate of focal length suffices to design
the mosaic, or tiling pattern, which covers a portion of

the sphere during omni-directional image acquisition.
An off-line program generates a series of camera ori-
entations (i.e., azimuth and altitude settings for the
sensor pan-tilt head) which tile the sphere while ensur-
ing sufficient overlap for the mosaic generation process
(Figure 1). The tile generator also writes the image
adjacency graph to an ASCII file for use by the mosaic
generation process.

Figure 1. A node tiling, and the resulting mosaic.

2.4. HDR Image and Metadata Capture

The camera is attached to a verniered mount, ad-
justed so that the pan-tilt head’s center of rotation co-
incides with the camera focal point. At each head posi-
tion, the camera captures one tile of the image mosaic
at multiple exposures. Several frames with the same
exposure time are averaged to reduce image noise. The
resulting images are combined on the sensor platform
to produce a high-dynamic-range (HDR) image [14],
which is stored in a log-radiance format [20].

The sensor platform annotates every acquired HDR
image with a camera descriptor, date- and time-stamp,
camera intrinsics and estimated Earth-relative position
and orientation [10]. The absolute pose estimates are
typically accurate to a few meters of position and a
few degrees of orientation, but can be worse when GPS
conditions are poor, for example due to obstructions,
multi-path or electromagnetic interference.

2.5. Data Upload and Spatial Indexing

After each acquisition session, the sensor is recon-
nected to our local network for data upload. Uploaded
images are inserted into a spatial index [21] keyed on
position and time-stamp. This enables downstream
processes to invoke proximity queries on images, to dis-
cover, for example, which images were acquired within
a specified region or time interval.

2.6. Correction of Radial Distortion

Images are resampled to remove radial lens distor-
tion. This enables downstream computations to use a
simple pin-hole camera model. For example, linear fea-
tures in the world map to straight lines in the image
after resampling.



2.7. Image Pyramid Generation

The corrected images are then filtered down to half-,
quarter-, and 3/32−resolutions to form a four-level im-
age pyramid. The quarter-, half- and full-resolution
images are used in series for multi-resolution mosaic
generation, 3D reconstruction, and texture estimation.
The 3/32-resolution images are used only for fast visu-
alization.

2.8. Mosaic Generation

The initial rotation estimates from the acquisition
rig are not pixel-accurate. However, they are suffi-
ciently accurate to initialize multi-resolution mosaic
generation [13], culminating in high-resolution mosaics
for each node (cf. Figure 1). The resulting omni-
directional mosaic is used only for visualization; when-
ever an image sample is needed by any batch processing
stage, the system samples directly from the raw images
using the refined pose estimate for each image. This
avoids the need for any further resampling of the im-
ages.

2.9. Sub-Pixel Feature Detection

Our registration algorithms use gradient-based, sub-
pixel edge and point features (Figure 2). Point (corner)
features are generated by intersecting edges in image
space, when they are separated by at most 2◦ (or about
40 pixels at our highest image resolution, 1 milliradian
per pixel), and form an angle of at least 5◦.

Figure 2. Edge and point features for two images.

2.10. Rotational Registration

The rotational registration stage [6] takes intrinsic
calibration information, edge features, and the node
adjacency graph as inputs. It groups observed edge fea-
tures into scene-relative vanishing points (VPs). Each
node is assumed to have viewed at least two VPs in
common with those VPs observed by its neighbors.
Nodes are brought into rotational alignment by reg-
istering each to the set of common observed VPs in its
vicinity (some nodes observe fewer than two VPs, and
cannot be aligned).

2.11. Translational Registration

The translational registration stage [7] takes intrin-
sic calibration information, point features, the node ad-

jacency graph, and rotationally registered nodes (from
the previous stage) as inputs. It produces revised po-
sition estimates for every node, valid up to an arbi-
trary Euclidean transformation (translation, rotation
and isotropic scaling).

2.12. Geo-Referencing

The final stage registers the node set to the origi-
nal GPS (i.e., absolute, geo-referenced) position esti-
mates, determining rigid translation, scaling, and ro-
tational degrees of freedom for the entire dataset [7].
The resulting pose estimates are geo-referenced to ab-
solute (Earth) coordinates and are metrically mean-
ingful. The coordinates are stored, in units of meters,
relative to a local tangent plane (LTP) with its origin
defined as the location of a nearby GPS base station.
Rather than ECEF (Earth Centered Earth Fixed) co-
ordinates, we use LTP coordinates due to their conve-
nience and accuracy for local computations. (The web
site documents the transformation between LTP and
WGS-84 Geoid ECEF [17] coordinates.)

The resulting absolute exterior orientation (pose) as-
signments are globally consistent on average to about
5 centimeters of position and about 0.1◦ of orienta-
tion, and epipolar geometry is consistent on average to
within four pixels, at 95% confidence (i.e., at contain-
ment of 95% of the probability density for each node),
for node subsets spanning several hundred meters [7].

3. Self-Consistency Measures

Manual generation of ground truth for this dataset
is infeasible due to its complexity and extent. There-
fore we have formulated a set of quantitative self-
consistency measures for the dataset, each assessing
the degree to which separate observations are mutu-
ally consistent. These consistency measures take into
account both local and global aspects of the dataset,
but abstract away low-level errors arising from slight
intrinsic mis-calibration and sub-pixel feature localiza-
tion, the magnitude of which we estimate at one to two
pixels.

3.1. Local Consistency Measures

The quality of each node, or mosaic, can be charac-
terized by the following pixel-based and feature-based
consistency measures:

• Mosaic pairwise cross-correlations. For each
node, we log the sum, over all adjacent images
within the mosaic [13], of the pixel inverse cross-
correlation normalized by the number of overlap-
ping pixels and the pixel dynamic range.



• Node VP spreads. Each node typically observes
one or more vanishing points (VPs). For truly
parallel world lines, perfectly calibrated mosaics,
and noise-free edge features, VPs could be local-
ized with no error. In reality, all of these elements
exhibit noise, so we represent VPs as projective
probability densities [9]. We log the width of the
density, in degrees, at 95% confidence – that is, the
size of the symmetric region of the density which
includes 95% of its probability [6].

3.2. Global Consistency Measures

The self-consistency of extrinsic calibration for a
node set can be characterized by several scene-relative
consistency measures:

• Scene VP spreads. When multiple mosaics ob-
serve a common vanishing point, the degree to
which they agree on the absolute direction of the
VP is a measure of global consistency. We log the
width of each consensus VP direction, using the
95% confidence bound described above [6].

• Node position spreads. Similarly, we charac-
terize the uncertainty in recovered node positions
by evaluating the average and maximum sizes at
which 95% confidence bounds are reached for the
recovered Gaussian densities [7].

• Epipolar alignment. Our translation registra-
tion algorithm produces soft (probabilistic) corre-
spondences between observed scene points. For
each soft point match with probability greater
than a threshold (we use p ≥ 0.8), we log the
mean, maximum, and variance of the distance in
image space between the 2D point feature and the
epipolar line of its correspondent feature [7].

4. Web Interface

An interactive interface to the dataset is available at
http://city.lcs.mit.edu/data. The interface de-
picts acquired nodes overlaid on a geo-referenced map
(Figure 3). Each node is color-coded by the type of cal-
ibration metadata available for the node (some nodes
have no revised position estimates, so are posted only
with orientation estimates).

The user may select any individual node for exam-
ination, producing a node inspection page in which
the full node mosaic and the node’s constituent (log-
format) images are displayed (Figure 4). This page
also presents the omni-directional image mosaic for the
node, which can be panned and zoomed interactively,
exposure-adjusted, and displayed with overlaid edge

Figure 3. A node set and adjacency graph. Points repre-

sent node locations; edges represent node adjacencies.

Adjacent nodes are typically 10-30 meters apart.

and point features, as well as a directional compass.
The page includes links to ASCII pose data and con-
sistency information for the node.

Near the mosaic viewer is a “mini-map” of node con-
text, showing the node’s neighbors in the adjacency
graph. Selecting a node from the mini-map brings up
the inspection view for the indicated node. Selecting
an edge from the mini-map brings up an epipolar ge-
ometry view for the implicated node pair (Figure 5).
This view depicts each node position as a small cross
in the counterpart node. The user can indicate a point
in either node, and see the point’s epipolar line (ruled
with metric tick marks) displayed in the adjacent node.
Finally, the user can visualize any available pose infor-
mation for the nodes, and consistency measures such
as inter-node baselines and global vanishing points.

5. Related Work

This section briefly reviews other systems and meth-
ods for acquiring geo-referenced image datasets.

5.1. Satellite-Based Acquisition

A number of robotic mapping systems (e.g., [2])
employ satellites to acquire high-altitude imagery of
Earth. These systems provide a wealth of data about
regions with limited vertical relief (oceans, much nat-
ural terrain, etc.). Since detailed information is main-
tained about each satellite’s orbital parameters, ac-
quired images can be geo-referenced fairly accurately
by the sensor itself; one data interchange site for pub-
lically available imagery [1] states registration to within
about twelve meters on the surface of the Earth. Com-
mercial and classified sensors may provide even greater
accuracy.

Such systems are less useful for imaging urban
canyons. Here, a satellite at a great distance can ac-
quire only near-nadir views (in which case most verti-
cal surfaces are imaged very obliquely) or near-horizon



Figure 4. A portion of the node inspection page.

views (in which case most vertical surfaces are oc-
cluded). For urban environments, a near-ground sen-
sor is necessary to acquire unoccluded, nearly fronto-
parallel views of vertical surfaces. Autonomous low-
altitude flying vehicles (e.g. [22]) exist, but have not
to date acquired accurately geo-referenced imagery.

5.2. Semi-Automated Methods

An alternative production method for near-ground,
geo-referenced imagery is the use of manual interac-
tion. A variety of semi-automated methods have been
proposed to control small image sets, in applications in-
cluding photogrammetry [28, 24, 16], digital mapping,
and computer graphics scene modeling [8, 19, 15, 23].
These systems combine automated, semi-automated,
or manual feature detection with semi-automated bun-
dle adjustment, in which a human operator indicates
or selects corresponding features across multiple im-
ages. Sometimes, geo-referenced points (e.g., painted
crosses) have been placed in the scene before the sen-
sor is deployed, and are therefore available in the im-
agery. In this case, the human user can geo-reference
the imagery by associating features visible in the im-
age to known features (ground control) in an existing
geo-referenced dataset.

Semi-automated methods are fundamentally limited
in a number of respects. First, these methods are scale-

limited; the number of person-hours required to process
a dataset of more than a few hundred images would be
prohibitive in most applications. (The L.A. Basin mod-
eling project has expended an estimated 100,000 hours,
or fifty person-years, of human effort tying acquired
imagery to an extended site model [18].) The model-
ing process can not be “parallelized” straightforwardly
by adding workers, due to the need for coordination
among operators. Human operators typically rely on
every pair of images overlapping in some fashion, so
that common elements can be indicated; in extended
datasets, most image pairs have no common elements
due to occlusion. Second, interactive methods are vul-
nerable to human failings: errors and short-cuts. Hu-
mans may make errors by indicating incorrect matches
in ambiguous situations (for example in the presence
of occlusion and visual clutter). Also, human opera-
tors tend to specify only as many constraints as are
required for nominal convergence of the underlying op-
timization, rather than entering over-determined con-
straint sets. In practice, this leads to unstable bun-
dle adjustment. Finally, semi-automated methods do
not scale with underlying technology (i.e., CPU speed),
but rather have the human operator, whose through-
put is essentially fixed, as their bottleneck. Thus, the
throughput of semi-automated systems typically im-
proves little over time.



Figure 5. A portion of the epipolar geometry inspection page.

5.3. Summary

Summarizing, although there are sensor platforms
which produce geo-referenced imagery, the data they
produce is not suitable for close-range mapping of ur-
ban regions. Similarly, although there are interac-
tive techniques for registering images using photogram-
metric bundle adjustments, they do not scale to the
huge image datasets needed for modeling extended ar-
eas. Prior to the acquisition system used to collect
the datasets described in this paper, no scalable, auto-
mated method had been demonstrated to acquire close-
range, accurately geo-referenced imagery of urban ar-
eas.

6. Conclusion

This paper described an intrinsically and extrinsi-
cally calibrated terrestrial image dataset acquired over
a spatially extended urban region. Due to its scale and
extent, achieving a comparable dataset using current
semi-automated methods would be infeasible.

The dataset is available on-line for interactive brows-
ing and download. We have made this data available
to the research community in the hope that it will be
useful to researchers and developers of large-scale im-
age self-calibration and registration algorithms, image-
based rendering and metric 3D reconstruction from cal-
ibrated image datasets, and digital cartography and
GIS applications.

A. Appendix: Data Organization

This appendix describes image, calibration (intrinsic
and extrinsic), and feature data at each stage of system
processing. We also describe the contents of a number
of data files used within the system to represent these
elements, and the organization of these files in the on-
line repository http://city.lcs.mit.edu/data.

A.1. Coordinate Information

A coordinate information file resides at the top
of the data hierarchy, specifying an external (Earth-
relative [17]) coordinate system for reference, and the



dataset’s LTP origin and coordinate axes expressed in
this coordinate system.

A.2. Image Descriptor Files

All images are stored in a lossless RGB format (the
web site supplies Java code to read and display this for-
mat). For each image, the sensor generates an ASCII
image descriptor file containing all shuttering-specific
information except the camera’s intrinsic and extrinsic
parameters, including:

• A header field;

• Digital camera identifier (make and model);

• Date and time (GMT) of image acquisition;

• Image source (sensor or post-process);

• Image width and height (in pixels);

• Image and pixel types (log-radiance RGB);

• Exposure bracketing and photometric calibration
information; and

• Lens type and aperture used.

The image files store eight bits per color channel.
(We also retain raw 16-bit log-color images, prior to
Bayer color interpolation and radial distortion correc-
tion.) We convert each color channel value into a ra-
diance value proportional to the light flux entering the
camera as:

r ∝ exp [((p/255 ∗ (RMAX − RMIN)) + RMIN) − 2 ln (f)] ,

where RMAX and RMIN denote the maximum and mini-
mum observed radiance values for the node, and the
APERTURE field is used to shift the log-radiance values
by −2 ln f , effectively scaling by 1/f 2.

Raw data values of 0 and 255 are used as sentinels
to mark regions in the images that are undersaturated
and saturated, respectively. There are few such pixels
in the data; they occur only when the camera observes
very dark areas, or very bright specular reflections, or
the sun itself.

A.3. Camera Pose Descriptor Files

For each image, the sensor logs a camera pose de-
scriptor file, capturing what is known of the camera’s
intrinsic and extrinsic parameters at the instant of
shuttering. This file includes fields describing:

• Digital camera identifier (make and model);

• Image source (sensor or post-process);

• Image width and height (in pixels);

• Focal length (in pixels);

• Principal point cx, cy (in pixels);

• Skew (assumed zero);

• Camera position in LTP (x, y, z);

• Camera orientation, as a quaternion (q0, q1, q2, q3).

Subsequent processing stages may append addi-
tional fields to the pose descriptor file, describing the
outcome of processing. For example, upon successful
termination, the mosaic process writes a CONVERGENT

tag and a RESIDUE value to each pose file that it revises.

A.4. Node Descriptor Files

Each node has a “node information file,” containing
the number of images in the node, and the index (usu-
ally zero) of the “base image,” or first image acquired
for the node. Each image is indexed, zero-relative, with
respect to the base image. With each node is also as-
sociated a “mosaic adjacency graph”; this file lists, for
each image, its neighbors in the node tiling.

A.5. Node Adjacency File

Adjacency information among nodes is represented
as a list, for each node, of the node’s neighbors (cf.
Figure 3). Our spatial index produces an adjacency
list for any input dataset and specified number of, or
maximum distance to, nearest neighbors.

A.6. Feature Descriptors

Per-image edge features and intersection-based
point features, both localized to sub-pixel position, are
stored in ASCII format.

A.7. Vanishing Point Descriptor Files

The rotational registration stage detects the scene
vanishing points (VP) observed by each node. The
results are stored in a VP descriptor file, which contains
the VP direction (in node coordinates) and variance
(i.e., width at 95% confidence) in degrees squared.

After rotational registration of all nodes, a vanishing
point descriptor file is produced for the entire dataset.
This file describes the union of all vanishing points ob-
served by all nodes in the dataset, and analogous con-
fidence measures. Global VP directions are expressed
in absolute, scene-relative coordinates.

A.8. Baseline Descriptor Files

The translational registration stage operates on all
pairs of adjacent nodes, establishing a baseline direc-
tion (up to scale) for the pair expressed in world coordi-
nates. Each computed baseline is logged to a separate
file, along with an estimate of its uncertainty.



A.9. Pose Data Organization

The refined pose data resulting from each process-
ing stage is organized in a series of directories named
initial, mosaic, rotation, and translation.

The initial/ directories contain (rough) pose es-
timates, useful (for example) to establish adjacencies
among images, or test image registration or egomo-
tion recovery algorithms. The mosaic/ directories con-
tain image orientation information sufficient to com-
pose multiple node images into a single mosaic; this
is useful for visualizing the field of view around any
single sensor position. The rotation/ pose directo-
ries contain accurate node orientations in a single ab-
solute coordinate system, useful (for example) to sam-
ple sky illumination or construct far-field environment
maps. Finally, the translation/ directories contain
metric, geo-referenced pose estimates, useful for ap-
plications requiring projective or Euclidean calibration
(e.g., image-based rendering, or metric scene recon-
struction), or for integrating the images with existing
GIS data or systems.
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