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Abstract

This paper describes how to compute the line or lines which intersect four given lines in
three dimensions. This intersection computation arises in computer graphics (for visibility
computations), computational geometry (for line traversals), and computer vision (for object
recognition).

Given four distinct lines in three dimensions there exist zero, one, two, or various infinities
of lines intersecting the given lines. We use the Pliicker coordinatization of lines to cast this
problem as a null-space computation in five dimensions, and show how the singular value
decomposition (SVD) yields a simple, stable characterization of the incident lines, and an
efficient algorithm to determine them.

Finally, we enumerate the types of input degeneracies that may arise, show how to detect
each type in practice, and describe for each case the solution set of lines that arises.

CR Categories and Subject Descriptors: [Computer Graphics]: 1.3.5 Computa-
tional Geometry and Object Modeling — geometric algorithms, languages, and systems.

Additional Key Words and Phrases: Singular value decomposition, Plicker coordi-
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1 Introduction

The line is an important primitive element in the geometry of three-space. Computations involv-
ing lines arise in computer graphics, computational geometry, and computer vision. Consider the
computer graphics problem of characterizing the regions of light and shadow in three dimensions
produced by a polygonal light source illuminating a scene of polyhedral objects. The illumination
function has discontinuous derivatives along surfaces arising from combinations of three edges of
polyhedra [7, 11]. Characterizing the effects of these surfaces requires the determination of their
intersections, which occur wherever a probe line — a light ray — intersects four edges from the poly-
hedral scene [15, 4]. Line intersections arise in computational geometry, for example in the deter-
mination of lines that simultaneously intersect a collection of geometric objects [1, 8, 2]. Finally, in
computer vision, line intersections arise during construction of data structures for three-dimensional
object recognition [10, 5].

Lines, however, do not behave as simply as points and planes. For example, three generic points
determine a unique (homogeneous) plane by incidence, and three generic planes determine a unique
(homogeneous) point; both computations involve solution of a system of equations linear in the
input coordinates. In contrast, four generic lines determine two further lines by incidence (Figure
1). Moreover, as we shall show, computing line incidence is an inherently quadratic problem.

Figure 1: Four (generic) lines determine two further lines by incidence.

This paper presents an algorithm that, given four arbitrary lines, determines the line(s) or family
of lines incident on the input lines. Four generic lines induce exactly two incident lines. In practice,
however, input degeneracies may result in zero, one, two, or various infinities of incident lines.
We characterize the degeneracies in each case, and describe the representation of the resulting line
families. This paper is accompanied by C source code which performs the incidence computation
for generic input lines, and detects and classifies degenerate input instances.

2 Plucker Coordinates

Pliicker coordinates provide a convenient representation for directed lines in three space [13, 14, 12].
This section reviews relevant notation for, and some useful properties of, Pliicker coordinates.



Each pair of distinct points p = (pg, py,p.) and ¢ = (qq, gy, ¢.) defines a directed line £ in R3.
This line corresponds to a set of six coefficients called the Pliicker coordinates I, of the line:

Iy = (7eo, o1, Teo, Tes, Tea, Tes)-
Each Pliicker coordinate is the determinant of a 2 X 2 minor of the matrix
( Pz Py Pz 1 )
Gz @y q=1 )
We adopt the following convention relating these minors and the m; [9]:

Teo = DPxby — qzDy
Tl = DPzqz — 4Pz

Tz = Pr — 4Gz
T3 = Pyq: — QyD:
Tea = Pz — 42
Tes = Gy — Dy

If a and b are two directed lines, and II,, II, their corresponding Pliicker mappings, a relation
side(a,b) can be defined as the permuted inner product

side(a,b) = 11, © [y = (Ta0Tpa + Ta1Ts + Ta2Ts3 + Ta3To2 + TaaToo + TasTp1), (1)

which is zero whenever a and b intersect or are parallel, and non-zero otherwise.

There are two useful, geometrically dual, ways to view the Pliicker coordinates of a line. The
first is as a point: the six-tuple IT; can be treated as a (homogeneous) point T, = (7 . . . mg5) in P5.
Only points satisfying a quadratic relation (given below) correspond to real lines in R3. Alterna-
tively, the Pliicker coordinates (after permutation) describe the coefficients (74, 75, T3, Te2, Te0, Te1)
of a five-dimensional hyperplane, each point of which is dual to a line incident on ¢. The advan-
tage of transforming lines to Pliicker coordinates is that determining the relationship (incidence;
relative orientation) between two lines in R?® reduces to computing the permuted inner product of
a homogeneous point (the mapping of one line) with a hyperplane (the mapping of the other).

Pliicker coordinates simplify computations on lines by mapping them to points and hyperplanes,
which are familiar objects. However, although every directed line in R?® maps to a point in Pliicker
coordinates, not every six-tuple of Pliicker coordinates corresponds to a real line. Only those points
IT satisfying the quadratic relation

Mell=0 (2)

correspond to real lines in R3. The remaining points correspond to imaginary lines, i.e., those with
complex coefficients (e.g., plane intercepts) in R3.

The Pliicker coordinates of a real line are not independent. First they are determined only to
within a scale factor [13]. That is, if points p, g and r lie on a line ¢, I1(p, ¢) and II(p, r) are identical



“up to scale,” that is, there is some constant ¢ # 0 such that ¢ - II(p,q) = II(p, 7). Indeed, for any
line Z the set of points
I := { (a,b) |a,be £}

is a line through the origin in RS. The set of all lines through the origin in RS is called a “five-
dimensional real projective space,” and denoted P°. Thus II defines a map from directed lines in
three space to points in P®.

The Pliicker coordinates, in order to represent a line with real coefficients in R?, must satisfy
Equation 2. Corresponding to intuition, then, the six Pliicker coordinates describe a four-parameter
space: one could parameterize lines in R? in terms of, for example, their intercepts on a pair of
parallel reference planes. (However, with only one pair of planes, one would need six numbers —
a homogeneous point on one plane, and an ordinary point and offset from the other — to capture
all the lines in R3, including lines parallel to the planes. This is one of the difficult aspects of
representing lines!)

The set of points in P® satisfying Equation 2 is called the Plicker quadric [13]. One might
visualize this set as a four-dimensional surface, embedded in P?, that is analogous to a quadric
hyperboloid of one sheet in R? (Figure 2).

Figure 2: Real lines map to points on, or hyperplanes tangent to, the Pliicker quadric.

Henceforth, we use IT : £ — II, to denote the map IT that takes a directed line £ to the Pliicker
point (hyperplane) Iy, and £ : II — ¢ to denote the map that constructs, from a point IT on the
Pliicker quadric, the corresponding real directed line ¢ in R3.

3 Determining the Incident Lines

This section describes the intersection computation, which has three parts. Essentially, the input
problem is mapped into a different space; the new problem is solved in that space; and the solution
is mapped back to the original space. After an overview, each stage is described in detail.



3.1 Overview

Suppose we are given four lines I, 1 < k < 4 in R?, and wish to compute the set of lines that are
incident on, or intersect, the [,. By the sidedness relation above, we wish to find all lines s such that
side(s,ly) = 0 for all k. Each line [, under the Pliicker mapping, is mapped to a hyperplane Il in
P>. Four such hyperplanes in general position intersect in a line L in P?. In Pliicker coordinates, L
contains the images under IT of all lines, real or imaginary, incident on the four /. To find the real
incident lines in R?, we must intersect L with the Pliicker quadric (Figure 3). As in three space,
a line-quadric intersection may contain 0, 1, 2, or (since the quadric is ruled) an infinite number
of points. (In the generic situation shown in the figure, there are two intersection points, each of
which is the image of a line in three dimensions intersecting each of the I;.)

Figure 3: The four II; determine a line to be intersected with the Pliicker quadric.

Thus the incidence computation has three parts. The first is the mapping of the four input lines
to four hyperplanes Il; in five dimensions, and the intersection of these hyperplanes to form a line
(the null space) of the IT;. The second is an intersection of this line with a quadric surface to produce
a discrete result. The third part maps this discrete result, represented as Pliicker coordinates, to
three dimensions for display. We have implemented this computation in the C language using a
FORTRAN singular value decomposition routine from Netlib [3]. Figure 1 depicts the algorithm
applied to four generic lines. Note that the input lines (thick) are mutually skew, and that each of
the two solution lines (thin) pierces the input lines in a distinct order. Both the input and output
lines are represented as line segments for the purposes of display.

3.2 Null Space Determination

We formulate the first part of the problem as a singular value decomposition. Each of the input
lines [;, corresponds to a six-coefficient hyperplane I, under the Pliicker mapping. Thus, we must
find the null space of the matrix

l_104 H05 l_103 l_102 1—IOO HOl
1_114 1_115 l_113 H12 1_[10 Hll
H24 H25 H23 H22 HZO H21
H34 H35 H33 H32 1_[30 l_131



where II;; denotes Pliicker coordinate j of input line 3.

By the singular value decomposition theorem (see, e.g., [6]), this 4 X 6 real matrix can be written
as the product of three matrices, U € R***, ¥ € R**6, and V € R®*¢, with U and V orthogonal,
and ¥ zero except along its diagonal:

Voo Vo5
Upo Up3 a0 00
M=UzV" = : or 0 00
’ 09 00
U30 U33 0 o3 0 0
1)50 ... “ .. ’1)55

The o; are the singular values of M, and can be ordered by decreasing magnitude. The number
of non-zero! o; equals the rank r of M. Each zero or elided o; corresponds to a row of V; collectively,
these rows form the null space of M, with dimension 5 — 7.

If 03 # 0, M has rank 4, and its null space has dimension 1 and is spanned by the vectors
comprising the last two rows of V, here denoted F and G respectively. (This is the generic case.)
We parametrize the null space with the function A : P — P? defined as

A(t) =tF + G. (3)
The null space property implies that
At)o Il =0, 0 <k <3,Vt.

The map A is injective; it is an isomorphism between P and the set of all lines (real and imaginary)
incident on the Ij.

3.3 Intersection with the Plicker Quadric

Intuitively, d — 1 hyperplanes in d dimensions intersect to form a line. Formally, the null space A(¢)
defined above is a one-parameter family (a line) of five-dimensional points, all of which have a zero
permuted inner product with the Plicker coordinates of the four given lines. However, in general
only two of these 5-D points satisfy the Pliicker relation (Equation 2), and correspond to real 3-D
lines. These are the lines A(t) for which:

A(t) ©A(t) = 0.
Substituting from Equation 3 produces a quadratic equation in ¢:
FOF+2FO0Gt+GOG =0,

or
at? 4+ 2bt + ¢ = 0,

1Qur finite-precision implementation classifies as zero any singular value less than a constant threshold.



where a = FOF,b=F ©® G, and c = G ® G. This is an “even” quadratic with the discriminant
b? — ac, rather than the more familiar b — 4ac.

If a®> + b? + ¢ = 0, all ¢ are solutions, and the null space line A(t) in P® lies entirely in the
(ruled) Pliicker quadric. In this case any linear combination of F and G corresponds to a real line
incident on the Ij.

If b2 — ac < 0, A is disjoint from the Pliicker quadric, and there are no real lines incident on the
lp. If b2 —ac = 0, A is tangent to the Pliicker quadric, and there is a single real line incident on
the I, given by A(=2). Finally, if b — ac > 0 there are two lines, A(¢y) and A(¢_), corresponding

respectively to the real roots
_ =bEVb? —ac
- .

(4)

s

3.4 Remapping the Solution Lines

The Pliicker coordinates determined in the previous section form a complete representation of the
line or lines incident on the input lines. However, this representation is not ideal for all purposes,
for example computer graphic display. Thus, the final step of the algorithm remaps the intersection
points (identified in the previous step) to lines in three dimensions represented as pairs of distinct
points. This is accomplished through the following straightforward operation: the intersection of
a line represented by its six Pliicker coordinates, and a plane represented by its four coefficients
A, B,C, D such that Az+By+Cz+D = 0 ([14], page 205). Our implementation performs repeated
line-plane intersections to “clip” the solution line or lines to an axial unit cube centered at the origin.

4 Degeneracies

The four planes in Pliicker coordinates arising from dualization of the input lines may not be in
general position, i.e., they may intersect in a subspace of P® with dimension greater than one.
In this case, one or more of the four o; will be zero. If n of the o; are zero, the set of real and
imaginary lines incident on the [, are spanned by the last n + 2 rows of V. This set of points
can be parametrized by P"*1. Any real lines in this set must correspond to points satisfying the
Pliicker relationship (Eq. 2), inducing a quadratic constraint on P"*'. This is a quadratic equation
on the line (as we have seen above) for n = 0; a conic in the projective plane for n = 1; and a
quadric surface in projective space for n > 2. The solution to the quadratic equation can be all
of P empty, reducible or, when n > 1, irreducible. If it is reducible, each component can be
parametrized by P™; otherwise it is irreducible, and the entire set of lines can be parametrized by
P". The following sections describe the various special cases that arise.



4.1 One-Dimensional Line Families

If 03 = 0 and 09 # 0 then M has rank three: only three rows of M are linearly independent, and
its null space has dimension two (it is a 2-D subspace, an ordinary plane). In this case, the set of
lines incident on the [, are those lines whose Pliicker coordinates are orthogonal to the first three
rows of V. Thus, by the SVD, the last three rows of V span the space of lines (real and imaginary)
incident, on the /. As above, we parametrize this space with the map A(u,v) : P2 — P5 given by

A(u,v) =vE+vF + G

where E; F and G are the last three rows of V. A(u,v) parametrizes the real and imaginary
incident lines. As before, any real lines incident on the [, must satisfy

A(u,v) © A(u,v) = 0.

This is a quadratic equation ¢(u,v) = 0 in the variables u and v, i.e., an ordinary conic. If this conic
is a line pair, the set of lines incident on the [, comprise two 1-parameter families of lines. Otherwise
the conic can be parametrized by a single variable ¢. Thus if u(t),v(t) satisfy g(u(t),v(t)) = 0, the
incident lines are given by L(u(t)E + v(t)F + G).

4.2 Two-Dimensional Line Families

If 03 =0, 09 =0, and 07 # 0, the null space of M has dimension three (it is a 3-D subspace). In
this case, the set of real and imaginary lines incident on the [, can be parametrized by the map
A(u,v,w) : P> = P5 given by

A(u,v,w) = uD + vE + wF + G,

where D, E, F and G are the last four rows of V. As before, the real lines satisfy a quadratic
equation ¢(u,v,w) = 0 in P3, i.e., an ordinary quadric. If this quadric is expressible as a plane
pair, the set of lines incident on the [, comprises two 2-parameter families of lines. Otherwise the
quadric (the zero surface of the preceding equation) can be parametrized by the projective plane.
If u(t), v(t), w(t) satisfy q(u(t),v(t), w(t)) = 0, the incident lines are given by L(u(¢)D + v(¢t)E +
w(t)F + G).

4.3 Extreme Degeneracy

Even more extreme degeneracies may arise in practice. For example, the null space of M may have
dimension four (if all of the input lines are non-zero, but identical to scale) or five (if all of the input
lines are zero, as when their defining segments have zero length). These cases can be detected by
examination of the singular values o; as above.



Implementation

Source code for our algorithm appears on JGT’s accompanying web site. The code defines a type
plucker (a vector of six floating-point coefficients), along with the C subroutines:

e void p_construct( A, B, L ), to compute the Pliicker coordinates L of a line through
3 — D points A and B;

e int p_incident( p, ¢, r, s, Ti, T» ), which computes the line or lines (77 and 75) in-
cident on four input lines p, ¢, r, and s, and returns an integer degeneracy classification;
and

e void p._deconstruct( L, A, B ) which determines two points A and B in three dimensions
lying on a line L described by its Pliicker coordinates.

The incidence computation uses the FORTRAN subroutine dsvdc() from Netlib [3] to perform
stable singular value decomposition. Our implementation handles the case of four input lines in
general position (all mutually skew, not lying on the same hyperboloid of one sheet). The algorithm
detects and reports, but does not solve, degenerate input instances.

Conclusion

Using a duality transformation relating directed lines in three dimensions and hyperplanes in five
dimensions, we have described an algorithm that computes the set of lines intersecting four given
lines. The computation amounts to a null space determination of a line lying simultaneously in
four hyperplanes in five dimensions, intersection of this line with a quadric surface, and finally
remapping of the resulting five-dimensional point(s) to real lines in three dimensions. The null space
determination can be cast as a stable singular value decomposition. The line-quadric intersection
involves finding the roots of a quadratic equation in one variable. The remapping is straightforward.
Finally, we describe the ways in which degenerate input can arise, and the incident line families
that result, and give an implementation that solves the generic case and reports degenerate input
instances.
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