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Abstract We describe a vision-based algorithm that enables a robot to “reacquire”
objects previously indicated by a human user through simple image-based stylus
gestures. By automatically generating a multiple-view appearance model for each
object, the method can reacquire the object and reconstitute the user’s segmentation
hints even after the robot has moved long distances or significant time has elapsed
since the gesture. We demonstrate that this capability enables novel command and
control mechanisms: after a human gives the robot a “guided tour” of named ob-
jects and their locations in the environment, he can dispatch the robot to fetch any
particular object simply by stating its name. We implement the object reacquisition
algorithm on an outdoor mobile manipulation platform and evaluate its performance
under challenging conditions that include lighting and viewpoint variation, clutter,
and object relocation.

1 Introduction

This paper describes a vision-based algorithm that enables a human to efficiently
convey object- and task-level information to a robot. The ability to understand and
execute long task sequences (e.g., in which individual tasks may include moving
an object around in an environment) offers the potential of more natural interaction
mechanisms as well as a reduced burden for the human. However, achieving this
ability and, in particular, the level of recall necessary to reacquire objects after ex-
tended time periods and viewpoint changes, are challenging for robots that operate
with imprecise knowledge of absolute location within dynamic, uncertain environ-
ments.
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We present an algorithm that automatically learns a visual appearance model for
each user-indicated object in the environment, enabling object recognition from a
usefully wide range of viewpoints. The user provides a manual segmentation of an
object by circling it in an image from a camera mounted on the robot. The pri-
mary novelty of our method lies in the automatic generation of multi-view, feature-
based object models that capture variations in appearance due to scale and viewpoint
changes. This automatic and opportunistic modeling of an object’s appearance en-
ables the robot to reconstitute the user’s gesture (and the corresponding segmenta-
tion hints and task information), even for viewpoints that are spatially and tempo-
rally distant from those of the original gesture. As we show, this ability allows for
more effective, scalable command capabilities; in particular, we describe a scenario
in which the user gives a mobile manipulator a guided tour of objects in an outdoor
environment and, at a later time, directs the robot to reacquire and manipulate these
objects by name.

Progressing from a preliminary demonstration of this approach [15], we analyze
the performance of the reacquisition algorithm under a variety of conditions typical
of outdoor operation including lighting and viewpoint variations, scene clutter, and
unobserved object relocation. We describe conditions for which the method is well-
suited as well as those for which it fails. In light of these limitations, we conclude
with a discussion on directions for future work.

1.1 Related Work

An extensive body of literature on visual object recognition has been developed over
the past decade. Generalized algorithms are typically trained to identify abstract ob-
ject categories and delineate instances in new images using a set of exemplars that
span the most common dimensions of variation, including 3D pose, illumination,
and background clutter. Training samples are further diversified by variations in the
instances themselves, such as shape, size, articulation, and color. The current state-
of-the-art involves learning relationships among constituent object parts and using
view-invariant descriptors to represent these parts (e.g., [13, 9]). Rather than recog-
nition of generic categories, however, the goal of our work is the reacquisition of
specific previously observed objects. We therefore still require invariance to camera
pose and lighting variations, but not to intrinsic within-class variability.

Lowe [10] introduces the notion of collecting multiple image views to represent
a single 3D object, relying on SIFT feature correspondences to recognize new views
and to decide when the model should be augmented. Gordon and Lowe [6] describe
a more structured technique for object matching and pose estimation that explicitly
builds a 3D model from multiple uncalibrated views using bundle adjustment, like-
wise establishing SIFT correspondences for recognition but further estimating the
relative camera pose via RANSAC and Levenberg-Marquardt optimization. Collet
et al. [3] extend this work by incorporating Mean-Shift clustering to facilitate reg-
istration of multiple instances during recognition, demonstrating high precision and
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recall with accurate pose in cluttered scenes amid partial occlusions, changes in view
distance and rotation, and varying illumination. All of the above techniques build
object representations offline through explicit “brute-force” acquisition of views
spanning a fairly complete set of aspects, rather than opportunistically as in our
work.

In visual tracking, an object is manually designated or automatically detected
based on appearance or motion characteristics, and its state is subsequently tracked
over time using visual and kinematic cues [16]. Generally, tracking approaches as-
sume a relatively small temporal separation, and therefore slow visual variation,
between consecutive observations; they can therefore evolve appearance models
gradually and incrementally over time, e.g., through the use of multiple instance
learning [1]. Although we use video sequences as input, our approach does not rely
on a temporal sequence and is therefore not truly an object “tracker”; instead, its
goal is to identify designated objects over potentially disparate views.

Meanwhile, considerable effort has been devoted to utilize vision-based recog-
nition and tracking to facilitate human-robot interaction. While much of this work
focuses on person detection, various techniques exist for learning and recognizing
inanimate objects in the robot’s surround. Of particular relevance are those in which
a human partner “teaches” the objects to the robot, typically by pointing to a par-
ticular object and using speech to convey object-specific information (e.g., color,
name) and tasks [7, 2]. Our work similarly enables human participants to teach ob-
jects to the robot, using speech as a means of conveying information. However, in
our case, the user identifies objects by indicating their location within images of the
scene. Additionally, the aforementioned research is limited, at least in implementa-
tion, to uncluttered indoor scenes with a small number of objects, whereas we focus
on reacquisition in outdoor, semi-structured environments.

2 Reacquisition Methodology

Our object reacquisition strategy is motivated by our ongoing development of a
robotic forklift [14] that autonomously manipulates cargo within an outdoor envi-
ronment under the high-level direction of a human supervisor. The user conveys
task-level commands to the robot that include picking up, transporting, and plac-
ing desired palletized cargo from and to truck beds and ground locations. Using a
handheld tablet interface (Fig. 1), the user identifies a specific pallet or destination
by circling it in an image from one of four cameras mounted to the robot. The user
can also summon the robot to one of several named locations in the environment by
speaking to the tablet.

The system performs these tasks autonomously with little effort required on the
part of the user (e.g., finding and safely engaging the pallet based solely upon a
single gesture). Nevertheless, extended tasks such as moving multiple objects pre-
viously required that the user specify each object in turn, thus necessitating periodic
albeit short intervention throughout. By introducing the ability to reacquire objects
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Fig. 1 The tablet interface displaying a view from the robot’s forward-facing camera along with
user gestures (red).

of interest in the environment, however, our system allows the user to command the
manipulation of multiple objects in rapid succession at the outset, after which the
system effectively reconstitutes the gesture and manipulates the pallet.

Thus, the system is able to utilize valuable yet unobtrusive segmentation cues
from the user to execute extended-duration commands. The ability to recognize par-
ticular objects across spatial and temporal excursions allows for other higher-level
control mechanisms besides task-specific reacquisition. One example that we sup-
port is a guided tour scenario in which the user identifies specific objects in the
environment by circling their position in an image from one camera and speak-
ing their label. The system then builds and maintains an appearance model for the
named object that is shared across cameras. At a later point in time, the user can
command the robot to manipulate an object by referring to it by name (e.g., “bot,
pick up the tire pallet”). The primary technical challenge is achieving a reacquisition
capability that operates across sensors and that is sufficiently robust to local clutter
and appearance variation to be useful in practice. We show that the incorporation
of opportunistically captured multiple views provides robustness to viewpoint and
lighting variations.

Our proposed reacquisition system (Fig. 2) relies on a synergy between the hu-
man operator and the robot, with the human providing initial visual cues (thus easing
the task of automated object detection and segmentation) and the robot maintaining
persistent detection of the indicated objects upon each revisit, even after sensor cov-
erage gaps (thus alleviating the degree of interaction and attention that the human
need provide).
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Fig. 2 Block diagram of the reacquisition process.

Our algorithm maintains visual appearance models of the initially indicated ob-
jects so that when the robot returns to the scene, it can still recall, recognize, and
act upon the object even when errors and drift in its navigation system degrade
the precision of its measured position and heading. In fact, the algorithm utilizes
dead-reckoned pose estimates only to suggest the creation of new appearance mod-
els; it uses neither pose information nor data from non-camera sensors for object
recognition. The robot thus handles, without human intervention, a longer string of
sequential commands than would otherwise be possible.

3 Visual Appearance for Object Reacquisition

Our algorithm for maintaining persistent identity of user-designated objects in the
scene is based on creating and updating appearance models that evolve over time.
We define a model Mi as the visual representation of a particular object i, which
consists of a collection of views, Mi = {vi j}. We define a view vi j as the appearance
of a given object at a single viewpoint and time instant j (i.e., as observed by a
camera with a particular pose at a particular moment).

Object appearance models and their constituent views are constructed from 2D
constellations of keypoints, where each keypoint comprises an image pixel position
and an invariant descriptor characterizing the intensity pattern in a local neighbor-
hood. Our algorithm searches each new camera image for each model and produces
a list of visibility hypotheses based on visual similarity and geometric consistency of
keypoint constellations. New views are automatically added over time as the robot
moves; thus the collection of views opportunistically captures variations in object
appearance due to changes in viewpoint and illumination.
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3.1 Model Initiation

As each camera image is acquired, it is processed to detect a set F of keypoint
locations and scale invariant descriptors; we use Lowe’s SIFT algorithm for moder-
ate robustness to viewpoint and lighting changes [11], but any stable image features
may be used. In our application, the user initiates the generation of the first ap-
pearance model with a gesture that segments its location in a particular image. Our
system creates a new model Mi for each indicated object, and any SIFT keypoints
and corresponding descriptors that fall within the gesture at that particular frame are
accumulated to form the new model’s first view vi1.

In addition to a feature constellation, each view contains the timestamp of its
corresponding image, the ID of the camera used to acquire the image, the user’s 2D
gesture polygon, and the 6-DOF inertial pose estimate of the robot body.

3.2 Single-View Matching

The basic operational unit in determining whether and which models are visible
in a given image is feature constellation matching of a single view to that image.
For a particular view vi j from a particular object model Mi, the goal of single-
view matching is to produce visibility hypotheses and associated likelihoods of that
view’s presence and location in a particular image.

As mentioned above, a set of SIFT features Ft is extracted from the image
captured at time index t. For each view vi j, our algorithm matches the view’s set
of descriptors Fi j with Ft to produce a set of point-pair correspondence candi-
dates Ci jt . We evaluate the similarity spq between a pair of features p and q as
the normalized inner product between their descriptor vectors fp and fq, where
spq = ∑k( fpk fqk)/‖dp‖‖dq‖. We exhaustively compute all similarity scores and col-
lect in Ci jt at most one pair per feature in Fi j, subject to a minimum threshold.

Since many similar-looking objects may exist in a single image, Ci jt may con-
tain a significant number of outliers and ambiguous matches. We therefore enforce
geometric consistency on the constellation by means of random sample consensus
(RANSAC) [5] with a plane projective homography H as the underlying geomet-
ric model [8]. Our particular robot employs wide-angle camera lenses that exhibit
noticeable radial distortion, so before applying RANSAC, we un-distort the points,
thereby correcting deviations from standard pinhole camera geometry and allowing
the application of a direct linear transform for homography estimation.

At each RANSAC iteration, we select four distinct (un-distorted) correspon-
dences from Ci jt with which we compute the induced homography H between the
current image and the view vi j. We then apply the homography to all matched points
within the current image, re-distort the result, and classify each point as an inlier
or outlier according to its distance from its image counterpart and a pre-specified
threshold in pixel units. As the objects are non-planar, we use a loose value for
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this threshold in practice to accommodate deviations from planarity due to motion
parallax.

RANSAC establishes a single best hypothesis for vi j consisting of a homography
and a set of inlier correspondences C̃i jt ∈Ci jt (Fig. 3). We assign a confidence value
ci jt to the hypothesis that represents the proportion of inliers to total points in vi j as
well as the absolute number of inliers ci jt = |inliers|/(|vi j|min(α|inliers|,1). If the
confidence is sufficiently high, we output the hypothesis.

Fig. 3 A visualization of an object being matched to an appearance model (inset) derived from
the user’s stylus gesture. Red lines denote correspondence between SIFT features within the initial
view (red) to those on the object in the scene (green).

3.3 Multiple-View Reasoning

The above single-view matching procedure produces a number of match hypothe-
ses per image and does not prohibit detecting different instances of the same object.
Each object model possesses one or more distinct views, and each view can match
at most one object in the image with some associated confidence score. Our algo-
rithm reasons over all information at each time step to resolve potential ambiguities,
thereby producing at most one match for each model and reporting its associated
image location.

First, all hypotheses are collected and grouped by object model. To each “active”
model (i.e., a model for which a match hypothesis has been generated) we assign
a confidence score equal to that of the most confident view candidate. If this confi-
dence is sufficiently high, we consider the model to be visible and report its current
location, which is defined as the original 2D gesture region transformed into the
current image by the match homography associated with the hypothesis.

Note that while this check ensures that each model matches no more than one lo-
cation in the image, we do not impose the restriction that a particular image location
match at most one model. Indeed, it is possible that running the single-view process
on different models results in the same image location matching different objects.
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However, we have not found this to happen in practice, which we believe to be a
result of surrounding contextual information captured within the user gestures.

3.4 Model Augmentation

As the robot moves through the environment to execute its tasks, an object’s appear-
ance changes due to variations in viewpoint and illumination. Furthermore, when
there are gaps in view coverage (e.g., when the robot transports a pallet away from
the others and later returns), the new aspect at which an object is observed generally
differs from the previous aspect. Although SIFT features are robust to a certain de-
gree of scale, rotation, and intensity changes, thus tolerating moderate appearance
variability, the feature and constellation matches degenerate with more severe 3D
perspective effects and scaling.

To combat this phenomenon and retain consistent object identity over longer
time intervals and larger displacements, the algorithm periodically augments each
object model by adding new views whenever any object’s appearance has changed
sufficiently. This greatly improves the overall robustness of reacquisition, as it op-
portunistically captures object appearance from multiple aspects and distances and
thus increases the likelihood that new observations will match one or more views
with high confidence.

When the multi-view reasoning has determined that a particular model M is
visible in a given image, we examine all of that model’s matching views v j and con-
sider both the robot’s motion and the geometric image-to-image change between
the v j and the associated observation hypotheses. In particular, we evaluate the min-
imum position change dmin = min j‖p j − pcur‖ between the robot’s current posi-
tion pcur and the position p j associated with the jth view, along with the minimum
2D geometric change hmin = min j scale(H j) corresponding to the overall 2D scal-
ing implied by match homography H j. If both dmin and hmin exceed pre-specified
thresholds, signifying that no current view adequately captures the object’s current
image scale and pose, then a new view is created for M using the hypothesis with
the highest confidence score.

In practice, the system instantiates a new view by generating a “virtual gesture”
that segments the object in the image. SIFT features from the current frame are used
to create a new view as described in Sect. 3.1, and this view is then considered during
single-view matching (Sect. 3.2) and during multi-view reasoning (Sect. 3.3).

4 Experimental Results

We conducted two sets of experiments to illustrate and validate our reacquisition
algorithm on real data streams collected by a robotic platform in outdoor environ-
ments. The first of these focused on demonstrating the advantages of multi-view rea-
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soning over single-view matching in temporally local reacquisition; the second was
designed to evaluate performance under more challenging conditions that include
differences in sensors, illumination, and relative object pose from initial training
through reacquisition.

4.1 Single vs. Multiple Views

Mimicking the scenario outlined in Sect. 2, we arranged the environment as shown
in Fig. 1, with nine pallets (seven on the ground and two on a truck bed). The pallet
loads were chosen such that all but one pallet (containing boxes) had a similar-
looking counterpart in the scene. The robot moved each of the four pallets indicated
in Fig. 1 to another location in the warehouse approximately 50 m away. After trans-
porting each pallet, the forklift returned roughly to its starting position and heading,
with pose variations typical of autonomous operation. Full-resolution (1296×964)
images from the front-facing camera were recorded at 2 Hz. The overall experiment
lasted approximately 12 minutes.

We manually annotated each image with a bounding box for each viewed object
and used these annotations as ground truth to evaluate the performance of the algo-
rithms. Here, a detection is deemed positive if the center of the reprojected (virtual)
gesture falls within the ground truth bounding box.
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Fig. 4 Recall as a function of the robot’s distance (black) and scale change (red) from the original
gesture position. A relative scale of one does not match zero distance due to imprecise measurement
of scale in the ground truth bounding boxes.

Figure 4 indicates the detection rate, with respect to ground truth, for all four
objects as a function of the robot’s distance from the location at which the original
gesture was made. Note that single-view matching yields recognition rates above 0.6
when the images of the scene are acquired within 2 m of the single-view appearance
model. Farther away, however, the performance drops off precipitously, mainly due
to large variations in scale relative to the original view. On the other hand, multiple-
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view matching yields recognition rates above 0.8 up to distances of 5.5 m from the
point of the original gesture and detections up to nearly 9 m away. The plot shows
corresponding recall rates as a function of relative scale, which represents the linear
size of the ground truth segmentation at the time of detection relative to its initial
size.

This set of experiments was conducted under cloudy but bright illumination that
is near-ideal for image feature matching. Additionally, all of the images were ob-
tained from one sensor and processed sequentially, thus limiting scale change dis-
continuities.

4.2 Varying View Conditions

We designed another set of experiments based on data collected in an outdoor lot
at various times over multiple days. These experiments were designed to realize the
guided tour interaction in which the user indicates the locations and identities of
objects as the robot drives by them, and then asks the robot to retrieve one or more
of the objects at a later time. A number of conditions can change between the time
that the object is first indicated and the time it is reacquired, including the physical
sensor (right-facing vs. front-facing camera), illumination, object positions within
the environment, aspect angle, and scale.

Several video clips collected at 2 Hz were paired with one another in five com-
binations. Each pair consisted of a short “tour” clip acquired from the right-facing
camera and a longer “reacquisition” clip acquired from the front-facing camera.
Ground truth annotations were manually generated for each image in the reacquisi-
tion clips and were used to evaluate performance in terms of precision and recall.
We used the metric employed in the PASCAL challenge [4] to deem a detection
correct, requiring that the area of the intersection of the detection and ground truth
regions exceed a fraction of the area of their union.

Table 1 lists the scenarios, their characteristics, and the performance achieved by
our algorithm. Possible condition changes between tour and reacquisition clips in-
clude “sensor” (right vs. front camera), “lighting” (illumination and shadows), “3D
pose” (scale, position, aspect angle), “context” (unobserved object relocation with
respect to environment), “confusers” (identical-looking objects nearby), and “∆ t”
(intervening hours:minutes). True and false positives are denoted as TP and FP, re-
spectively; “truth” indicates the total number of ground truth instances; “frames”
is the total number of images; and “objects” refers to the number of unique ob-
ject instances that were toured in the scenario. Performance is reported in terms of
aggregate precision TP/(TP+FP) and recall TP/truth.

Plots in the figures depict recall rate as a function of objects’ visual scale change
between the first observation (scale=1) and every subsequent observation. Fig-
ure 5(a) shows aggregate performance of all objects for each of the five test sce-
narios, while Fig. 5(b) shows individual performance of each object in Scenario 1.
Figure 6 shows the performance of a single object from Scenario 5 in which the
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Table 1 Conditions and reacquisition statistics for the different experiment scenarios.
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1 Afternoon Afternoon X X X 00:05 378 6 1781 964 59 94.23% 54.13%
2 Evening Evening X X X X 00:05 167 1 167 158 0 100.00% 94.61%
3 Morning Evening X X X X 14:00 165 1 165 154 0 100.00% 93.33%
4 Morning Evening X X X 10:00 260 1 256 242 0 100.00% 94.53%
5 Noon Evening X X X X 07:00 377 1 257 243 0 100.00% 94.55%

context has changed: the object has been transported to a different location while
nearby objects have been moved. Finally, in Fig. 7, we report recall rates for this
object, which is visible in each of the scenarios.

For the above experiments, we manually injected a gesture for each object during
each tour clip while the robot was stationary to initiate model learning. We selected a
single set of parameters for all scenarios: for single-view matching, the SIFT feature
match threshold (dot product) was 0.9 with a maximum of 500 RANSAC iterations
and an outlier threshold of 10 pixels; single-view matches with confidence values
below 0.1 were discarded. The reasoning module added new views when a scale
change of at least 1.2 was observed and the robot moved a distance of at least 0.5 m.

5 Discussion

We described an algorithm for object instance reacquisition that facilitates task-level
autonomy with a mobile robot. The system takes as input a coarse user-specified
object segmentation in a single image from one of the robot’s cameras, then builds
an appearance model of that object automatically and online. Multi-view models
enable robust, long-term matching with very few false positives despite the presence
of drastic visual changes resulting from platform motion, differing sensors, object
repositioning, and time-varying illumination. Figure 8 depicts a few examples.

Despite its successes, our approach has several shortcomings. For one, end-to-
end performance is limited by the reliability of low-level feature extraction and
matching. While SIFT keypoints exhibit good robustness to moderate scaling, global
brightness changes, and in-plane rotation, they are confounded by more substantial
variations due to parallax, lens distortion, and specular reflections (e.g., the metal-
lic pallet). Longer exposure times under low-light conditions amplify additive noise
and motion blur, further degrading frame-to-frame keypoint consistency; similarly,
pixel saturation due to very bright or dark objects (e.g., as observed with the Wash-
ing Machines) reduces contrast and diminishes the number and quality of extracted
keypoints. Figure 9 demonstrates several of these failure conditions.



12 Matthew R. Walter, Yuli Friedman, Matthew Antone, and Seth Teller

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

 

 

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
All Runs

(a) By Scenario

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Relative Scale

R
ec

al
l

 

 

Pallet 1
Pallet 2
Pallet 3
Pallet 4
Pallet 5
Pallet 6
Overall

(b) By Object

Fig. 5 Recall rates as a function of scale change (a) for all objects by scenario, and (b) for each
object in Scenario 1.
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Fig. 6 Recall rates as a function of scale change for an object in different positions and at different
times. The pallet was on the ground during the tour and reacquired 7 hours later both on the ground
and on a truck bed.

Another limitation of our approach lies in the implicit assumption that observed
objects are planar and thus that their frame-to-frame motion is best described by
a plane projective homography. This is certainly untrue for most real objects, and
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Fig. 7 Recall rates as a function of scale change for a single object across all scenarios.

Fig. 8 Images corresponding to positive detections over variations in relative pose, lighting, and
scale. Each row corresponds to a different object, with the left-most image displaying the user’s
initial gesture and the subsequent images displaying the reconstituted gesture (red) and the ground
truth (green). Note that all images are shown at the same pixel scale.

while maintaining multiple object views does improve robustness to non-planarity,
our matching algorithm remains sensitive to drastic parallax, particularly when the
original segmentation engulfs scenery distant from (e.g., behind) the object. One
way to address this is to incorporate 3D information from LIDAR scans or structure-
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Fig. 9 Images that depict failed detections of the toured object. We have found that our algorithm
fails to reacquire objects for which limited contrast due to over-saturation or poor illumination yield
few keypoints. This sensitivity is exacerbated when there is a significant variation in illumination
between the initial segmentation and the reacquisition phase.

from-motion point clouds into the appearance models, which is a subject of ongoing
research. Another strategy would be to relax rigid geometric constraints in favor of
more qualitative graph matching.

Our multiple-view representation currently treats each view as an independent
collection of image features and, as a result, the matching process scales linearly
with the number of views. We suspect that computational performance can be
greatly improved through a bag-of-words representation that utilizes a shared vo-
cabulary tree for fast (sub-linear) matching [12]. Robust statistical optimization via
iteratively reweighted least squares could also improve both runtime performance
and determinism of the approach over RANSAC-based constellation matching.

6 Conclusion

This paper presented a detailed analysis of our reacquisition algorithm by evaluating
its performance under the challenging conditions that are typical of outdoor unstruc-
tured environments. Our opportunistic image-based approach performed well over
a wide range of lighting, scale, and context changes, though it has obvious limita-
tions. We are currently developing a reacquisition method that models each object’s
3D structure to improve system performance and robustness.
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