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Abstract— We present a set of algorithms that recovers

detailed building surface structures from large sets of urban

images containing severe occlusions and lighting variations.

An iterative weighted-average algorithm is introduced to re-

cover high-quality consensus facade texture. 2D and 3D

methods are combined to extract microstructures, facilitat-

ing urban model refinement and visualization.
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I. Introduction

EXTRACTING and rendering detailed 3D urban en-
vironments is a difficult problem. The main bot-

tleneck lies in the need for human intervention in cur-
rent systems, preventing them from being scalable to large
datasets [13]. A large body of research exists for automat-
ing some of the processes, including acquisition of large
real-world datasets [1], [3] and reconstruction of coarse 3D
geometric models (mainly at the level of buildings) [4], [5],
[7], [9]. Detailed analysis of facade texture and microstruc-

ture (surface structures such as windows that possess few
supporting pixels due to insufficient image resolution) has
been very limited.

Texture and microstructure in real imagery are impor-
tant because they provide high visual realism as well as
cultural and functional information of the urban site. In-
teractive extraction methods are not preferable, given the
large number of pixels and structures present in many situ-
ations (e.g. more than a thousand windows for four or five
buildings). The major difficulty for automatic extraction
lies in the severe quality degradation in real-world images
caused by various factors, including (1) varying resolution
due to perspective effects, (2) noise introduction during ac-
quisition, (3) non-uniform illumination caused by lighting
variations and complex environments, (4) occlusions caused
by modeled objects (such as other buildings) and unmod-

eled ones (such as trees, utility poles, and cars). A system
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must be capable of dealing with all these coexisting factors
in order to recover a high-quality texture representation.

Multi-view methods have been proposed for texture
fusion/recovery, such as interpolation methods [6], re-
flectance models [11], and inpainting techniques [2]. These
methods do not handle occlusions automatically. Wang
and Hanson [14] introduced a system that determines mod-
eled occlusions, but not unmodeled ones. Coorg and
Teller [5] developed a median-based technique that repairs
unmodeled occlusions; however, the method may cause
blurred or disrupted boundaries of structures.

We develop a set of algorithms for automating the ex-
traction process. Sec. II describes an iterative, weighted-
average approach to high-quality facade texture recovery.
Sec. III introduces 2D and 3D methods for microstructure
extraction. Sec. IV concludes the paper with discussions.

II. Texture Recovery

We describe a new method to obtain a realistic facade
texture map while removing occlusions and effects of illu-
mination variations. Input to this method is a set of images
annotated with intrinsic camera parameters and reasonably
accurate (but not exact) camera pose, as well as a coarse
geometric model, mainly the facade planes of buildings in
the site (these pieces of information are available using the
algorithms introduced in Sec. I).

As a preprocessing step, the input images are rectified
into facade images, i.e. images of a facade under ortho-
graphic projection. This happens only to a subset of the
input images in which the facade is visible. Fig. 1(a2, b2,
c2, d) shows some sample facade images in our experiments.
Note the significant lighting variations across these images
and the strong occlusions caused by modeled/unmodeled
objects.

Texture fusion is the basic technique for removing the
degradation effects. To facilitate fusion, the facade im-
ages are normalized by linear gray-level stretching; the re-
sulting luminance-normalized facade images (LNF images)
have the same average luminance and thus are comparable
to one another.

The core of our method is a weighted-average algorithm
that generates a consensus texture facade image (CTF im-

age) for each facade from its LNF images:

YCTF[i, j] =
∑

τ

Y τ
LNF[i, j] ∗ wτ [i, j],

∑

τ

wτ [i, j] = 1,
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Fig. 1. Texture recovery. (a) environment mask [a1: camera position, a2: LNF image, a3: mask]; (b) obliqueness mask [b1: camera position,
b2: LNF image, b3: mask]; (c) correlation mask [c1: a version of CTF image, c2: LNF image, c3: mask]; (d) sample original facade images
of this wall; (e) initial CTF image without deblurring; (f) CTF image after iterative deblurring.

in which Y τ
LNF is LNF image τ , YCTF is the fused CTF im-

age, and wτ is the weight factor determined by three masks

described below. A mask is an image whose pixel value in-
dicates the relative importance of the corresponding pixel
in the LNF image. The three masks measure three different
physical attributes.

Environment Mask is a binary mask that specifies
whether a pixel is occluded by a modeled object (Fig. 1(a)).
It is computed using the camera geometry and the coarse
3D model: M τ

E[i, j] is set to 0 if pixel [i, j] is occluded;
otherwise, it is set to 1.

Obliqueness Mask is a grey-scale mask that represents
the obliqueness of a facade as seen from the camera
(Fig. 1(b)) and is also computed from the geometry:

Mτ
O[i, j] = cos θτ (i, j),

in which θτ (i, j) is the camera viewing angle at [i, j] on the
facade measured from the normal of the facade.

Correlation Mask is a grey-scale mask intended to ac-
count for the effects of unmodeled occlusions and local il-
lumination variations. To compute this mask, an initial
CTF image is needed, and the mask is calculated using a
standard linear correlation between the LNF image and the
initial CTF image (Fig. 1(c)):

Mτ
C[i, j] =

Covi,j [Y
τ
LNF, YCTF]

Vari,j [Y τ
LNF]Vari,j [YCTF]

,

where Covi,j and Vari,j are based in an image window,
centered at [i, j], of a predetermined size (8 × 8 in our ex-

periments). The initial CTF image can be obtained using
traditional methods [5], [14] or using the weighted-average
algorithm without the correlation mask. In practice, the
weighted-average algorithm runs iteratively (see below),
and in each iteration a new CTF image is used to calculate
Mτ

C.
The weight wτ at pixel [i, j] of LNF image τ is computed

using the following formulas:

W τ [i, j] = Mτ
E[i, j]Mτ

O[i, j]Mτ
C[i, j],

wτ [i, j] =
W τ [i, j]∑
τ W τ [i, j]

.

The CTF image thus obtained may look blurred
(Fig. 1(e)) because the LNF images may not be perfectly
registered due to errors in camera parameters. A deblur-
ring process is used that rewarps the source LNF images
to align with the CTF image [12]:

[ u, v, 1 ]T ∼= P [ u′, v′, 1 ]T ,

which warps pixel [u′, v′] to [u, v] using P . Our goal is to
find a warp P that minimizes ECTF:

ECTF =
∑

u,v

[e(u, v)]2,

[e(u, v)]2 = W τ [u′, v′](YCTF[u, v] − Y τ
LNF[u′, v′])2.



Fig. 2. CTF textured model.

Note that the overall weight mask W τ is used, reflecting
the degree of confidence we have in Y τ

LNF. The Levenberg-
Marquardt algorithm [10] is employed to solve the con-
strained minimization problem. It is an iterative process;
in each iteration, a new P is calculated, the LNF images
are rewarped, and the weighted-average algorithm is rerun
to obtain a new CTF image.

The deblurring process is also executed iteratively. Re-
call that the correlation mask MC is dependent on an initial
CTF image. After deblurring, the new CTF image is used
to compute a more accurate MC, which then again updates
the CTF image and triggers another round of deblurring.
The convergence of the recursion is ensured by stopping
when the difference between two successive CTF images is
sufficiently small.

Experiments were carried out to test against a dataset
acquired at Technology Square, MIT, an office park of four
buildings. About 4,000 images were captured at 81 dis-
tinct locations in this site. LNF images were extracted for
each facade. Fig. 1(f) shows the CTF result of the itera-
tive weighted-average algorithm on a facade, for which 28
LNF images were extracted from the database and used to
generate the CTF image. Most of the degradation effects
in 1(d) were satisfactorily removed, and the luminance is
reasonably consistent across the entire CTF image. Fig. 2
shows a perspective view of the resulting textured model
of this site.

III. Microstructure Recovery

Accurate 3D recovery of detailed facade surface struc-
tures from images is difficult, mainly due to the small ratio
of the depth of structures (on the order of centimeters) to
the camera-to-wall distance (on the order of tens of meters).
We developed a hybrid method that combines information
of both 2D shape/position and 3D depth for microstructure
recovery.

The 2D shapes/positions of microstructures are ex-
tracted from the CTF images. Although CTF images
provide a good texture representation, they still suffer
from degradation such as global illumination variation (e.g.
lower parts of walls are usually darker than upper parts),
making a global thresholding algorithm ineffective for mi-
crostructure detection. We develop a 2D extraction al-
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Fig. 3. Oriented region growing (ORG). (a) one iteration of region
growing; (b) determining the grown boundary location.

gorithm by combining an oriented region growing (ORG)
module and a periodic pattern fixing (PPF) module. The
algorithm detects a generic class of objects that exhibit a
regular size, pattern, and orientation. The microstructures
are symbolically represented as a set of disjoint 2D rect-
angles, each having two vertical and two horizontal edges.
Many windows in urban areas fit well into this representa-
tion.

ORG is a “bottom-up” extraction module, starting from
a seed rectangle in the CTF image and growing iteratively
into a best-fit structure (Fig. 3). It is capable of handling
global illumination variations, only requiring that the in-
tensity of the structure be locally evident. Details of ORG
can be found elsewhere [14].

PPF is a “top-down” process for fixing the pattern of
symbolic microstructures extracted by ORG. A high-level
constraint is employed by this module, enforcing that struc-
tures of similar size have a periodic pattern in horizontal
and vertical directions on the facade (Fig. 4). Microstruc-
tures are firstly classified into groups, each of which rep-
resents a certain size range. The horizontal and vertical
periods of a microstructure group are then found using a
standard clustering algorithm based on their neighboring
distances. Missing structures are filled in using interpola-
tion and/or extrapolation.

In reality, the periodic pattern constraint may not
be strictly satisfied on all buildings. To ensure that
missing candidate are only filled in for structures that
exist, a “bottom-up verification” test is used to ver-
ify their existence in the LNF images before interpola-
tion/extrapolation. On each LNF image, a vertical and
horizontal edge detection algorithm is performed at loca-
tions of missing candidates (if they are visible). A missing
candidate is accepted only if there are sufficiently many
LNF images that support the candidate.

Fig. 5 shows the results of the ORG/PPF modules on
one facade. A total of ten facades, representing the ma-
jor buildings in Technology Square, were used to test the
extraction algorithm. Among the 1146 manually counted
windows on the ten facades, 1119 of them have been ex-
tracted correctly. Only 27 are missing, accounting for 2.4%
of the actual windows. The 1119 extracted windows ac-
counts for 98.9% of the extraction results (totally 1133);
there are only 14 false positives (or 1.2%). An examination
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Fig. 4. Periodic pattern fixing (PPF).

of the images shows that the missing windows are mainly
caused by low contrast of the windows and their blurred
edges. False positives are due mostly to the complex inten-
sity patterns caused by rectangular structures on the walls
that look like windows but are not.

The goal of 3D depth estimation is to recover the relative
depth of microstructures on the facade surfaces. We use a
revised version of Fua and Leclerc’s 3D mesh generation al-
gorithm [8] for depth recovery. This approach has a number
of advantages over traditional stereo analysis based on im-
age pairs: it takes information from any number of images;
geometric constraints can be added (particularly advanta-
geous for largely planar surfaces); and additional informa-
tion, such as that of occlusions, can be incorporated. The
algorithm starts with a planar surface and deforms it by
iteratively minimizing E(S):

E(S) = λDED(S) + λSES(S) + λGEG(S),

λD + λS + λG = 1,

in which ED is a planar surface constraint, ES a correlation-
based stereo constraint, and EG a geometric constraint.
Details for these components and the minimization scheme
can be found elsewhere [8].

In order to take advantage of knowledge obtained in
Sec. II, the ES constraint is modified by excluding occlu-
sions from stereo computation. We define an occlusion-

removed facade image (ORF image) by

Y τ
ORF[i, j] = Y τ

LNF[i, j]Mτ
EMτ

C’,

where Mτ
E is the environment mask that represents the

modeled occlusion, and M τ
C’ is a binary version of the cor-

relation mask M τ
C that represents the unmodeled occlusion.

We use Y τ
ORF rather than Y τ

LNF to calculate ES, thus fo-
cusing on the visible parts of each facade.

The mesh algorithm was applied to all facades in our
dataset (we set λD = 0.1, λS = 0.9, and λG = 0). Fig. 6
shows the depth map of one of the facades. The results are
noisy, but the general pattern of windows is evident.

2D shape and 3D depth are combined for a final repre-
sentation of the microstructures. We made an assumption

(a)
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Fig. 5. Symbolic window extraction. (a) CTF image; (b) results of
ORG; (c) results of PPF.

that a facade surface can be approximated by two depth
layers: the wall layer and the window layer. Detailed non-
flat portions on a wall are beyond the scope of our current
discussion. With this assumption, the average depth inside
the 2D rectangles is used to represent the depth of the 3D
microstructures. Fig. 7 shows an example of the recovered
textured 2D/3D structures.

IV. Discussion

We described a suite of algorithms for detailed urban
environment analysis, including an iterative, weighted-
average algorithm for recovering a consensus texture map,
nearly free from occlusions (modeled and unmodeled) and
local illumination variations, and a hybrid 2D/3D method
to extract surface microstructures.

It is worth noting that the proposed algorithms are ef-
fective for solving a generic set of urban environment ex-
traction and refinement problems, in which the wall sur-
faces are largely planar and the microstructures are mainly
rectangular. Many buildings in urban environments satisfy
these constraints. (The PPF algorithm, which requires a
periodic pattern of the microstructures as an additional



Fig. 6. Facade depth estimation.

constraint, is an optional module for large-size buildings
and is not a necessary component for small structures.) In
addition, practicality is one of the design emphases of the
algorithms. The deblurring process allows the algorithm to
tolerate camera pose error that often arises in real applica-
tions. The 2D microstructure module extracts structures
of any size greater than 3×3 pixels, needing no interactive
parameter adjustment. Our experiments show that only
about a dozen original facade images, with quality shown
in Fig. 1(d), are needed for texture recovery with a sat-
isfactory result; this is a reasonable number of images in
practice.

There are several directions in which the algorithms can
be extended to solve more general problems. First, the ex-
tracted 2D microstructures can provide partial geometric
constraints in EG(S) for depth estimation. How to im-
prove the depth estimation by incorporating the partial
constraints is a topic for future study.

Second, the ORG algorithm is designed to extract a
generic class of objects. Although a large variety of surface
microstructures fit into this class, it has two major limita-
tions: the shape of each microstructure is approximated by
a rectangle, and the luminance of the microstructure must
be relatively uniform. For more special problems, special
object detection modules should be used as a successor of
ORG/PPF.

Third, the global illumination variation problem has not
been solved in the CTF algorithm. For rendering purposes,
a better texture representation may be demanded. This
problem could be solved using the heuristics given by the
periodic pattern of microstructures. As the microstruc-
tures share a common shape and common period, they
should also share the illumination in normal cases. An
illumination adjustment algorithm could thus be designed
to take advantage of this.
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