High-Fidelity Radiosity Rendering
at Interactive Rates

Stephen Hardt Seth Teller
MIT Synthetic Imagery Group

Abstract

Existing radiosity rendering algorithms achieve interactivity or high fidelity, but not both. Most
radiosity renderers optimize interactivity by converting to a polygonal representation and Gouraud
interpolating shading samples, thus sacrificing visual fidelity. A few renderers achieve improved fi-
delity by performing a per-pixel irradiance “gather” operation, much as in ray-tracing. This approach
does not achieve interactive frame rates on existing hardware.

This paper bridges the gap, by describing a data structure and algorithm which enable interac-
tive, high-fidelity rendering of radiosity solutions. Our algorithm “factors” the radiosity rendering
computation into two components: an offline phase, in which a per-surface representation of ir-
radiance is constructed; and an online phase, in which this representation is rapidly queried, in
parallel, to produce a radiosity value at each pixel. The key components of the offline phase are a
heuristic discontinuity ranking algorithm, which identifies the strongest discontinuities, and a hybrid
quadtree-mesh data structure which prevents combinatorial interactions between most discontinu-
ities. The online phase involves a novel use of perspective-correct texture-mapping hardware to
produce nonlinear, analytic shading effects.

1 Introduction

1.1 Some Limitations of Polygon Hardware

Modern graphics workstations, although extraordinarily powerful, can be ill-suited for viewing global
illumination solutions. Polygon hardware typically linearizes both geometry and shading, whereas the
illumination function over a surface will in general have discontinuities along curved contours, and vary
in a non-polynomial (and certainly non-linear) fashion even where it is smooth. Moreover, screen-space
interpolation is not invariant under general viewing transformations, causing shading artifacts during
interactive viewing.

Polygon-rendering hardware has been successfully used in interactive walkthroughs of globally illumi-
nated environments [1, 5, 10]. In these interactively rendered sequences, however, the surface geometry
is a collection of polygons, and the surface shading is a screen-space linear interpolation of a function
whose value is specified at three points (typically, the vertices of a triangle) [2]. Although higher-order
geometry primitives exist on some architectures [21], even these polygonalize, then Gouraud interpolate
over, the interiors of the resulting triangles. Graphics hardware architectures that perform higher-order
shading have been built [9, 17], but are not widely available.

These facts partially explain why many of the beautiful images published in the global illumination
literature (e.g., [19]) are produced by ray-casting algorithms which, at each pixel, identify surface points
to be shaded, then compute analytical irradiance values there with an object-space algorithm. Given
the solution data, this rendering process can consume tens of seconds or minutes per image, depending
on scene complexity.



1.2 Towards Accurate Interactive Display

We discuss the generation of accurate irradiance and radiosity values for a polyhedral scene rendered
from an interactively-controlled viewpoint. Our implementation uses standard rendering hardware as a
massively parallel geometric query engine operating upon a large, object-space, spatial data structure.

We assume that a hierarchical radiosity solution method is in use, which produces as output a
discretization of the input into elements annotated by radiosity values, and an organization of interactions
between elements into links annotated by blockers (as in [14, 26]). From interactions among the blockers
and light sources, we rank irradiance discontinuities by their strength on the receiver, and select the
strongest. The selected discontinuities partition each solution element into disjoint regions, inside each
of which none of the (selected) discontinuities can be present. We then approximate the irradiance
function over each region using a polynomial interpolant, whose domain is the surface itself.

In an interactive session, a synthetic eyepoint moves through the scene under user control. In a
novel use of rendering hardware (normally used to display perspective-correct textured polygons), the
radiance data structure is queried in object space, at every pixel. Next, a host-parallel pass through
the query structure generates the radiosity at each pixel from the relevant irradiance interpolant and
the surface’s reflectance and emittance. Qur prototype implementation simultaneously captures global
lighting effects and evaluates superlinear radiosity interpolants at interactive rates.

1.3 Algorithmic Foundations

Our algorithms and implementation build upon several ideas and techniques from the literature:

Hierarchical radiosity. We adopt the algorithms of [14, 11, 12, 26] and use them as a hierarchical
radiosity solver. We assume that these algorithms converge to an accurate radiosity solution, but do not
consider convergence or solver accuracy issues here.

Irradiance data structure. We use the idea of a per-surface data structure which approximates
spatially varying irradiance [27, 19, 20, 3].

Discontinuity identification. Our algorithms explicitly identify irradiance discontinuities in order
to improve the visual fidelity of the computed solution, as have [4, 15, 22, 20, 25, 8].

Hardware acceleration of object-space computations. As did the “hemi-cube” [7], “two-pass”
[23], and “3D painting” [13] algorithms, we use fast graphics hardware to discretize and accelerate object
space computations.

Backprojection of occluders. We use the notion of “backprojection” for the computation of
accurate source-to-point irradiance in the presence of occluders [8].

This paper introduces several new ideas and techniques, among them:

Discontinuity ordering. We select from a collection of irradiance discontinuities via a heuristic
estimate of their relative strengths at the receiver. Although our irradiance gradient is heuristic, it is less
computationally intricate than those of [16, 27, 3]. Moreover, both discontinuities caused by emitters
and reemitters are handled.

Hybrid mesh structures. Quadtrees are fundamentally unable to model general domains, except
by a sort of generalized (and aliasing-prone) binary subdivision. A hybrid of quadtree and explicit
meshing yields a meshing scheme more flexible than quadtrees, yet more efficient than explicit meshing.

Hardware acceleration of irradiance queries. We describe a novel use of the polygon-rendering
and texture-mapping capabilities of a high-end graphics workstation to generate real-time irradiance
queries, in parallel, for all pixels of an image. Our approach avoids both direct rendering of polygonalized
elements, and the use of screen-space interpolation (i.e., Gouraud shading).



2 High Fidelity Rendering

This section describes our interpolant data structure, construction scheme, and rendering algorithm.
The construction scheme requires:

1. a set of solution elements from an HR algorithm;
2. an algorithm for identifying discontinuities, and sorting them in order of strength;

3. a function IrradianceAtPoint() which computes the irradiance at any source point due to all
receivers irradiating that point.

We first show how to generate a data structure which accurately represents irradiance, and how to
use this structure for rapid rendering. Methods for generating (1), (2), and (3) then follow in Sections
3, 4, and 5 respectively.

2.1 Data Structure

The structure is a list of triangles, each annotated with a quadratic interpolant for irradiance (Figure
1); an expression in s and ¢ which smoothly approximates irradiance over the domain region. We
use quadratic interpolants, as we have found that constant and linear interpolants are inadequate to
capture the radiosity function faithfully, even in regions where it varies smoothly, and that higher order
interpolants do not significantly improve the interpolant fit.

For each (quadtree) solution element, we rank the discontinuities affecting the element and select those
with the strongest effect on the receiver. These discontinuity segments form the input to a constrained
Delaunay triangulation algorithm [19], which produces a triangulation containing the segments, along
with adjacency information about the triangles. These triangles are then assembled into a list, and an
interpolant constructed for each triangle (Figure 2).

(0,0

Figure 1: Quadratic interpolant. The six uprights

i 2: Alli 1 .
represent the sample values. Figure interpolants on a quadtree

2.2 Constructing Interpolants

For each triangle, IrradianceAtPoint () is invoked at the triangle vertices and edge midpoints to collect
six irradiance values r;. Using these six values, we construct an irradiance interpolant over the entire
triangle, as a function of barycentric coordinates (s, t).

Given six barycentric sample locations p; = (s;,t;) and corresponding values r;, the interpolant
construction must determine coefficients A...F' of the function

R(s,t) = As* + 2Bst + 2Cs + Dt* + 2Et + F (1)



so that
R(Si,ti) =7, 0<1i<6.

In general, this requires the solution of the quadratic form

A B C S;
(Sz' t; 1) B D FE t; =7, 0<i<6.
C E F 1

However, judicious choice of a barycentric coordinate system and sample locations (the triangle
vertices and edge midpoints) reduces the problem to solving a system of six linear equations. We write

R(0,0) 0 00001 A ro
R(3,0) 101001 B 1
R(1,O) | _| 1 0 2 0 0 1 C|_| r
Ri503) [ | & 2 L 3 L 1D ]| |
R(0,1) 000121 E rs
R(0,3) 0 00 5 11 F rs

Inverting the 6 x 6 matrix symbolically and multiplying by the sample vector yields the closed form

solution for the coefficients:
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The six resulting floating point numbers ( A 2B 2C D 2E F ) are then stored as the inter-
polant for the triangle in question. (Storing 2B, 2C, and 2E, rather than B, C, and E, avoids three
multiplies during subsequent evaluation.)

2.3 Rendering

We now have a list L of triangles, each annotated with an irradiance interpolant expressed in terms of
triangle barycentric coordinates. Our goal is to assign each pixel P in the output image the radiosity
value for that point B (on the visible triangle T') that projects to P. We do so with a multi-pass
algorithm on a graphics workstation.

To generate each frame of an interactively rendered sequence, we:

(a) Generate an image 7; in which the value at each pixel P encodes which triangle T is visible at P;

(b) Generate an image 7, in which the value at each pixel P encodes the barycentric coordinates B of
the object-space point that projects to P;

(c) Using 7Z; and Z,, generate the output image O by looping over all pixels P and evaluating T’s
irradiance interpolant at the object-space point corresponding to P;

(d) Copy O to the framebuffer, and swap it forward for display.

2.4 Visible Triangle Determination

Task (a), visible triangle determination, is accomplished with the polygon fill and depth-buffering hard-
ware. Each triangle T is rendered as a solid “color,” a 24-bit encoding of the index of T in the list
L (Color Plate A). This rendering is done in the hardware backbuffer to avoid overwriting the frame
currently displayed in the frontbuffer. Occlusion is handled properly by the depth-buffering hardware.
After all triangles have been rendered, the framebuffer is copied to host memory to create Z;.



2.5 Barycentric Coordinate Determination

To accomplish task (b), we use a 256 x 256 x 32 bit texture map. This texture consists simply of
an encoding of s and t at texel (s,t). We render each element triangle, issuing it with (floating-point)
texture coordinates (0,0), (1,0), and (0,1). The perspective-correct texture-mapping hardware deposits,
at each pixel, the barycentric coordinates of the point on the visible triangle (Color Plate B). Note that
Gouraud-interpolation hardware cannot be used for object-space interpolation, since it interpolates in
screen space. Again, rendering is done in the backbuffer and occlusion is handled properly by the depth-
buffering hardware. Finally, after all triangles have been rendered, the framebuffer is copied to host
memory to create Z,.

2.6 Evaluating the Interpolant and Radiosity

To complete task (c), we loop over every pixel P in the output image 0. The corresponding pixels in
the scratch images 7; and Z, give the visible triangle T' (and its interpolant) at P and the barycentric
coordinates B on T of the point that projects to P, respectively. T’s interpolant is evaluated at B
to produce irradiance, which is then multiplied by reflectivity and summed with emissivity to produce
radiosity. Given (s,t), evaluating

R(s,t) = As®> + 2Bst + 2Cs + Dt* + 2Et + F

requires only eight multiplies and five adds (the factors of two are folded into the stored coefficients).

2.7 Depositing the Rendered Pixels

The final step, part (d), simply copies O to the display backbuffer and swaps front and back buffers for
an instantaneous update (Color Plate C).

2.8 Costs and Parallelism

Steps (a) and (b) consist of flat-shaded polygon rendering, texture mapped polygon rendering, and
copying pixels from the framebuffer to host memory. Step (d) consists of copying pixels from host
memory to the framebuffer. These operations are all extremely fast (i.e. can easily be performed at
interactive rates) on a high-end graphics workstation such as the Reality Engine [2].

The bottleneck of our method is step (c), taking 10 — 100 times as long as the other steps. Fortunately,
this operation is highly parallelizable. The color of each pixel depends only on the triangle list and the
scratch images 7; and 7. Since the color of every pixel in the output image is independent of the color
of every other pixel, there is no data dependency problem. The time to evaluate the radiosity for any
pixel is constant, so there is no load balancing problem.

On our host-parallel system, we create a separate evaluation process for each of the N physical
processors and partition all pixels on the screen equally among them. Our implementation uses four
processors (RISC R4400s running at 250 MHz), shared memory for communication between processes,
and hardware locks for synchronization.

3 Radiosity Solution

The underlying radiosity solver is a reimplementation of the hierarchical radiosity and wavelet radiosity
algorithms described in [14, 11, 26]. Solving the global pass of the radiosity solution provides us with

e A quadtree subdivision of the input geometry;



o A radiosity value for each quadtree node;
e A “link” representing each element-element interaction;

o A set of “blockers” for each link.

This computed solution satisfies requirement (1) for the high fidelity rendering algorithm; that is, it
is a suitable input for interpolant construction.

4 Selecting Discontinuities

4.1 Motivation

The irradiance function has discontinuities due to contact and occlusion. Since smooth interpolants
do not perform well in the presence of discontinuities, researchers have proposed the construction of
“discontinuity meshes,” in which the solution elements (i.e., function domains) are explicitly meshed,
in order to introduce boundary curves wherever discontinuities are detected [4, 19, 15, 20, 22, 25, 3, 8].
Once discontinuities have been banished from the interior of the element, a smooth interpolant can
be fit, although for non-trivial domains this requires some fairly complex geometric and topological
infrastructure [22, 19, 18].

We assume, as in [14], that from every quadtree solution element all sources of irradiance there may
be found, and that relevant blockers are associated with all source-receiver links. For each receiver
element and its links, we identify the curves of irradiance discontinuity on the element. This is done
by considering all edge-edge (EE) and vertex-edge (VE) pairs drawn from among the light source and
blockers, as in [15, 20]. Currently, we ignore triple-edge (EEE) critical surfaces as these generally have
a weak visual effect.

A general quadtree element, attempting to capture irradiance due to a multi-sided light source shining
past some number of blockers, may intersect many discontinuity surfaces. However, quadtree subdivision
of a node will tend to reduce the number of discontinuities impinging on the node’s children.

4.2 Discontinuity Ranking

Figure 3: An EV(edge-vertex) discontinuity.

Geometric interactions (horizons and occlusion) tend to produce an enormous number of discontinuity
surfaces in a typical scene, and many of these surfaces will intersect a typical receiver surface. However,
most of the geometric discontinuities will be quite weak radiometrically; consequently, they will have
little or no visually discernible effect. We propose a method for ranking discontinuities by a heuristic
“weight,” w, defined as follows:

w= max(%) - By
br



Above, By, is the radiosity of the source, ds and d, are the distances along a line in the VE or EV
swath from the source to blocker and from the source to receiver, respectively, and maximization occurs
over all pairs of source-blocker vertices involved in the discontinuity. Figure 3 shows the configuration
for an EV discontinuity. VE discontinuities are handled similarly.

This weight is the product of a geometric and a radiometric factor. The geometric factor, max (g:" ),
is proportional to the rate at which the source becomes visible (or obscured) as seen by an observer
crossing the discontinuity. The radiometric factor is By,.; the brighter the source, the stronger the

discontinuity.

For each leaf in the quadtree, we compute the k worst discontinuities of weight at least wy;,, where
k and w,;, are parameters to the algorithm (Figures 4, 5, and 6). (The minimum weight criteria
avoids expending computational effort meshing solution elements which are impinged upon only by
weak discontinuities.)

Figure 4: k = 10, wpin = 0. Figure 5: k = 10, wpin = 10. Figure 6: k = 10, wyn = 100,

This identifying and ranking scheme for discontinuities impinging on each quadtree leaf satisfies
requirement (2) of the high fidelity rendering algorithm.

5 Accurate Point Irradiance

In the spirit of “two-pass” methods [23, 19], we use the coarse hierarchical radiosity solution to compute
more accurate radiosity values at specific points on the geometry. For a point z, we compute the point-
to-polygon form factors from z to all sources visible from z [6]. To achieve point-to-source form factors
with accurate visibility, we “backproject” potential blockers to the source [8], and add only irradiance
from unobscured fragments.

This irradiance gathering operation satisfies requirement (3) of the high fidelity rendering algorithm.

6 Implementation

We implemented these algorithms on a Silicon Graphics Reality Engine with four 250 MHz MIPS RISC
R4400 CPUs and 512Mb of memory. The underlying radiosity solver is a reimplementation, in C++,
of the hierarchical radiosity and wavelet radiosity algorithms described in [14, 11, 26]. The system
components and code complexity are as follows:

e Form factor and radiosity solver (18,000 lines of C++);

¢ Interpolant module (1500 lines of C++);



e User interface (4500 lines of C++);
e Rendering module (3000 lines of C++);

e Computational geometry and math modules (3000 lines of C++).

Our test scene, comprised of about sixty quadrilaterals, is shown in Color Plate D. The hierarchical
radiosity algorithm, with the allowable error set to 0.1W /M2, the maximum number of discontinuities
per receiver set to 10, and the minimum discontinuity weight set to 100, ran to convergence on this
input in less than two minutes, and meshed the input surfaces into 1622 quadtree (leaf) elements. After
triangulation, there were 6576 triangles (interpolants), an average of about 4 triangles per element.
Figure 6 shows the resulting quadtrees and triangulations. Interpolant construction required two and a
half hours of CPU time (running on a single processor), about eighty times the cost of computing the
radiosity solution.

Color Plate D is a screen snapshot taken from an interactive session viewing the office model at
NTSC (640 x 480) resolution. Our real-time rendering algorithm achieved 2.3 updates per second for
this model. This simple office scene serves to highlight the discontinuity resolution and shading abilities
of the techniques described here. Note that the mesh (Figure 6) is relatively coarse, but still yields a
crisp image due to the use of irradiance interpolants.

Figures 7 and 8 show a detail view of the corner near the light source, which contains a strong
horizon discontinuity. The difference between Gouraud-shaded rendering and interpolant rendering is
particularly evident in this region, and on the walls near the desk and desk lamp.

Figure 7: Gouraud shading. Figure 8: Quadratic interpolant rendering.

Our implementation has at least two limitations, namely 1) it processes only polyhedral scenes, and
2) since our techniques rely on graphics hardware, they operate with relatively low numerical precision.
However, we expect the latter concern to be ameliorated by the increasing precision of next-generation
software and hardware architectures. Generalizing to non-polyhedral geometries remains a difficult
problem.

7 Future Work

7.1 Improved Weighting Metric

We are experimenting with an improved method for ranking discontinuities by their worst-case radiomet-
ric “weight.” The weight of a discontinuity produced by a specific source, blocker, receiver combination
is derived by bounding the maximum change in the radiosity function, per unit length on the receiver.
This weight will be proportional to the source radiosity, and to the change in solid angle subtended by
the source as viewed from the receiver, as a result of motion on the receiver across the discontinuity.



7.2 Transport vs. Representation Error

The transport-based error criteria used by hierarchical radiosity algorithms is extremely conservative,
and can do far more work on a surface than is required to capture the irradiance there faithfully (consider
hundreds of strong sources arranged so as to produce nearly constant irradiance; a transport-based HR
algorithm would subdivide to great depth to perform each source-receiver transport accurately). Clus-
tering techniques such as [24] ameliorate this disadvantage somewhat, but still do not drive subdivision
based on representation error, a quantity which global illumination algorithms strive to minimize.

We believe that a subdivision criteria based on representational error — that is, an estimate of the
error between represented radiosity and that due to all sources irradiating the receiver — will be necessary
to achieve algorithms that are efficient for a broad range of scenes. We have implemented a strategy for
representation-based subdivision, with promising initial results for small scenes.

7.3 Extension to Radiance

Radiosity algorithms are giving way to those for radiance, a much more complex 4-dimensional quantity
associated with each surface point’s position, and the direction from which the point is viewed. We
plan to extend our algorithms to operate on a radiance data structure, by rendering (a discretized
representation of) the direction (4, ¢) from which each surface point is viewed, in object space. The
assembled values (s,t,0,¢) will then be used to evaluate a suitable 4-dimensional quadratic radiance
interpolant.

8 Conclusion

Generating high-quality imagery that precisely captures diffuse irradiance is a computationally expensive
proposition. We presented a data structure which captures a representation of irradiance for every point
on every surface in a scene. Later, in combination with a fast massively parallel graphics hardware
rendering architecture, the data structure is queried, in parallel, to produce quadratically interpolated
radiosity values at interactive rates.

One of the scheme’s strengths, its use of rendering hardware, can also be considered a limitation
due to that hardware’s limited precision. However, software advances (e.g., OpenGL) and hardware
augmentations (e.g., higher iterator precision and framebuffer resolution, larger textures, and object-
space “Gouraud” interpolation) should make these techniques both more efficient and accurate.

The realization of this technique required advances at both theoretical and practical levels. The
theoretical advances of this paper were the ranking of discontinuities by relative strengths, and a “fac-
toring” of radiosity rendering into online and offline components. The practical advances were the use
of texture-mapping hardware for barycentric coordinate generation, and the introduction of a hybrid
quadtree-mesh, a quadtree with discontinuity-meshed leaves,
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