A Conservative O(mnd)-Time Infeasibility Test for Linear Programs Posed Within a Convex Region Seth Teller, MIT

The following is a simple observation leading to a "fast infeasibility test" for linear programs posed inside convex regions for which a vertex description is known. For a set of m constraints and n vertices in d dimensions, the test requires $O(m \cdot n \cdot d)$ time.

The test is conservative; if it succeeds, the posed LP is known to be infeasible within the specified region. If the test fails, the LP must be solved using other means.

Theorem. Given n points \mathbf{v}_j , $1 \le j \le n$, and m hyperplanes \mathbf{h}_k , $1 \le k \le m$, such that $\forall j$, $\sum_{k=1}^{m} (\mathbf{h}_k \cdot \mathbf{v}_j) < 0$, there exists no point \mathbf{p} in $conv(\mathbf{v}_j)$ such that $\forall k$, $\mathbf{h}_k \cdot \mathbf{p} \ge 0$. (Here, the inner product represents the signed distance between a point and plane.)

Proof (by contradiction). Suppose there exists a point **p** in $conv(\mathbf{v}_i)$ such that

$$\forall k, \mathbf{h}_k \cdot \mathbf{p} > 0.$$

By convexity,

$$\mathbf{p} = \sum_{j=1}^{n} c_j \mathbf{v}_j; \ \ \forall j, c_j \ge 0; \ \text{and} \ \sum_{j=1}^{n} c_j = 1.$$

Substituting and summing over k,

$$\sum_{k=1}^{m} \mathbf{h}_k \cdot \sum_{j=1}^{n} c_j \mathbf{v}_j \ge 0.$$

Moving the inner product inside the j summation,

$$\sum_{k=1}^{m} \sum_{j=1}^{n} c_j(\mathbf{h}_k \cdot \mathbf{v}_j) \ge 0,$$

and exchanging summation order yields

$$\sum_{j=1}^{n} c_j \left(\sum_{k=1}^{m} (\mathbf{h}_k \cdot \mathbf{v}_j) \right) \ge 0,$$

a contradiction, since the c_i are nonnegative and not all zero.

Seth Teller, Princeton CS Dept., Spring 1994