Proc. 1997 Image Understanding Workshop, pp. 857-862, May 1997

Matching and Pose Refinement with Camera Pose Estimates

Satyan Coorg*

Seth Teller

MIT Computer Graphics Group
545 Technology Square NE43-217
Cambridge MA 02139
satyan@graphics.lcs.mit.edu, http://graphics.lcs.mit.edu

Abstract

This paper describes novel algorithms that use
absolute camera pose information to identify
correspondence among point features in hun-
dreds or thousands of images. Our incidence
counting algorithm is a geometric approach to
matching; it matches features by extruding
them into an absolute 3-D coordinate system,
then searching 3-D space for regions into which
many features project.

The absolute pose estimates reported by our
instrumentation are accurate, but not perfect.
Thus, we also consider the problem of refin-
ing these pose estimates, given feature matches
from a set of images. We describe a pose
refinement algorithm which decouples transla-
tion (position) estimates from rotation (atti-
tude) estimates, and can incorporate matches
from many hundreds or thousands of images.

1 Introduction

Many 3-D reconstruction algorithms rely on
a matching or correspondence step to identify
constraints corresponding to the scene geome-
try; these constraints are used to guide the 3-
D reconstruction process. Typically, matching
is performed using some image attribute (e.g.,
pixel luminance [Gennery, 1977]) or some geo-
metric attribute (e.g., length and orientation of

*Funding for this research was provided in part by the
Advanced Research Projects Agency of the Department
of the Defense under Office of Naval Research contract
N00014-92-J-1310.

edges [Ayache, 1991]). While these techniques
work well for images taken from nearby camera
positions, they are less effective for disparate
images taken from cameras that are far from
each other.

In this paper, we design a matching algorithm
that uses camera pose estimates (provided by
physical instrumentation) to over-constrain the
matching problem, identifying matches by ap-
plying geometric constraints imposed by the
camera, positions. In some ways, our algorithm
is similar to use of the epipolar constraint in
stereo vision [Faugeras, 1993], but generalizes
that method in its incorporation of many cam-
eras and images.

As the absolute pose estimates reported by our
instrumentation are not perfect, we also con-
sider the problem of camera pose refinement,
i.e., computing accurate camera poses for many
images, given matches between points and fairly
accurate initial pose estimates.

Much of the existing research on pose refine-
ment has revolved around the assumption that
no 3-D information is available [Mohr et al.,
1995, Faugeras, 1992]. The basis of these al-
gorithms is the epipolar constraint between two
images:

m Fm' =0

where F is the 3 x 3 fundamental matrix re-
lating two (projective) points m and m’ in the
two images. Determining the fundamental ma-
trix is equivalent to determining the (relative)
poses of the two cameras involved. Given eight

or more point correspondences, it is possible to
determine the fundamental matrix up to a scale
factor using the eight point algorithm [Longuet-
Higgins, 1981]. However, typical algorithms
[Faugeras, 1992, Hartley, 1995] use more points
than eight in order increase the robustness of
the algorithm.

While this technique performs well for pairs of
images, there are several disadvantages in using
the fundamental matrix technique for a large
number of images. First, these algorithms in-
volve only pairwise matching; using them to
compute pose for m cameras pairwise may re-
sult in large “drift” error. Second, they de-
termine camera pose and 3-D positions only
up to a projective transformation, which needs
to be “corrected” as a post-processing step.
Third, the use of projective matrices increases
the complexity of the solution because of greater
number of variables and more complicated con-
straints (such as singularity).

In contrast, we formulate the problem as a di-
rect 3-D optimization algorithm that refines
initial camera pose estimates. One advantage
of this approach is that the number of un-
known variables is less, increasing the robust-
ness of the algorithm. Also, the algorithm can
seamlessly incorporate matches across many im-
ages. Finally, from a practical standpoint, it
is much easier to visualize and debug (using
computer graphics) algorithms operating in 3-
D; this would be much harder for algorithms
that operate in more complex spaces.

2 Incidence Counting

The incidence counting algorithm is based on
the following property of projection: if any
sparse set of features in multiple images are ex-
truded to 3-D, then it is likely that regions of
high incidence (regions where extrusions from
multiple cameras intersect) correspond to real
3-D features. Figure 1 illustrates the idea of the
algorithm in 2-D. In the figure, E1, E2, and E3
are cameras imaging three features (points A,
B, C). The extrusions of the image features are
rays originating from the camera and passing
through the feature. If a feature is present in

Figure 1: Incidence counting in two dimen-
sions.

k images, k rays would intersect at the location
corresponding to the feature (e.g., points A, B,
C all have high incidence of k = 3). Thus, a sim-
ple way to identify matches would be search for
regions with high incidence; an efficient method
to perform the search is described in Section 2.1.

Note that, in addition to the “true” features,
there are also spurious regions with high inci-
dence. For example, even though point D was
not one of the features imaged by the cameras,
D has the property that rays from all three cam-
eras pass close to it; i.e., D is a possible candi-
date for a match. Section 2.2 provides a method
to eliminate some spurious matches by associat-
ing an error value with each 3-D position. Fu-
ture work will incorporate methods using image
attributes (color and texture) to eliminate ad-
ditional spurious matches.

2.1 Octree-Based Incidence
Counting

Our algorithm for incidence counting requires
two parameters in addition to the images and
camera poses:

e ¢, a “nearness” threshold. This is neces-
sary to handle (small) errors in either the
location of the image feature or in camera
pose. The choice of € depends on both the
accuracy of the camera pose estimate, and

the desired accuracy of the reconstruction.

e k., the incidence threshold. It is related to
the density of camera positions relative to
the features of interest — a reasonable value
would be the average number of cameras
imaging a feature.

Given these parameters, points of high inci-
dence are those for which k& or more rays pass
by within a distance e.

Possible methods of identifying high incidence
are to check the above condition for (1) all &-
cardinal subsets of the set of rays, or (2) all 3-D
points in a discrete set (e.g., regular grid). Both
these methods have disadvantages. Checking
all possible subsets suffers from a combinato-
rial increase in complexity with k; checking only
a discrete set of 3-D points suffers from the
usual problems of point sampling (i.e., miss-
ing some 3-D feature (undersampling), or in-
efficiency (oversampling)).

Fortunately, rays constructed by extrusion ex-
hibit the clustering property: while there are re-
gions of high density (e.g., near features), there
are large regions containing very few rays. We
exploit this property by constructing an octree
[Samet, 1990] to store the rays. The octree is
constructed by associating the region of inter-
est (a bounding-box overestimate of the cam-
eras and the scene to be modeled) with the root
node, and subdividing octree nodes until either
each leaf node is associated with fewer than k
rays!, or its dimensions are less than e. Once
the octree has been constructed, each leaf node
is examined to check whether the rays through
it pass through within € of each other. This can
be performed by computing the (least-squares)
best point lying on all these rays. The algorithm
reports all the points (and corresponding rays)
whose error is less than e.

2.2 Eliminating Spurious Matches

As mentioned earlier, one drawback of the in-
cidence counting algorithm is that it identifies

''We associate a ray with an octree node if it intersects
the e-extended box around the node.

even spurious matches. In this section, we de-
sign an algorithm to eliminate some spurious
matches by enforcing the constraint that a sin-
gle ray can contribute to at most one 3-D point.
The algorithm given below uses the error metric
associated with a 3-D point to choose at most
one 3-D point for each ray. Informally, it uses
the criteria that 3-D points with low error are
retained, and those with high error are rejected.

Algorithm Check-Spurious:

1. Sort all (say, n) high incidence 3-D points
according to their error (the lowest error
being first). P; denotes the i** 3-D point.

2. foreach 1 <3 <ndo

(a) if (P; is invalid) continue;
(b) Output P; as a valid point.

(c) foreach i < j < m such that P; and
P; share a ray, mark P; as invalid.

This algorithm also has the property that it
computes the minimum error valid configura-
tion (in a lexicographic sense).

3 A Direct 3-D algorithm for
Camera Pose Refinement

Figure 2: Reconstruction using least squares
of distances.

We now present an algorithm for refining cam-
era pose estimates, given matches across points
in different images. Figure 2 illustrates (in 2-D)
the idea behind our algorithm. If the camera
poses are accurate, then the rays constructed by
extrusion would pass through the reconstructed
3-D point. Typically, due to error in the cam-

era pose estimates, they will diverge from the
reconstructed point. This can be used to “cor-
rect” the camera poses so that the rays are as
close as possible to the 3-D reconstruction.

Formally, the pose refinement problem is as fol-
lows. Given:

e For 1 <i<m, E'; and R} — the translation
and rotation estimates of the ** camera;

eforl <i:<m,1< 5 < n,rays vij —
unit vectors that correspond to projections
of point P; from camera 4 (in the camera’s
coordinate system);

compute E;, R; for 1 <14 < m (the true pose of
each camera), and P; for 1 < j < n (the correct
3-D positions each matched point).

We formulate the problem as a minimization of
the following objective function?:

m n

> 1P —Eq) x Ri(viy)|?

i=1j=1

@)

Geometrically, this function represents the sums
of the squared distances from reconstructed
points to their corresponding rays (Figure 2).

As the objective function does not have a linear
least-squares form, we use an iterative method
to solve for camera pose. Our approach is to
consider the problems of finding each trans-
formation independently (assuming the other
is known accurately) and combining the two
methods when neither translations nor rotations
are known exactly. While this is equivalent to
minimizing the objective function using partial
derivatives with respect to translations and ro-
tations, it is helpful to separate the two cases
for clearer presentation; solutions to these two
cases turn out to be quite different.

2Note that P; = 0 and E; = 0 is a trivial solution
to the minimization problem. This can be avoided by
imposing a constraint that the sum of their magnitudes
must be some non-zero constant. In practice, due to
the use of initial pose estimates, we have found that the
optimization converges to non-trivial solutions.

3.1 Translations

In this section, we solve for translations of
the cameras, assuming that their rotations are
known accurately. Thus, R;(v;;) can be re-
placed by a (known) unit vector v';j;. The
resulting objective function has the following
form:

m n

0= "3 lI(P; —Ej) x v'j|?

i=1j=1
which can be written as:

0=> Y Ly®@P; — K|

i=1j=1

where L’;; is the 3 x 3 skew-symmetric matrix
defining the cross product whose elements are
determined by the components of v';;:

!
0 Uij,?)

15,2
! !
vz 0 v,
!
Vije Va0

Tx, we obtain:

Writing [|x|2 = x.x as x
m n T
0= (P;—E)"L;;L';;(P; — Ey)
i=1j=1

This is of the form x” Ax for where A is a sym-
metric matrix. The derivative of this function
with respect to x is Ax.

Computing the derivatives of this function with
respect to P;, and setting it to 0 yields:

T
> L (P —
i1

E;) =0
Thus, P; = A~'b, where

m
T
A=) L5

b= Z I W

Geometrically, this solution gives the point that
minimizes the sum of squared distances of P;
from the corresponding rays.

Rays

Reconstructed
point

Inverserays

New translation

Current translation

Figure 3: Translation estimate using inverse
rays.

As the objective function is symmetrical in P
and E;, setting the derivative with respect to E;
yields the equation E; = A~ lc, where

n
_ 1Ty
Cc = Z L Z]L iij
j=1

This is equivalent to finding the 3-D point that
minimizes the sum-of-squared distances from
the “inverse” rays through P; ... P, (Figure 3).

The translation refinement algorithm alter-
nately computes 3-D positions and camera
translation estimates using the equations given
above3. Convergence in the algorithm is de-

tected by little change in the objective function.

3.2 Rotations

The first step in an optimization involving un-
known rotations is to choose a representation for
expressing rotations. A variety of representa-
tions are in use: orthonormal matrices, quater-
nions, Euler angles, etc. [Foley et al., 1990].
Each of these representations has its own ad-
vantages and disadvantages; the most appro-
priate representation depends on the applica-
tion (e.g., quaternions provide closed form so-
lutions for absolute orientation [Horn, 1987]).

3The solution is valid only up to a rigid (rotation,
translation, uniform scaling) transformation. The “cor-
rect” transformation can be obtained by fixing the values
of some three points in absolute coordinates.

For this optimization, we chose to use Euler an-
gles, i.e., rotation is represented by three ro-
tations about the coordinate axes. This has
the advantage that no additional constraints
are needed to ensure rotational properties, in
contrast to the orthonormality constraint for
3 x 3 matrices or the unit length constraint for
quaternions. This allows use of simple (uncon-
strained) non-linear optimization methods such
as the Newton-Raphson method [Scales, 1985]
to solve for the rotation parameters.

Rotations are represented as:
R*(ri)RY(s;)R* (%)

where 73, 54, t; are the Euler angles, and R{z:2}
are 3 X 3 matrices representing rotations about
the coordinate axis. For example, R*(0) is the
matrix:

cosf —sinf 0
sinf@ cosf® O
0 0 1

We use the iterative Newton-Raphson method
using the gradient (a vector formed by the
first partial derivatives) and Hessian (a matrix
formed by the second partial derivatives) of the
objective function to solve for the camera rota-
tions [Scales, 1985]. Given initial estimates of
7, 8,t for some camera i (subscripts are omitted
for clarity), increments Ar, As, At are defined
by the gradient and the Hessian:

8?0 9?0 9?0 a0
or2 ords Orot Ar ~or
2’0 920 9?0 As | = | =22
ords 052 0sOt Os
920 820 80 At _ 20
orot 0sot ot? ot

The partial derivatives are obtained by symbol-
ically differentiating the objective function with
respect to r, s,t and evaluating the expressions
using the current values of r,s,t. Some of the
partial derivative expressions are listed in the
appendix.

Given the current rotation in terms of r, s,t,
the rotation refinement algorithm evaluates the
partial derivative expressions and computes
Ar,As,At. The new rotations are used to
update the 3-D positions of the reconstructed
points, and this process is repeated until con-
vergence.

4 Conclusion

We presented the incidence counting algorithm
that identifies matches using only the geometric
constraints implied by camera pose. The algo-
rithm performs fairly well for synthetic images
and camera pose [Coorg and Teller, 1996], but
more experiments on real data are needed to
fully evaluate its efficacy.

We also presented a direct 3-D algorithm to
refine camera pose estimates given correspon-
dences. Our algorithm operates directly in 3-D
and can easily incorporate matches across hun-
dreds or thousands of images. Results of this al-
gorithm on synthetic data (random 3-D points,
perturbed camera poses) is presented in [Coorg
and Teller, 1996]; we plan to experiment with
real data when our pose-instrumented platform
is operational.

References

[Ayache, 1991] Nicholas Ayache. Artificial Vi-
sion for Mobile Robots. The MIT Press, Cam-
bridge, MA, 1991.

[Coorg and Teller, 1996] Satyan Coorg and
Seth Teller. Matching and pose refinement
with camera pose estimates. Technical
Report TM-561, Laboratory for Computer
Science, MIT, 1996.

[Faugeras, 1992] O. D. Faugeras. What can be
seen in three dimensions with an uncalibrated
stereo rig? In Giulio Sandini, editor, Pro-
ceedings of Computer Vision (ECCV ’92),
volume 588 of LNCS, pages 563-578, Berlin,
Germany, mai 1992. Springer.

[Faugeras, 1993] Olivier Faugeras. Three-
Dimensional Computer Vision. MIT Press,
1993.

[Foley et al., 1990] James D. Foley, Andries van
Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics, Principles and Practice,
Second Edition. Addison-Wesley, Reading,
Massachusetts, 1990.

[Gennery, 1977] D. B. Gennery. A stereo vision
system for an autonomous vehicle. In Pro-

ceedings of the 5th International Joint Con-
ference on Artificial Intelligence, pages 576—
582, August 1977.

[Hartley, 1995] R. Hartley. In defence of the
8-point algorithm. In ICCV95, pages 1064—
1070, 1995.

[Horn, 1987] Berthold K. P. Horn. Closed-form
solution of absolute orientation using unit

quaternions. Journal of the Optical Society
of America, 4(4), April 1987.

[Longuet-Higgins, 1981] H.C. Longuet-Higgins.
A computer algorithm for reconstructing a
scene from two projections. Nature, 293:133—
135, 1981.

[Mohr et al., 1995] R. Mohr, L. Quan, and
F. Veillon. Relative 3d reconstruction us-
ing multiple uncalibrated images. IJRR,
14(6):619-632, December 1995.

[Samet, 1990] H. Samet. Applications of Spatial
Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, 1990.

[Scales, 1985] L.E. Scales. Introduction to Non-
Linear Optimization. Springer-Verlag, 1985.

A Rotational Partial Derivatives

We only list the partial derivatives with respect
to t; the expressions for r and s are similar. Let,

cosf@ —sinf 0
S%(0) = sind cosf 0
0 0 0
Dj = Pj—E
V, = D;x (R*(r)RY(s)R (t)vlj)
T
Vi = Djx R (r)RY(s)S*(t + 5)viy)
Vil = Djx (87 + D)RY(5)S(t + 2)vig)
VI = Dyx (RIS (¢ + m)vy)
Then,
00 - ¢
AP ML
j=1
0?0 T~ <t <t - t
=5 = QZ:IVj.Vj+2z:1Vj-Vj
Jj= J=

	Text2: Proc. 1997 Image Understanding Workshop, pp. 857-862, May 1997

