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Abstract

This thesis investigates the extent to which precomputation and storage of visibility information
can be utilized to accelerate on-line culling and rendering during an interactive visual simulation of a
densely occluded geometric model.

Architectural walkthroughs and other visual simulation applications demand enormously powerful
graphics hardware to achieve interactive frame rates. Standard computer graphics rendering schemes
waste much computational effort processing objects that are not visible to the simulated observer.
An alternative is to precompute superset visibility information about the model, by determining what
portions of the model will definitely be invisible for an observer in certain locations. This information
can then be used during the simulation phase to dramatically reduce the number of model entities that
must be processed during each frame time.

The wvisibility precomputation phase first subdivides the model into cells by partitioning the space
embedding the model along the planes of large opaque polygonal occluders, such as walls, floors, and
ceilings. The remainder of the geometric data, for example furniture and wall trim, are considered to
be non-occluding detail objects. For each cell, a coarse visibility determination is first made as to what
other cells might be visible from it. The detail objects are then inserted into the subdivision, and a
finer-grain visibility determination is made for these objects and stored with each cell.

The on-line culling phase dynamically tracks the position and field of view of the simulated observer
through the cells of the spatial subdivision. The precomputed visibility information is subjected to
further on-line culling operations that use the observer’s exact position and field of view. The resulting
reduced set of objects is issued to graphics hardware, where a discrete depth-buffer solves the hidden-
surface problem in screen space.

The visibility framework is defined generally in terms of conforming spatial subdivisions that support
a small number of abstract operations. All visibility determinations are proven to produce a superset
of the objects actually visible to the observer. This is crucial, since omitting any visible object would
cause an erroneous display. The generally small set of invisible objects produced by the on-line culling
operation is then removed by the graphics rendering hardware.

We implemented these abstract notions for several interesting and realistic input classes, i.e., axial
and non-axial scenes in two and three dimensions. We evaluated the usefulness of the precomputation and
culling scheme using objective metrics of culling effectiveness, pixel depth complexity, and on-line culling



and rendering time. The test data was a complex, three-dimensional architectural model comprising ten
thousand detail objects and almost three-quarters of a million polygons. On-line frame times decreased
from about ten seconds for the unprocessed model, to a tenth of a second, thus accelerating frame rates
by a factor of about one hundred.
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Chapter 1

Introduction

1.1 Motivation

Suppose one wishes to simulate, on a generic graphics workstation, the visual experience of navigating
through a complex synthetic environment, for example a large building. This simulation is to be both
realistic and fast; that is, successive scenes rendered on the workstation monitor should reflect a consis-
tent, physically sensible representation of the environment, and should appear in rapid succession, ten
or more times per second.

Both of these goals are at odds with the basic fact that, if these synthetic environments are to be
interesting and complex, then the representational model of the environment will consequently comprise
a very large number of individual elements, and require a large amount of storage. Such models are so
complex that they cannot fit in the workstation’s memory, and have so many individual pieces that they
cannot be rendered at sufficiently fast frame rates!.

However, many models (e.g., architectural models) are densely occluded; that is, only a small portion
of the model is wisible from the point of view of an observer inside. Clearly, when simulating the inside
observer’s point of view, only this latter portion need be drawn in order to produce the correct scene.
Any invisible elements would be, by definition, eventually clipped away or obscured. If this visible
portion could be rapidly identified, the need to process every element of the model every frame would
be obviated.

Given that environmental simulation requires substantial computation and rendering resources, it is
worthwhile to investigate the extent to which expenditure of storage and precomputation can accelerate
visual simulation rates. This thesis introduces general, robust, and effective techniques to precompute
superset visibility information, that is, to expend computational resources before the simulation phase
in order to accelerate the determination of more detailed visibility information during the simulation
phase.

1 This statement can reasonably be made in general, since, no matter what memory or rendering resources are available,
growing user expectations will lead to geometric models whose complexity outstrips these resources.
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Precomputing the ezact set of visible elements for every viewpoint and view direction in and around
a three-dimensional model is a task both conceptually and computationally daunting. Widely available
graphics hardware effectively solves the “hidden surface” problem [Ake89, KV90]. That is, given a
viewpoint, a field of view, and a collection of opaque elements, the hardware resolves any occlusion
among the elements in a discretized space and displays them in perspective from the specified viewpoint?.
Given such graphics hardware, we can therefore make the critical observation that from any viewpoint,
rendering any superset of the elements visible from that viewpoint will produce a correct scene. The
approach developed in this thesis relies on this observation, in that it computes only a conservative
superset of visible objects.

1.2 The Basic Approach

We show that superset visibility determination is a considerably more tractable problem than an exact
visibility computation. We introduce an abstract computational model consisting of input and two
computational phases. The input is a collection of major occluders and some set of detail objects, each
associated with a spatial extent (i.e., a bounding box). The first phase, visibility preprocessing, spatially
subdivides the geometric model into chunks typically separated by occluders. Each chunk is then treated
as a virtual light source; any entities reached by a light ray are potentially visible to an observer in the
chunk; entities not reached by light are definitely not visible to the observer. In this way, coarse and fine
visibility information is precomputed among the chunks, and the spatial subdivision is annotated with
this information. The second, dynamic, phase tracks a moving observer inside the model and quickly
determines a superset of the model elements visible to that observer by further on-line culling of the
precomputed, annotated visibility data. Here, “on-line” means that the culling operation must generate
a set of visible entities in a frame time of one hundred milliseconds or less, as each actual observer
position is registered.

1.2.1 Spatial Subdivision

We assume that the model representation (and therefore the creator of the model) distinguishes between
occluders and objects (Figure 1.1), and that all occluders for the geometric model in consideration can
be simultaneously memory-resident. (In practice, abandoning this assumption requires sophisticated
virtual-memory techniques, but no conceptual changes at the level of the visibility computations.) The
space occupied by the model is then partitioned, via a spatial subdivision, into cells that are of limited
extent compared to the entire model. The subdivision terminates when every major occluder lies on the
boundary of one or more spatial cells (Figure 1.2).

A portal enumeration stage exploits the fact that subdivision planes (lines, in 2D) are induced along
the major occluders present in the model. Each plane contributes to the planar boundary of one or
more spatial cells; each such boundary may be partially or completely obscured by occluders. The set
complement of each boundary and its coaffine occluders is then computed, and portals are explicitly
constructed wherever any cell shares a transparent boundary with an immediate neighbor cell. Each

2We assume that rendering artifacts due to hardware sampling are unimportant.
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Figure 1.1: Major occluders (bold) and detail Figure 1.2: A spatial subdivision. Portals are
object bounding boxes (squares). shown as dashed lines.

portal stores an identifier for the cell to which the portal leads. We say that a cell complex consisting
of convex cells and explicit portals is a conforming spatial subdivision.

Both the subdividing process and the resulting subdivision can be treated as an abstraction, subject
to a few reasonable requirements about data organization. Broadly, the purpose of spatial subdivision
is to partition the model into “chunks” which can then be examined individually to determine their
occlusion properties. This chunking is advantageous for two reasons. In the large, spatial subdivision
makes manageable the amount of data to be considered at one time, and imposes a global sorting
and partitioning on the model data. In the small, the subdivision imposes a spatial hierarchy on the
components of the model; determinations made about chunks can be applied to each chunk component
in an efficient manner. In practice, chunking makes sense for real architectural models because it makes
explicit the intuitive difference between large-scale or “structural” model elements (i.e., occluding walls,
ceilings, floors) and small-scale or “detail” model elements (i.e., phones, cups, lamps). Chunking also
puts explicit partitions between regions that are intuitively distinct; for example, between rooms, and
between separate floors of a building.

1.2.2 Visibility Precomputation

Intuitively, visual interaction between cells will in general be limited, since intervening occluders will
tend to obscure the space in one cell from the viewpoint of any observer in the space in another cell.
The transparent portions of shared cell boundaries are portals (cf. Figure 1.2). We define a generalized
observer as an observer constrained to a given cell (the source cell), but free to move anywhere inside
this cell and to look in any direction (one source cell is shown in grey in Figure 1.2). A generalized
observer may see into a neighbor cell only through a portal; and into a more distant cell only through a
portal sequence. These sequences typically impose significant constraints upon the generalized observer’s
visibility, preventing the observer, for example, from seeing the entirety of any cell reached through a
general portal sequence.
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The occluders and subdivision uniquely determine a cell-to-cell visibility relation, in which two cells
are linked only if there exists a sightline, or line segment disjoint from any occluders, connecting the cell
boundaries (Figure 1.3). Thus, the conforming spatial subdivision gives a local character to the problem,
reducing it to one of computing the (typically limited) interactions of each small portion of the model
with only those elements that possibly visually interact with the portion. We say that this visibility
information is static, since it has no dependence on time or on the precise position of the observer.

Figure 1.3: The cell-to-cell visibility set of the Figure 1.4: The cell-to-object visibility set
gray source cell. (filled squares) of the gray source cell.

Each detail object is assumed to have an associated bounding representation (e.g., an axial bounding
box). After spatial subdivision, the subdivision cells are populated with detail objects, by associating
with each cell those objects whose bounding representations are spatially incident upon the cell. Detail
objects, which typically constitute the great majority of model data, are spatially associated with cells,
and visibility information associated with cells, as a local operation. As in cell-to-cell annotation, cell-
to-object visibility is established when sightlines are found to exist between generalized observers and
detail object bounding boxes in distant cells (Figure 1.4). This is again static information, depending
only on the positions of occluders, object bounding volumes, and the particular spatial subdivision.
The cell-to-object annotation follows spatial subdivision and cell-to-object visibility determination, and
completes the preprocessing phase.

Visibility precomputation can itself be considered in two stages, gross and fine culling. Gross culling
simply derives a single bit of information about each cell pair in the model: whether the two cells are
mutually visible, or equivalently, whether a generalized observer in one cell can see some point in the
other. Fine culling, on the other hand, establishes a more complex relationship among cells and objects;
for example, that an observer in a particular cell can or cannot potentially see a particular object,
polygon, or even point in another cell. Clearly gross and fine culling can be structured hierarchically; if
the generalized observer cannot see into a particular cell, there is no need to examine the objects in that
cell from the point of view of the generalized observer. Gross and fine static culling are done for each
cell in the model, so that any subsequent dynamic observer position can be processed correctly.
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1.2.3 Dynamic Phase

The preprocessing phase posited a generalized observer whose position is never precisely known. In
contrast, the dynamic phase tracks the instantaneous position of an actual observer, i.e., one with a
known position and field of view. In this phase, scenes are continuously synthesized from the virtual point
of view of the actual observer and displayed at interactive frame rates (typically ten to thirty times each
second), using a graphics workstation. Static visibility information is exploited in the dynamic phase.
An on-line culling operation using the actual observer’s position and field of view, and the annotated
spatial subdivision, efficiently determines a superset of that portion of the model that must be rendered
to guarantee the correctness of the synthesized scene.

[m] = |—
“““““““ [ 1
LI TT1] oo
Figure 1.5: The eye-to-cell visibility (darkened Figure 1.6: The eye-to-object visibility set
cells) of the actual observer. (filled squares) of the actual observer.

The dynamic phase can itself be partitioned into three stages: point-location, on-line culling, and
rendering. Point-location is the determination of the spatial cell enclosing the observer’s position. The
high coherence of walkthrough paths implies that most point-location queries yield the same result as the
previous query. On-line culling involves the retrieval of the static visibility data for the cell containing
the observer, and selection from among this superset data using precise knowledge of the observer’s
position and field of view. Finally, the rendering component is simply the dispatch of any potentially
visible objects (e.g., polygons) to the graphics hardware for display. The goal, of course, is to produce a
sufficiently small upper bound on visibility that the resulting set of polygons can be rapidly displayed,
and to compute this set in time comparable to that required to display a frame.

First, the eye-to-cell visibility set contains a superset of those cells visible to the observer (Figure
1.5) and is clearly a subset of the source’s cell-to-cell visibility. Next, the eye-to-object visibility set
contains a superset of those objects, in the previously determined cells, to which a sightline exists from
the eye (Figure 1.6).

As we will show, the abstract visibility operations we define are valid over any conforming spatial
subdivision. However, the operations will be efficient and practical only when the spatial subdivision has
reasonable storage complexity with respect to the number of occluders. We will seek to construct such
subdivisions with various dimension- and occluder-dependent splitting criteria, defined individually in
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later sections. The overall goal of these criteria is to produce cells whose boundaries are mostly opaque,
so that visibility is highly constrained for an observer in such cells. A secondary goal is to produce cells
that are not too large, and that have aspect ratios reasonably close to one.

1.3 Theoretical Concerns

This thesis addresses both the theoretical issue of determining superset visibility, and the engineering
task of using such techniques to achieve working visual simulations of realistic architectural models.
We show that our theoretical approach is provably correct, in that it never misclassifies a truly visible
object®, regardless of the type of geometric model.

Superset visibility determination is sufficient as a culling process for visual simulation. The theoret-
ical and engineering challenge is to produce superset visibility bounds that can be computed efficiently,
and are usefully tight; i.e., not much bigger than the set of truly visible objects. We therefore require ob-
jective metrics with which to evaluate the effectiveness of the precomputation and on-line culling scheme.
We have measured both the spatial and computational aspects of these techniques. For instance, one
measure of the expense of visibility preprocessing is the storage cost incurred, expressed as overhead on
the storage required for the geometric model alone. Another measure analyzes the culling effectiveness
of the static and dynamic phases; what fraction of the model is deemed potentially visible, on average,
to an observer following a real path through the model, and what percentage survives, i.e., contributes
to the rendered image? Of course, these measures are dependent on the actual geometric model, and
in some cases on the path of the simulated observer. Another measure analyzes, in a real engineering
walkthrough system, the overall rendering speedup attributable to the use of these visibility techniques.
These metrics are discussed further in Chapter 9.

1.4 Engineering Observations and Assumptions

This thesis is concerned with environments for which visibility preprocessing is promising. We have
observed that the visibility within many typical architectural environments is substantially limited; i.e.,
that from most points inside, only a small portion of the environment is visible. In the case of geometric
models of such environments, our algorithms make the critical assumption that the number of polygons
truly visible from most points in the model is about the number of polygons that may be rendered at
interactive frame rates on a state-of-the-art graphics workstation. That is, even though the model may
be enormously complex (containing, say, a million polygons), only a small fraction of these (say, ten
thousand) need to be rendered for most viewpoints. We say that models with this property are densely
occluded, and argue that, to be simulated smoothly, the model must have a roughly constant visual
complexity, commensurate with the speed of available hardware.

Another observation is that architectural environments are typically comprised of two kinds of
entities: large, simple, structural elements (i.e., walls, floors, beams, and ceilings) that generally cause
substantial occlusion, and small, complex things (i.e., desks, chairs, and clutter) that generally do not

3By “truly visible,” we mean that a line segment from the eye to some point on the polygon intersects no other polygon.
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occlude much from a wide range of viewpoints. We call the first type of entity major occluders or simply
occluders, and the second type detail objects or simply objects. We assume that occluders and objects
are distinguishable from each other in the input to the visibility algorithms. This makes sense, since an
efficient modeling system would represent occluders and objects distinctly (for example, by representing
walls with a few large polygons rather than hundreds of small ones). Therefore, it is worthwhile to
segregate occluders and detail objects, and consider the occluders’ effects upon visibility before the
effects due to detail objects, since (to first approximation) these latter effects will typically be subtler
and more costly to compute .

Detail objects are generally complex geometric assemblages that obscure little from most vantage
points. For this reason, we treat detail objects as entirely non-occluding. As we shall show, this
assumption will never force the visibility computations to produce incorrect (i.e., subset) query results;
however, it may slightly increase the size of the potentially visible polygon sets for any particular region
of viewpoints. For other environments, this assumption is a bad one, and most occlusion will in fact
arise from the combined effects of many detail objects, e.g., the leaves in a forest.

The distinction between occluders and objects is not well-defined, nor do we attempt to make it so.
A refrigerator, for example, may occlude very much for nearby viewpoints, but most small motions of the
observer can change the set of occluded entities substantially. A wall, on the other hand, typically meets
the floor, ceiling, and other walls along shared edges; an observer might have to move a considerable
distance to substantively change the occlusion experienced due to a particular wall. We show that,
when occluders decrease in size or number, our algorithms degrade gracefully to perform efficient, purely
spatial culling. Moreover, our algorithms are independent of object complexity in that they representing
objects only by bounding volumes that can be subjected to various geometric culling operations. Our
visual simulation implementation does represent detail objects at several levels of complexity, in order
that they be drawn more efficiently when their area contribution to the rendered image is small [FST92].
However, since the bounding volumes do not depend on object complexity, we consider the notion of
levels of detail to be independent of the issues of visibility computation discussed in this thesis.

1.5 Practical Issues

In practice, there are several other issues that must be addressed by a walkthrough system. Foremost
of these is robustness; the geometric algorithms used must perform correctly, even for the sometimes
highly-degenerate input encountered in the real world. Fortunately, the fact that computations are of
superset visibility information makes the engineering task easier. When boundary cases occur for which
determining the potential visibility of an entity is numerically difficult (for example, an object seen only
through an epsilon-wide slit), our visibility algorithms consistently choose “false-positive” outcomes over
“false-negative.” That is, only a small penalty is incurred if an entity is misclassified as visible: it is
rendered, and painted away by depth-buffering hardware. On the other hand, misclassifying an object
as invisible may incur a large penalty: the user of the walkthrough simulation is presented with an in-
correct scene, without the misclassified entity. Such false-negative errors detract from realism and visual
coherence, and our implementation strives to avoid them. We also briefly discuss in Chapter 9 a pro-
gramming and visualization technique that facilitated the development of very robust implementations
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of geometric algorithms.

A second issue is that all rendering is discretized to a collection of pixels on a readily available
graphics workstation. Display-device resolution is limited, and (at least at present) much less than the
resolution of human vision. Level-of-detail analysis is desirable to avoid the display of tiny or far-away
objects with unwarranted detail, since most of this detail will map to only a few pixels on the screen.
The visibility module should therefore support queries usable to bound the level of detail at which an
object need be displayed. One such query might, for example, return the largest solid angle an object
can subtend when viewed from any point in a (spatially disjoint) cell.

Finally, practical visual simulation systems must support prediction of dynamic storage requirements
[FST92]. Most interesting and realistic models will be too large to fit at once into the main memory of
a typical workstation. But any data, to be displayed, must be memory-resident. The visibility module
queries are helpful in predicting the memory demands that will occur in rendering the future views
of a moving observer. For example, given bounds on the observer’s position and velocity over some
time interval, a neighborhood containing all possible positions of the observer in that interval can be
computed. The regions visible from this neighborhood would implicate the objects that might have to
become memory-resident in order to render all objects visible to the observer during the specified time
interval.

1.6 Organization

The thesis is organized as follows. After a review of some relevant prior work (Chapter 2), we introduce
an abstract framework in which storage and precomputation can be expended to accelerate subsequent
on-line visibility determinations (Chapter 3). We then reify the framework, with specific, dimensionally-
dependent techniques of ordering spatial data, precomputing visibility, and on-line culling. Specific
techniques are discussed for three interesting classes of input occluders: axial (i.e., axis-aligned) and
generally-oriented 2D line segments (Chapter 4); axial 3D rectangles (Chapter 5); and generally-oriented
convex polygons in 3D (Chapter 8). The general 3D case is sufficiently complex to warrant a special
formalism to deal with the geometry of stabbing lines through arbitrarily oriented polygons. We therefore
introduce Plicker coordinates in Chapter 6 as a convenient method of manipulating skew lines in 3D.
Then, in Chapter 7, we present an algorithm that computes the boundaries of regions in the model that
are illuminated by area light sources.

We have developed novel computational geometry algorithms that are practically realizable (i.e.,
implementable), robust, and usefully applicable to real data. In practice, we have observed that many
architectural models are predominantly composed of axial rectangles. For this class of occluders we show
that the visibility techniques are practical, and we describe our implementation of a system for visual
simulation of building walkthroughs. This system achieves significant rendering speedups over existing
methods when applied to very complex three-dimensional geometric models (Chapter 9). Our test case
has been the geometric model of a planned computer science building at Berkeley, a seven-floor structure
with an atrium, terraced balconies, scores of hallways, hundreds of rooms, thousands of textures, ten
thousand detail objects, and three-quarters of a million polygons [Kho91, FST92]. We also describe a
research implementation of the visibility techniques for general polyhedral environments.
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Spatial subdivisions, visibility computations, and their applications to real problems in computa-
tional geometry and computer graphics are rich, fascinating areas of study. The final component of this
thesis is an evaluation of our contribution to these efforts, and several indications of fruitful directions
that related research may assume in the future.

Specifically, §10.5 discusses open issues concerning the time- and storage-complexity of spatial sub-
division construction and visibility algorithms, and the prospect of generalizing these algorithms to
capture very fine-grain visibility effects. Several unresolved questions regarding coherence and paral-
lelism are discussed. Lastly, §10.6 sketches applications of these subdivision and visibility techniques
to problems such as meshing and form-factor computation in radiosity, and rendering environments
containing shadowed, reflective, and translucent surfaces.
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Chapter 2

Previous Work

There is a tremendous amount of literature germane to visibility determination. In order to reduce the
amount of material surveyed, we consider an existing work relevant only if it substantively meets at least
one of the following criteria, or is otherwise pedagogically or historically important:

One. The work must address visibility determination from a region, such as o line segment, area,
or volume. This criterion excludes works that, for example, address solving the hidden-surface problem
from a single specified point.

Two. The work must perform some sort of accelerating precomputation, that is, expend com-
putational and storage resources before any determination of point visibility. This criterion excludes
algorithms that, for example, must examine every polygon in a scene to describe each rendered frame.

Three. The work must describe visibility queries that compute areas or volumes, or collections
of polygons. This criterion excludes most works that, for example, discuss acceleration schemes for
ray-casting queries that return a point on the first object hit.

2.1 Point Visibility Queries — Visibility as Sorting

One of the earliest visibility algorithms was due to Jones, who in 1971 described a visibility scheme
based on spatial subdivision [Jon71]. After spatially subdividing a model, by hand, into convex cells, a
point-visibility query is made by projecting cell openings, or portals, onto the view plane and proceeding
recursively through the spatial subdivision adjacency graph. As each new portal is encountered, it is
intersected with the “mask” or aggregate convex region currently visible (Figure 2.1). If the intersection
is empty, the active branch of the search terminates. Otherwise, the contents of the current cell are
clipped to the active mask and drawn, and the search proceeds with the new more restricted mask.
Thus Jones’ approach also solves the hidden-line, hidden-surface problem for a polyhedral model, with
the restriction that every face in the model be assigned to the boundary of some cell.

This approach is roughly equivalent to our dynamic eye-to-cell visibility computation. Our method
is different, and more efficient, in several significant ways (to be discussed in §8.4).

11
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Figure 2.1: Jones’ hidden-surface method. The depth-first search of the cell adjacency graph terminates
when the current mask has no intersection with the next portal (at right).

The binary space partition (BSP) tree data structure [FKN80] obviates the hidden surface com-
putation by producing a back-to-front ordering of polygons from any query viewpoint. This technique
has the disadvantage that every polygon must lie in a splitting plane and, for an n-polygon scene, the
splitting operations required to construct the BSP tree generate O(n?) new polygons in the worst case
[PY90]. Moreover, all polygons in the scene must be explicitly processed to generate each rendered
frame.

An algorithm based on linear separability of clusters of occluders precomputes “face priorities”
within clusters, and dynamically determines “cluster priorities” using a BSP-tree like decision tree and
linear separators for the clusters [SBGS69]. The face priorities within a cluster are shown to be in-
dependent of viewpoint, after backface removal. Thus, after preprocessing, dynamic cluster-priority
determination is sufficient to output polygons in appropriate painting order. This algorithm capitalizes
on coherence of faces within clusters; however, it cannot handle interpenetrating (i.e., linearly insepara-
ble) clusters and expends storage to determine face orderings, which are less important in these days of
ubiquitous hardware hidden surface removal.

Another early hidden surface removal algorithm uses spatial subdivision in z (distance from the
observer) to accelerate clipping computations [WA77]. Polygons are sorted into slabs of fixed depth range,
and the contents of each slab are sorted into depth order and subjected to a hidden-surface computation
based on generalized polygon clipping, under orthographic projection. The resulting polygon masks
are then combined to form a final view. This method touches every polygon to generate each rendered
frame, and moreover must solve the generalized polygon clipping problem, which is difficult to do robustly
[SSST74].

Fixed-grid and octree spatial subdivisions [FI85, Gla84], and subdivision techniques based on ray
directionality [AK87, Arv88], accelerate ray-traced rendering by efficiently answering queries about rays
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propagating through ordered sets of parallelepipedal cells. The advantage of these schemes is that they
proceed “forward” along the query ray, terminating at the first polygon hit. Thus, a large parallel query
engine might serve, for example, as a means to solve the visible-surface problem independently at each
pixel. These ray-based techniques are not yet efficient enough to generate rendered frames at interactive
rates.

2.2 Region Visibility Queries —
Visibility as Light Propagation

The polygon mask, BSP tree, ray-propagation, and depth-range subdivision-based visibility schemes
support only point visibility queries; that is, they effectively compute ordered sets of polygons or polygon
fragments visible from a point, after preprocessing. (In the mask and BSP algorithms, the ordered set
produced is the same for any observer position within a cell.) Since the set of viewpoints from which
queries will be made is generally not known in advance, it is useful to compute visible sets from regions
of points (e.g., line segments, areas, or volumes), where the visibility from a region is simply the union
of all points or objects visible from any point in the region. We employ the notion of the generalized
observer as a virtual light source to compute this union set efficiently.
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Figure 2.2: In two dimensions, a pair of occluders can jointly hide points from the light source that
neither occluder hides alone.

In two dimensions, describing shadows cast by an area light source demands that interactions
between pairs of occluders be examined. That is, two occluders can jointly hide a point from the
light source (i.e., cast it in umbra) when neither occluder alone hides the point. Figure 2.2 depicts a
single lineal light source and two line-segment occluders A and B in two dimensions. The dotted lines
demarcate the umbrae of the individual occluders. The point p in the figure is hidden from light source,
yet not in either of the individual occluders’ umbrae. It is easy to see that two occluders A and B
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Figure 2.3: In three dimensions, three mutually skew occluder edges can generate a quadric shadow
boundary.

interact only if A is in B’s penumbra (i.e., if some points on A see only some of the light source, due
to occlusion by B), or vice-versa. In two dimensions, the umbra and penumbra have piecewise-linear
boundaries and can be computed straightforwardly.

Analogous pairwise and threeway interactions arise in three dimensions, yielding a non-linear result.
In the presence of two or more polygonal occluders, computing the volume illuminated by an area
light source involves reguli, ruled quadric surfaces of negative Gaussian curvature [Somb59], whose three
generator lines arise from non-adjacent occluder or light source edges (Figure 2.3). Reguli were first used
in the context of occlusion for the aspect graph computation, which catalogues all qualitatively distinct
line-drawing views of a polyhedral object under orthographic or perspective projection [Kv79, PD90].

Imagine viewing a polyhedral object from a sphere- or cube-shaped view surface surrounding the
object. A particular aspect, or line drawing of the object’s edges with hidden lines removed, corresponds
to each point on the view surface (where the view direction is chosen so as to intersect some fixed point
inside the object). Since each intervening occluder edge “clips” a halfplane away from the visible portion
of the object, the observer in general sees a polygonal region of the object (Figure 2.4-1 depicts one such
region, shown as convex for simplicity). The region edges arise directly from occluder edges. The region
vertices arise either from occluder vertices, or from apparent intersections among non-adjacent occluder
edges as seen by the observer.

Most motion on the surface produces only guantitative changes in the line drawing, as vertices shift
position and edges shorten or lengthen. However, at some critical loci, called event surfaces [GCS91],
the line drawing, and therefore the visibility of some component of the object, changes qualitatively.
Generically, this happens in one of two fundamental ways for polyhedral objects [GM90]. Along a VE
or vertez-edge event surface, an occluder vertex appears (disappears) from the region boundary (Figure
2.4-ii). Along a EEE or triple-edge event surface, the observer’s line of sight simultaneously intersects
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three occluder edges, causing the appearance (disappearance) of an apparent boundary vertex (Figure
2.4-iii). These event surfaces partition the view surface into regions of constant aspect, bounded by
segments of lines and conics.

occluder,
portal edges
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area light
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Figure 2.4: An aspect of a polyhedral object in the presence of polyhedral occluders (i). The aspect can
change qualitatively in only two fundamental ways, along VE (ii) or EEE (iii) surfaces.

At present, the best time bound for computing the aspect graph of a general polyhedral object with
n vertices is O(n*lgn + mlgm + ¢;), where m is the number of qualitatively distinct views, at worst
O(n®), and c; the total number of changes between these views [GCS91].

For a convex lineal or areal source and a single convex occluder in 3D, the umbra and its union with
the penumbra are convex. Such first-order shadows have been employed to yield convincing renderings
of shadowed scenes [NN83, NN85]. These penumbra algorithms, however, extend to multiple occluders
only by effectively approximating the light source as a point or as a set of points. Several algorithms
approximating multiple-occluder shadow boundaries have been described [NN85, PW88, CF90, CF92].

For example, in [NN85], the penumbra cast by multiple occluders is approximated by casting each
occluder’s penumbra individually, then performing polyhedral union and intersection operations on the
result. An analogous approach is described in [CF90], where the light source is treated as a discrete
set of point sources, and the shadows of collections of occluders are cast and combined. An algorithm
proposed in [PW88] replaces the area light source with a point at its center, and describes an error metric
that bounds the spatial discrepancy between the computed and true penumbra. This error metric can
then be used to control adaptive subdivision of the light source or occluders. Another recent algorithm
approximates umbra volumes by constructing “penumbra trees” and “umbra trees”; these are augmented
BSP trees whose polyhedral leaf cells bound polygon fragments in partial or complete shadow [CF92].

The notion of transversals, or simultaneous intersections by a k-flat, of sets of convex objects has
been a popular topic among computational geometry researchers [Ede85, KLZ85, PW89]. Here, we
are concerned with transversals of line segments (in 2D) or polygons (in 3D) by 1—flats, also known
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as stabbing lines. Several researchers have investigated the problem of stabbing a three-dimensional
collection of unoriented polygons, i.e., polygons that admit a stabbing line in either direction. For a
given set of polygons, let e be the total number of edges comprising the set. Avis and Wenger presented
an O(e*lge) time algorithm to compute stabbing lines [AW87]. McKenna and O’Rourke improved this
to O(e*a(e)) time [MO88], where a(e) is the functional inverse of Ackermann’s function. If the polygons
are triangles, and together comprise g distinct normals, an algorithm due to Pellegrini computes a
stabbing line in O(g%e?1ge) time if one exists [Pel90a]. When g is O(e), this time bound is the same as
that due to Avis and Wenger.

A series of algorithms have been proposed that answer questions involving line segment query regions
and polyhedral terrains (i.e., height-fields) [DFP*86]. For example, one might ask for the height of the
shortest line segment that must be erected over such a terrain so that the top endpoint can see all of
its faces. This height is computable in O(nlg®n) time by a simple algorithm [Sha87]. Interestingly,
computing the smallest number of points on the terrain which together can see all of the terrain is an
NP-hard task [CS86]. In any event, the restriction that the input describe a height field is too severe for
these techniques to have substantial application here.

Several algorithms generate potentially visible sets (PVS) of polygons with a dynamic query, then
solve the hidden-surface problem for this set with hardware, in screen-space. One such approach involves
intersecting a view cone with an octree-based spatial subdivision of the input [GBW90]. Although this
method provably generates a superset of the visible polygons, it has the undesirable property that it
can report as visible an arbitrarily large part of the model when, in fact, only a tiny portion can be
seen (Figure 2.5). The algorithm may also have poor average case behavior for scenes with high average
depth complexity, i.e., with many viewpoints for which a large number of overlapping polygons paint
the same screen pixel(s).
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Figure 2.5: Octree-based culling [GBW90]. The contents of the black cell are correctly marked invisible.
The contents of the gray cell are marked potentially visible and subsequently rendered, even though the
cell is entirely occluded by the foreground rectangle.

Another hardware-based method estimates visibility using discrete sampling, after spatial subdivi-
sion and portal-finding. Conceptually, rays are cast outward from a stochastic, finite point set on the
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boundary of each spatial cell. Polygons hit by the rays are included in the PVS for that cell [Air90].
This approach can underestimate the cell’s PVS by failing to report some visible polygons (Figure 2.6).
Consequently, the algorithm required excessive computation time (several 1989 CPU-months) to produce
acceptably tight lower bounds on potentially visible sets.

obstacles

visible
object

cell

object
marked
invisible

Figure 2.6: Stochastic ray-casting from portals [Air90]. The square object is correctly determined
potentially visible. The circular object is not reached by a random ray, and is (incorrectly) determined
to be invisible from all points in the source cell.

An object-space overestimation method described in [Air90] finds portals, or non-opaque convex
regions, in otherwise opaque model elements, and treats them as area light sources (Figure 2.7). Opaque
polygons (i.e., occluders) in the model then cause shedow volumes to arise with respect to these light
sources. Parts of the model inside the combined shadow volumes can be marked invisible for any
observer on or behind the originating portal. This method does exploit the hierarchical organization
inherent in spatial subdivision, by removing shadowed internal nodes where possible. However, the
portal-polygon occlusion algorithm has not found use in practice due to implementation difficulties and
high computational complexity [Air90, ARB90].
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Figure 2.7: Shadow-volume casting [Air90]. Portals are treated as area light sources. Occluders cast
shadows which generally remove cell contents or objects from the PVS.



Chapter 3

Computational Framework

This chapter constitutes an overview of the spatial data structures and algorithms that yield a framework
for efficient static and dynamic visibility determinations in densely occluded environments. The data
structures and algorithms are first presented abstractly, so that their salient features may be elucidated
without regard to the dimensionality of the occluders, or any other input attributes. Subsequent chapters
reify these data and algorithmic notions for three interesting and common classes of two- and three-
dimensional occluders: line segments in the plane, axis-aligned or azial rectangles in three dimensions,
and generally oriented convex polygons in three dimensions. Each algorithm and data type has been
implemented for all three input classes. The second input class, axially aligned 3D occluders, is worthy
of special treatment (and later, performance analysis) since it occurs so often for architectural models,
and since axial occluders comprised more than 90% the structural features of our test model.

3.1 Occluders and Detail Objects

In d dimensions (here, d = 2 or d = 3) the input to the preprocessing phase is a collection of n (d — 1)-
dimensional opaque, convex occluders whose convex hull is a d-dimensional region R. When d = 2, for
example, the n occluders are coplanar line segments, and R is a convex polygon. When d = 3, the n
occluders are convex, planar polygons, and R is a convex polyhedron (Figure 3.1). We say that a d
dimensional occluder is affine to the d-flat that embeds it; for example, a line segment is affine to the
line of which it is a part, and a planar polygon is affine to the plane of which it is a part. Finally, we
say that a planar region is lineal if it has zero area, and superlineal or areal if it has non-zero area.

The subdivision and visibility algorithms presented here treat major occluders and detail objects
differently. Conceptually, the ill-defined question of distinguishing occluders and objects is largely or-
thogonal to that of visibility determination, since the superset visibility algorithms are provably correct
regardless of input. In the real world, occluders and objects may be intermingled (for example, by the
modeling system). In this case, heuristics can serve to assign probabilities that particular entities should
be treated as occluders or as objects, based on size, genus, connectivity with other entities, and the

19
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d=2 d=3

Figure 3.1: Convex, opaque occluders, in two and three dimensions.

like. Regardless of how detail objects are determined, we assume that they have associated thereafter a
bounding hierarchy [Cla76] which can be used to subject the detail object to geometric operations such
as culling, without examining all of the entities (for example, polygon vertices) contained within the
object.

In what follows, therefore, we make the critical operating assumption that all detail objects are un-
occluding. Consequently, although objects can be subjected to visibility determinations, they themselves
do not contribute to the determination of visibility for any other object. The term “visibility” henceforth
is used to mean the points, regions, objects, or entities that would be seen by a physical observer in an
idealized environment in which only occluders can prevent the propagation of light. We show that, in
practice, this operating assumption allows the development of time- and storage-efficient algorithms.

3.2 Spatial Subdivision

We define a spatial cellin d dimensions as a d-dimensional region with (d—1)-dimensional boundaries. We
define a spatial subdivision or SSD as a collection of convex cells intersecting only along their boundaries
(Figure 3.2). Recall that a spatial subdivision is conforming if it supports the primitive operations of
point location, neighbor finding, and portal enumeration.

3.2.1 Point Location

The SSD supports the primitive operation of point location; that is, given a d-dimensional query point,
the cell containing that point can be determined. We will show that most point location queries are
highly coherent; that is, their result is highly correlated with that of previous queries. This coherence
can be exploited to make point location very fast, in practice.
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d=3

Figure 3.2: Spatial subdivisions, in two and three dimensions.

3.2.2 Object Population

Detail objects can be arranged efliciently, via population into the cells of the spatial subdivision. A
spatial cell is populated with an object if the object, or some simpler bounding representation of it,
intersects the cell in a d-dimensional region. (Some special instances arise in which a cell need not be
populated with a spatially incident object. We review these situations in the sections covering specific
input classes.) If a tradeoff arises between the time or storage efficiency of object population and the
on-line culling efficiency, we choose the option which favors the efficiency of the on-line operation.

We perform cell population by inspecting each detail object’s bounding representation for incidence
with each spatial cell, and linking the incident objects to cells where appropriate. This can usually
be done efficiently. For example, in a hierarchical spatial data structure, population is accomplished
recursively by commencing at the root, and descending to spatial children only if the current spatial cell
intersects the object bounding box. If a leaf cell is reached by the recursion, the object is associated
with that cell.

3.2.3 Neighbor Finding

A spatial subdivision cell’s neighbors are those other cells which intersect the given cell in a (d — 1)-
dimensional region. Typically, neighbor information is maintained as an invariant during construction of
the spatial subdivision. Alternatively, neighbor information can be recovered as a postprocessing stage.
Another option is to compute neighbor information lazily, i.e., as needed.

3.2.4 Portal Enumeration

Two cells in d dimensions are neighbors if they intersect in a (d — 1)-dimensional region. An occluder
and a cell are incident if they intersect in a (d — 1)-dimensional region. Consider some convex (d — 1)-
dimensional boundary of a cell. We define the cell egress on this boundary to be the (not necessarily
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convex) set difference between the boundary and any occluders coaffine with the boundary. In other
words, the egress is the “transparent” portion of the cell boundary. The egress may be incident on
several spatially adjacent cells, or on none (if the boundary face is also a face of R).

For any cell, portals are defined as the elements of any convex decomposition of the cell egress
through any particular cell boundary face. Cell portals are shown as dotted line segments (for d = 2)
and dash-outlined regions (for d = 3) in Figure 3.2. The SSD must support portal enumeration; that is,
given any cell and the set of occluders incident on the cell, the egresses and portals for that cell, along
with the incident cells to which they lead, must be determinable. Again, portal information may be
maintained as an invariant, constructed in a post-subdivision stage, or generated lazily.

3.2.5 Cell Adjacency Graph

Enumerating the portals of a spatial subdivision amounts to constructing an adjacency graph whose
vertices correspond to the cells of the subdivision, and whose edges correspond to its portals (Figure
3.3). This is a particularly useful view of the data structure, since, as we show, the static and dynamic
visibility operations we present can be cast abstractly, and implemented, as constrained traversals of the
adjacency graph.

R4

R
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Figure 3.3: A 2D spatial subdivision, and corresponding adjacency graph. An observer is schematically
represented at the lower left, and a sightline (broken) stabs a portal sequence of length three.

3.3 Static Visibility

The abstract notions of major occluders, detail objects, and conforming subdivisions (including spatial
cells, point location, egress and portal enumeration, and the cell adjacency graph) have been defined.
Given any conforming subdivision, several useful abstract visibility queries can be formulated. This
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section describes the queries independently of the input class or details of the subdivision, assuming
only a few geometric predicates. Both the abstract operations and the necessary predicates will be made
concrete in subsequent chapters.

3.3.1 Cell-to-Cell (Coarse) Visibility

Recall the definition of a generalized observer (§1.2): an observer constrained to a given cell (the source
cell), but free to move anywhere inside this cell and to look in any direction. Generalized observers are
posited during preprocessing to compute upper bounds on visible sets of cells, occluders, and objects.
These upper bounds are valid for entire regions, namely, the cells of the subdivision. During the walk-
through or simulation phase, the observer view variables are known more precisely, producing an actual
observer. Generally, as knowledge of view variables increases in precision, more discriminating visibility
queries become possible.

Once the spatial subdivision has been constructed, we compute cell-to-cell visibility information
about the leaf cells by determining cells between which an unobstructed sightline exists. A generalized
observer may see into a neighbor cell only through a portal, and into a more distant cell only through
a portal sequence; i.e., an ordered list of portals such that each consecutive pair of portals lead into and
out of the same cell. For any spatial subdivision, it is natural to characterize the set of cells visible to a
generalized observer in a source cell. We call these cells the cell-to-cell visibility set associated with the
source. Since a sightline must be disjoint from any occluders and thus must intersect, or stab, a portal
in order to pass from one cell to the next, it is sufficient to find a stabbing line through a particular
portal sequence (i.e., a line that intersects all portals of the sequence) to establish visibility between two
cells. For, if some observer could see from a point in the interior of one cell to a point in the interior
of another, a sightline must exist connecting the boundaries of the source and reached cells (cf. Figure
3.3).

Thus, the problem of finding sightlines between cell interiors reduces to finding sightlines through
portal sequences of increasing length. Consequently, a crucial abstract visibility operation is to determine
a stabbing line, given a portal sequence, or to determine that no such stabbing line exists. This is done by
searching for paths in the adjacency graph that admit sightlines emanating from a given cell boundary.

We say that a portal sequence admits a sightline if there exists a line that stabs every portal of the
sequence. Figure 3.4 depicts six cells 4, B, C, D, E, and F. The portal sequence [A/B, B/D, D/E]
admits a sightline, where P/Q denotes a portal from cell P to cell . Similarly, the portal sequences
[4/C, C/B, B/D] and [C/D, D/E] admit sightlines. Thus, 4, B, C, D, and E are mutually visible.
In contrast, no portal sequence starting at A admits a sightline reaching F', so cells A and F are not
mutually visible.

3.3.2 Generating Portal Sequences

Assume the existence of a predicate Stabbing_Line(P) that, given a portal sequence P, determines either
a stabbing line for P or determines that no such stabbing line exists. All cells visible from a source cell
C can then be found with the recursive procedure (comments are marked with //):
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Figure 3.4: Some portal sequences that admit sightlines.

Find_Visible_Cells (cell C, portal sequence P, visible cell set V)

y=vyucC // note C visible
for each portal p of C // N is the cell to which p leads
P’ = P concatenate p // extend candidate portal sequence
if Stabbing_Line (P’) exists then
Find_Visible_Cells (N, P', V) // recur through N

Figure 3.5: Finding sightlines from 1.

Figure 3.5 depicts a spatial subdivision and the result of invoking the procedure Find_Visible_Cells
(cell I, P = empty, V = 0). The invocation stack can be schematically represented as
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Find_Visible_Cells (I, P =[], V =0)

Find_Visible_Cells (F, P = [I/F], V = {I})
Find_Visible_Cells (B, P = [I/F, F/B], V = {I, F})
Find_Visible_Cells (E, P = [I/F, F/E], V = {I, F, B})

Find_Visible_Cells (C, P = [I/F, F/E, E/C), V = {I, F, B, E})

Find_Visible_Cells (J, P = [I/J], V = {I, F, B, E, C})
Find_Visible_Cells (H, P = [I]J, J/H,], V = {I, F, B, E, C, J})
Find_Visible_Cells (H, P = [I/J, J/Hz), V = {I, F, B, E, C, J, H})

The last line shows that I’s computed cell-to-cell visibility V is {I, F, B, E,C, J, H}.

3.3.3 Stab Trees

The recursive nature of Find_Visible_Cells() suggests an efficient data structure: the stab tree (Figure
3.6). Each vertez of the stab tree corresponds to a cell visible from the source cell (cell I in Figure 3.5).
Each edge of the stab tree corresponds to a portal stabbed as part of a portal sequence originating on a
boundary of the source cell. The stab tree is a tree, since it is isomorphic to the terminating call graph of
Find_Visible_Cells() above. However, since leaf cells are included in the stab tree once for each distinct
portal sequence reaching them, there is in general no one-to-one correspondence between stab tree edges
and adjacency graph edges (portals), or between stab tree vertices and adjacency graph vertices (cells).
During the preprocessing phase, a stab tree is computed and stored with each leaf cell of the spatial
subdivision; the cell-to-cell visibility is explicitly recoverable as the set of stab tree vertices.

Figure 3.6: The stab tree rooted at I.

To find sightlines, we must generate candidate portal sequences, and identify those sequences that
admit sightlines. We find candidate portal sequences with a constrained graph traversal on the cell
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adjacency graph. Two cells P and @ are neighbors in this graph if their shared boundary is not completely
opaque. Each convex, connected, non-opaque region of this shared boundary is a portal from P to Q.
Given any starting cell C' for which we wish to compute visible cells, a recursive depth-first search (DFS)
of C’s neighbors, rooted at C, produces candidate portal sequences. Searching proceeds incrementally;
when a candidate portal sequence no longer admits a sightline, the depth-first search on that portal
sequence terminates. As each cell is encountered by the DFS, a stab tree edge is constructed for the
traversed portal, and a stab tree vertex corresponding to the reached cell.

Later, we show how to determine the existence of such sightlines for interesting classes of portal
sequences in two and three dimensions. Computing this cell-to-cell relation over all cells constitutes
coarse visibility, or cell-to-cell visibility, determination.

3.3.4 Cell-to-Region (Fine) Visibility

A generalized observer in a given source cell can, by moving to each point in the source cell, see the
entirety of the cell. Since all cells are by definition convex, the generalized observer can by assuming
positions on the cell portals see all points in the interior of the source cell’s immediate neighbor cells.
Cells farther away (i.e., reachable only through portal sequences of length greater than one), however,
are in general only partially visible to the observer, due to occlusion by the edges of intervening portals
(Figure 3.7). We define the source’s cell-to-region visibility as the region visible to a generalized observer
in the source.

Figure 3.7: Distant cells are, in general, only partially visible (gray areas) from the source cell (dark).

The cell-to-region computation is a fine-grained visibility determination, operating on collections of
points rather than on cells or objects. Analogously to the stabbing computation, cell-to-region visibility

1 More precisely, the occlusion is due to the complements of the portals; that is, the opaque material abutting the
portals.
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can be cast as a constrained DFS on the cell adjacency graph, along with an augmentation of the abstract
stabbing line algorithm Stabbing_Line(P). If this procedure succeeds in computing a stabbing line for
a particular portal sequence, another abstract procedure Cell_To_Region(P) then computes the region
in the reached cell visible to a generalized observer situated on the first portal of the sequence P. We
call this region the antipenumbre of the first portal in the sequence (Figures 3.8 and 3.9) since it can be
thought of as the volume illuminated by an extended light source (the first portal) shining through a
series of convex holes (the remaining portals). The details of this antipenumbra computation are highly
dependent on the specific types of portals encountered, and are deferred to the sections pertaining to
concrete visibility algorithms for each input class.
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Figure 3.8: Antiumbra and antipenumbra through a series of 2D portals.

An abstract routine Antipenumbra(P) computes this antipenumbral volume, where P is a portal
sequence, and the first portal of this sequence is a virtual light source. Antipenumbra(P) is invoked on

a portal sequence P only when Stabbing_Line (P) returns successfully, i.e., only when the antipenumbra
is known not to be empty.

3.3.5 Cell-to-Object (Fine) Visibility

It may be storage-intensive to determine and store all cell-visible regions. Instead, we note that an object
can only be visible from a given source cell if it is has some intersection with the cell-to-region visibility
region of the source in that cell. We call the set of such objects the source’s cell-to-object visibility
(Figure 3.10). Abstractly, the cell-to-object computation amounts to a further augmentation of the
stabbing line algorithm; once a cell is reached via a particular portal sequence, and the antipenumbra of
the first portal in the sequence is computed, we must be able to determine whether this antipenumbra
intersects an object or its bounding representation. Cell-to-object visibiility is another example of fine-
grained visibility computation. (In practice, it turns out that this two-step approach of constructing the
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Figure 3.9: Successively narrowing antipenumbrae cast by an area light source in 3D (here, the leftmost
portal) through the cells of a conforming spatial subdivision.

Figure 3.10: Cell-to-object visibility (filled squares) for a given source in 2D.
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antipenumbra explicitly, then testing for object intersections, is more efficient than computing individual
portal sequence stabbing lines for each object. This phenomenon is discussed with the individual concrete
algorithms.) Note that once an object is determined visible via some path from the source cell, it need
not be tested again, regardless of any other paths reaching cells populated with the object.
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Figure 3.11: An object or occluder can be backfacing with respect to a generalized observer.

Note that, as in cell population, a storage optimization can be applied during cell-to-object visibility
determination (Figure 3.11). We say that a (d — 1)-dimensional object (occluder) is backfacing with
respect to the generalized observer if the generalized observer lies entirely within the closed negative
halfspace of the object (occluder). Backfacing objects (occluders) should not be included in the source’s
cell-to-object visibility, since they cannot be frontfacing for any actual observer in the source cell.

Figure 3.12: A source cell may reach another through several paths.

Finally, formulating the cell-to-object set amounts to compressing the stab tree in the following
sense. Suppose a generalized observer in a source cell C reaches a particular cell R through several
portal sequences. Rather than store the fully elaborated stab tree including several instances of R, the
aggregate set of objects found visible in R from C can be associated with the single pair {C, R}, as an
augmentation of the source’s cell-to-cell visibility set.
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3.4 Dynamic Visibility: On-Line Culling

The occluders are assumed to be in fixed position. Consequently, in any spatial subdivision over these
occluders, the cell-based visibility relationships are static; that is, they depend neither on the progression
of time nor on the position or field of view of the simulated observer.

The static nature of these computations limits the achievable tightness of the upper bound on visi-
bility for most regions. That is, since the static visibility computation must allow for all possible viewing
configurations attainable by the observer, it generally overestimates the model components visible to
any particular observer. During the walkthrough phase or interactive simulation of the environment, the
instantaneous variables describing the observer’s position, view direction, velocity, etc., are known. This
more exact knowledge of the observer permits a more discriminating dynamic culling operation.

Dynamic culling can itself be coarse or fine-grained. A coarse-grained cull computes the set of cells
visible to an actual observer. A finer-grained cull computes the visible subregions (areas or volumes) in
each of the cells. Finally, an eye-to-object cull identifies those objects inside the visible cells that are
visible to the observer, i.e., reached by a sightline emanating from the eye.

In the on-line culling phase, an algorithmic module computes answers to queries concerning cells
and objects potentially visible to a simulated observer with a specified position and field of view. The
objects identified by the query are then issued to graphics hardware for hidden-surface removal and
rendering.

The on-line culling part of the visibility module supports four queries: two superset queries and
two ezact queries. Below, we use the term “entity” to mean anything with a definite spatial extent that
can be subjected to geometric culling operations. Typically entities are planar polygons, or perhaps
assemblages of polygons. We use the term “region” to mean any 2D area or 3D volume.

The two superset queries are superset region and point visibility queries. The superset region
visibility query computes a superset of those entities visible from any point in a specified region. The
superset point visibility query computes a superset of those entities visible from a specified point,
and is therefore a special case of the superset region query.

If the geometric model is sufficiently small (i.e., simple), or if the graphics workstation is sufficiently
fast, then the superset queries can be trivially implemented, simply by constructing each query to
return the entire model. This clearly would suffice to achieve reasonable frame rates on the graphics
workstation, since rendering the entire model at interactive rates would be feasible. In this sense, the
class of “interesting” models is comprised of those models for which these trivial queries are insufficient
to achieve rapid frame rates.

On the other hand, given robust implementations of just the two superset queries, a functioning
walkthrough system can be built for the largest class of model. That is, given both queries, a visual
simulation can be effected of a model that is both too large to completely reside in memory, and that
contains too many entities (polygons) to be drawn in a single frame time. In the abstract framework
presented here, effectively handling this class of model demands both the region and point superset
queries.

The two exact queries are exact region and point visibility queries.

The exact region visibility query computes exactly those entities, or fragments of entities, visible
from any point in a specified region. This is equivalent to the computational-geometric notion of weak



3.4. DYNAMIC VISIBILITY: ON-LINE CULLING 31

vistbility from the region. We outline a global solution of weak-visibility in Chapter 10.

The exact point visibility query computes exactly those entities, or fragments of entities, visible
from a specified point. The exact point visibility query effects hidden-surface removal from a point, a
classic computer graphics problem. We do not further consider this query.

3.4.1 Observer View Variables

We formalize the notion of a simulated observer in terms of the observer’s view variables, which are
necessary and sufficient to determine the subset of the model which must be rendered in order to provide
a correctly displayed scene for the observer (Figure 3.13). These variables are dimension-dependent, and
describe the momentary position and field of view of the actual observer. The simulation might also
maintain time derivatives of the view variables, in order to construct envelopes for the variables that are
valid for time intervals extending into the future.
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Figure 3.13: Observer view variables as view cone (2D) and view frustum (3D).

3.4.2 Eye-to-Cell Visibility

In contrast to the generalized observer, an actual observer is one whose view variables are known precisely.
During the on-line culling phase, we can exploit static visibility computations to efficiently compute a
superset of the cells and objects visible to the simulated actual observer. The eye-to-cell visibility set
is simply the set of cells potentially visible to that observer. Successively tighter (i.e., smaller) upper
bounds on this set can be constructed, at progressively greater computational expense.

During the on-line culling phase, the observer is at a known point and has vision limited to a view
cone or view frustum emanating from this point. In two dimensions, the cone can be defined by a view
direction and angular field of view; in three dimensions, the frustum can be defined by the left, right,
top, bottom, and perhaps near and far planes.



32 CHAPTER 3. COMPUTATIONAL FRAMEWORK

During the simulation phase, it is desirable to have an efficient query that, given the observer’s
view variables, generates a set of polygons comprising a usefully tight upper bound on the set of visible
polygons. We define the observer’s eye-to-cell visibility set (cells E, F, I, and J in Figure 3.14) as
those cells reachable by some ray that contains the eye and that lies inside the view frustum (ignoring
occlusion caused by detail objects). Clearly the eye-to-cell visibility set is a subset of the source’s cell-
to-cell visibility. We show how the eye-to-cell visibility set may be efficiently computed via a traversal
of the stab tree or, somewhat less efficiently, of the cell adjacency graph. The eye-to-cell computation is
ezact in the absence of occlusion due to detail objects.

Figure 3.14: Eye-to-cell and eye-to-region visibility sets for an actual observer.

3.4.3 Eye-to-Region Visibility

Since each portal implies a set of constraints, the depth-first-search of the stab tree can be framed as a
constrained graph traversal, augmented by an action associated with each successful traversal of a stab
tree edge (i.e., portal). To compute eye-to-region visibility, the visible volume is initialized to the entire
view frustum. Each traversed portal then “clips away” some portion of this volume in a dimension-
dependent fashion. Finally, the remaining pyramidal, eye-centered region is intersected with the reached
cell to produce the visible region in the reached cell due to the active path through the stab tree (Figure
3.14). The complexity of this region is shown to be dependent on the input class. In the simplest (2D)
case, the visible region is of constant complexity, and can be described by a minimum and maximum
angle. In 3D the visible region can have complexity as great as the total number of edges in all the
portals along the path reaching the cell.



3.4. DYNAMIC VISIBILITY: ON-LINE CULLING 33

3.4.4 Eye-to-Object Visibility

Often we wish to identify the potentially visible objects in each reached cell. As in the static case, a
fine-grain eye-based object cull can be formulated. We define the eye-to-object visibility set (Figure 3.15)
as those objects to which a ray exists through the eye and inside the observer frustum (again ignoring
occlusion due to detail objects). Clearly this set of objects must be a subset of those in the cell-to-object
visibility for the observer cell, and must be incident on those cells in the eye-to-cell visibility set. We
illustrate two useful computations that construct the eye-to-object visibility set. One efficiently computes
an upper bound on this set; another is more expensive computationally, but computes a generally tighter
(i-e., smaller) eye-to-object set.

Figure 3.15: Eye-to-cell (light areas), eye-to-region (dark areas), and eye-to-object visibility set (those
dark squares incident on the eye-to-region visibility) for an actual observer.

We show in §8.4 that, regardless of input class, casting visible object determination as an ezistence
problem, i.e., a question of the existence of a single sightline, results in a substantial speedup over the
efficiency of visible region determination. In practice the eye-to-object visibility is more often desired
than the eye-to-region visibility (although the latter is useful for purposes of algorithm verification and
visualization).
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Chapter 4

Two Dimensional Environments

This chapter describes algorithms for each of the abstract visibility operations introduced in Chapter
3. Here, we specify each concrete operation in two dimensions, where occluders are line segments.
The discussion of two-dimensional environments is a worthwhile pedagogical introduction to concrete
notions of spatial subdivision, visibility precomputation, and on-line culling queries for two-dimensional
occluders. Moreover, the 2D techniques are quite efficient and useful in 3D environments that are
describable by “floorplans” — e.g., single-floor structures with few internal openings other than doorways
[Bel92].

Readers familiar with 2D data structures and visibility computations may wish to skip to Chapter
5.

4.1 Major Occluders and Detail Objects

Occluders are generally-oriented or axis-aligned line segments, described by pairs of endpoints in the
plane. Occluders are assumed to intersect only at their endpoints. Objects, for the purpose of visibility
determination, are simply bounding boxes (e.g., rectangles).

4.2 Spatial Subdivision

In 2D, the n occluders are finite-length line segments, and we desire a spatial subdivision whose cells are
convex polygons, and whose portals are line segments. This can be done in one of two ways. If the line
segments are generally oriented line segments (Figure 4.1), any triangulation respecting the line seqments
can be used. By Euler’s relation, this triangulation contains O(n) triangles. The triangulation consists
only of edges which are either occluders, or connect two vertices of distinct occluders. Each cell in the
corresponding spatial subdivision is a triangle, and there are at most O(n) lineal portals, each of which
can be found and stored in constant time. The well-known constrained Delaunay triangulation can be
constructed in O(nlgn) time [Sei90a]. However, we use a less-efficient greedy triangulation algorithm

35
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that simply starts with the input line segments and inserts non-intersecting edges until the result is a
triangulation.

Figure 4.1: A linear-size constrained triangulation of the n occluders. Occluders are shown as bold
segments, portals as dashed lines.

In contrast, when the occluders are azial (i.e., parallel to the z or y axis), We perform the spatial
subdivision using a BSP tree [FKN80] whose splitting planes contain the occluders. For the special case
of axial data, the BSP tree becomes an instance of a k-D tree [Ben75] with £ = 2. Every node of a k-D
tree is associated with a spatial cell bounded by k exztents [Zo min ... Zo,maz)s s [Ek—1,min -+ Tk—1,maz)-
This closed definition of cells allows them to intersect along their boundaries. If a k-D node is not a leaf,
it has a split dimension s such that 0 < s < k; a split abscissa a such that z; min < @ < 25 mqe; and low
and high child nodes with extents equivalent to that of the parent in every dimension except & = s, for
which the extents are [#; min...a) and [@...2;s mag), respectively. Thus the cells of the resulting spatial
subdivision are axial rectangles, and portals are axial line segments (Figure 4.2).

A minimal-size k-D tree with O(n) cells over n occluders can be constructed in O(nlgn) time, with
worst-case total storage complexity linear in n [PY89]. A balanced k-D tree supports logarithmic-time
point location and linear-time neighbor queries.

We construct a non-minimal k-D tree incrementally by greedy selection of an occluder along which
to introduce a splitting plane at each leaf, until no more candidates exist (i.e., until every occluder lies
on the boundary of one or more leaves). Under our splitting criteria, the resulting tree is not in general
balanced or of linear size, but the creation and search time can not be worse than linear in the number
of cells. We have observed the storage requirements of the tree to be reasonable in practice, even for
complex environments.
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- jnput faces - - - cell boundaries portals

Figure 4.2: The leaf cells of a linear-size k-D tree over n line segments. Split planes are numbered in the
order which they were introduced.

4.2.1 Point Location

Given a constrained Delaunay triangulation over n input segments, a logarithmic-depth search struc-
ture can be constructed for the triangulation in O(nlgn) time [PS85]; however, a linear-time (brute
force) search is sufficient for our purposes, due to the high coherence of point-location queries in a real
application.

Point location in a k-D tree is straightforward. Recursively, the query point is compared to the
current node. If the point is not inside the extent, a special value is returned denoting this. Otherwise,
if the node is a leaf node, it is returned as the containing cell. Otherwise, the point is compared to the
split abscissa for the cell, and the appropriate subtree of the cell is searched. This procedure is invoked
on the root node.

Often, subsequent queries will be coherent, i.e., produce an answer highly related to that of the
preceding query. An efficient implementation could exploit this fact by, for example, caching the most
recently computed containing cell and examining it for incidence with the query point. Only if this
incidence check fails would a new search be performed. More sophisticated schemes might reuse the last
search sequence, or use portals to search the adjacency graph from the cell satisfying the previous point
location query.

4.2.2 Object Population

Once the SSD has been generated, the subdivision cells must be populated with detail objects. We
assume that every object has associated with it an axial bounding box (i.e., a rectangle). Suppose there
are n input line segments and m objects to populate. For both 2D input classes, general line segments
and axial line segments, object population can be efficiently implemented.
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For generally oriented line segments, cell population reduces to determining the intersection of
a rectangle with a triangular spatial cell. This can be done in constant time per cell, and a naive
algorithm therefore inserts all objects in at most O(mn) time. A more sophisticated approach would be
to build an efficient search structure for the triangulation (see, e.g., [Kir83, EGS86, ST86]), permitting
O(lg n)-time point location, and constant-time incidence testing of the object bounding box with each
intermediate level of the search structure. If an object can impinge on O(n) cells, this improvement
yields no asymptotic speedup. If an object can impinge on no more than k connected cells, then the
time to insert each object can be no more than O(klgn), and the total time for inserting all objects
improves to O(mk lgn). Finally, if neighbor information is available for each cell, then each object can
be inserted in O(lgn + k) time by finding the cell enclosing one point of the object, then “walking” the
object boundary while simultaneously traversing and populating any implicated cells.

For axial line segments, population of each leaf cell again reduces to the constant-time task of
intersecting an axial bounding box with an axial cell extent. Assuming a linear-size, log-depth spatial
subdivision and a maximum of k& object-cell incidences per object, the time complexity of object insertion
is again O(mk lgn). If the number of cells is not known to be O(n), as is the case for our heuristic splitting
operation, then we must introduce the quantities ¢, the number of cells in the spatial subdivision, and
d, the maximum length of any path from leaf to root. Then the worst-case object insertion time again
becomes O(cm), or O(kdm) since each object requires at most kd time to be inserted in at most k
incident leaf cells.
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Figure 4.3: One- or two-dimensional detail objects intersecting the cell in a point, or 1D backfacing
detail objects, may be ignored during cell population.

There are two storage optimizations that apply to cell population (Figure 4.3). The cell should
not be populated with 2D (i.e., areal) detail objects that have only a point or zero-D intersection with
the source cell, since the object will only be visible if the observer sees into a neighbor of the source
intersecting the object in a 1D or 2D region. Second, if 1D (i.e., lineal) objects have associated normal
orientations, the cell should not be populated with lineal objects (occluders) that are backfacing with
respect to the generalized observer, since these objects (occluders) will be backfacing for all actual
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observer viewpoints in the cell.

4.2.3 Neighbor Finding

Neighbor finding information in triangulations can be maintained as invariants during construction, or
recovered after construction [GS85, PS85]. In k-D trees, neighbor information is easily generated via
ascent and descent operators.

4.2.4 Portal Enumeration

Neighbor finding costs, on average, logarithmic time per cell, or O(nlgn) time overall. When 2D
k-D trees are used, a simple post-processing path ascends and descends the tree from each leaf cell,
establishing its spatially adjacent neighbors. Although some cells may have O(n) such neighbors, the
Euler relation dictates that the planar cell adjacency graph have a number of edges (i.e., neighbor
relations) linear in the number of nodes (spatial cells); thus, neighbor finding will on average require
constant time per cell, and O(c) time overall (where ¢ is the number of cells).

Note that for any class of 2D input, a cell whose boundary has only a point (i.e., zero-dimensional)
intersection with an occluder need not take this occluder into account during portal enumeration, as the
occluder can have no effect on the visibility of the generalized observer in the cell (Figure 4.4). Note
that, unlike the detail object case, both backfacing and frontfacing 1D incident occluders are useful, and
should not be ignored during portal enumeration.

1
1
1
1
‘/l,\ ignored
1 occluders

1 boundary |

Figure 4.4: Occluders intersecting the cell boundary in a point may be ignored during portal enumeration.

For either 2D input class, portal enumeration is a straightforward operation, equivalent to computing
set differences among collections of collinear line segments (the occluders) with the cell boundary (a line
segment). Importantly, cell portals are oriented by the direction in which they must be crossed during
traversal of the adjacency graph. This orientation is crucial to the development of efficient algorithms
for finding stabbing lines, constructing static culling regions, and performing on-line culling, as we shall
show.
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4.3 Static Visibility Operations

This section describes concrete implementations of the abstract algorithms Stabbing_Line() and Find_Visible_Cells()
introduced in Chapter 3, for 2D occluders.

4.3.1 Cell-to-Cell Visibility

Once the 2D spatial subdivision has been constructed, we compute cell-to-cell visibility information
about the leaf cells by determining cells between which an unobstructed sightline exists. This sightline
must intersect, or stab, a portal in order to pass from one cell to the next. If there exists a sightline
through two points in two cells’ interiors, there must be a sightline intersecting a portal from each cell.
Thus, in 2D, the problem of finding sightlines between cell areas reduces to finding sightlines between
line segments on cell boundaries.

Finding Sightlines Through Portal Sequences

Given the abstract depth-first-search algorithm described in §3.3.3, we must make concrete the notion
of constrained search through a two-dimensional planar subdivision.

(b) (c)

Figure 4.5: Oriented portal sequences, and separable sets L and R.

The fact that portal sequences arise from directed paths in the subdivision adjacency graph allows
us to orient each portal in the sequence and compute sightlines efficiently. As the DFS encounters each
portal, it places the portal endpoints in a set L or R, according to the portal’s orientation (Figure 4.5).
A sightline can stab this portal sequence if and only if the point sets L and R are linearly separable;



4.3. STATIC VISIBILITY OPERATIONS 41

that is, iff there exists a line S such that

$-L>0, VLelL
S-R<0, VRER, (4.1)

where the notation S - P indicates that the signed distance between the point P and the oriented line S
should be computed.

For a 2D portal sequence of length m, this is a 2D linear programming problem of 2m constraints.
Both deterministic [Meg83] and randomized [Sei90b] algorithms exist to solve this linear program (i.e.,
find a line stabbing the portal sequence) in linear time; that is, time O(m). If no such stabbing line
exists, the algorithms report this fact.

4.3.2 Cell-to-Region Visibility

This  section  describes a  concrete  implementation of the  abstract  algorithm
Cell_To_Region() introduced in Chapter 3, for 2D occluders.

The depth-first search of the adjacency graph “reaches” a cell each time a portal sequence is suc-
cessfully stabbed with Stabbing_Line(); the computed stabbing line is a “witness” to the fact that an
observer can see from some point on a portal of the source cell to a point on a portal of the reached
cell. For general portal sequences of more than one portal, however, the reached cell is not visible in its
entirety to the generalized observer (Figure 4.6).

Figure 4.6: Distant cells are, in general, only partially visible from the source.

Conceptually, the portal is treated as a light source, and a description is computed of the light
emanating from the portal that propagates into the remainder of the spatial subdivision. Each portal
illuminates some volume in its positive halfspace (the halfspace not containing the cell from which the
portal exits); the union of all such volumes for all portals on the boundary of a given source cell is the
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area potentially visible to an observer in the source, or the cell-to-region visibility for that source (Figure
4.6).

Computing the region illuminated by, or visible to an observer on, a specified portal is an interesting
computational geometry problem in its own right. This antipenumbra computation is related to the 2D
and 3D weak vistbility problem in computational geometry [O’R87, PS85, SS90], and to shadow casting

from area light sources in 3D, an often-studied problem in computer graphics [NN83, PW88, Air90,
CF92].

Two-Dimensional Hourglasses

The bundle of lines stabbing a sequence of line segments in the plane is known as a bowtie or hourglass
[Her87] due to its characteristic shape of an upper and lower convex hull and two crossover edges that
connect the hulls (Figure 4.7). The antipenumbral region beyond the last portal is the area enclosed by

the positive halfspaces of the crossover edges, oriented so as to contain the illuminated portion of the
final portal in the sequence.
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Figure 4.7: In two dimensions, a portal sequence admits an “hourglass” of stabbing lines.

In two dimensions, computing the antipenumbra of an oriented portal sequence of length n can
be done straightforwardly in O(n) time. To show this, we demonstrate how a portal can be added to
an existing sequence of length n — 1, and the antipenumbra correctly modified, in constant time per
portal. Imagine traversing a portal and emerging in the cell to which the portal leads; the traversal
unambiguously determines “left” and “right” portal vertices. The hourglass region then consists of
paired hulls, which in the context of oriented portals can be called “leftmost” and “rightmost” hulls.

Clearly, adding a new lefthand or righthand point to either hull may require n — 1 steps, since all
existing hourglass edges may be destroyed by the appearance of the new point (Figure 4.8). However,
each hourglass edge may be inserted and or deleted at most once over n portal additions, so the total
number of insertions and deletions is n, and the average time per portal insertion is constant. Once
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Figure 4.8: The left-hand points form a convex chain.

the leftmost and rightmost hulls have been built, the crossover edges are found between the first and
last vertices of the two hulls in constant time. Finally, the antipenumbra is found to be empty when
a left-hand vertex is right of the right-hand crossover edge, a right-hand vertex is left of the left-hand
crossover edge, or when the updated crossover edges do not intersect (Figure 4.9).

next portal

— — — old crossover edges
updated crossover edges

Figure 4.9: A 2D portal sequence terminates if the updated crossover edges do not intersect (above), or
if the newly encountered portal does not intersect the active antipenumbral region (not shown).

4.3.3 Cell-to-Object Visibility

Once a cell has been reached through a particular portal sequence, and the antipenumbra of the zeroth
portal with respect to the reached cell has been computed, determining the cell-to-object visibility
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amounts to intersecting each object in the reached cell with the antipenumbral region. In two dimensions,
the antipenumbra in any reached cell is a convex polygon of constant complexity; intersecting this with
the bounding box of any object therefore requires constant time. Thus, for a particular portal sequence
reaching a cell containing m objects, this sequence’s contribution to the source’s cell-to-object visibility
set can be determined in O(m) time. This cost is incurred for each portal sequence reaching the cell
from the source. Alternatively, the edges of the object’s bounding box can be considered as portals,
and the existence of a sightline through the active portal sequence and the object bounding box can be
sought. This is typically less efficient computationally, since the per-object complexity of the sightline
search is linear in the length of the portal sequence reaching the cell, rather than constant time.

4.4 Dynamic Visibility Queries

4.4.1 Observer View Variables

In two dimensions, the observer’s view variables are simply the observer location (a 2D point), and
bounds on the azimuthal extent of the observer’s 2D view cone, represented as the intersection of two
halfspaces.
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Figure 4.10: Observer view variables in 2D.

4.4.2 Eye-to-Cell Visibility

During the query phase, the observer is at a known point and has vision limited to a view cone emanating
from this point. Recall that the eye-to-cell visibility is the set of cells partially or completely visible
to an observer with a specified view cone (Figure 4.11). We present a series of culling methods based
on constrained traversal of the stab tree. This series of methods illustrates how the expenditure of
increasing amounts of computational effort permits the computation of successively tighter upper bounds
on potentially visible cell sets. Each culling method extends directly to three dimensions under a
straightforward generalization of the geometric operations involved (e.g., halfspace construction, linear
programming). In later chapters, we make these generalizations algorithmically explicit.
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Eye-to-Cell Culling Methods

Let O be the cell containing the observer, C' the view cone, S the stab tree rooted at O, and V the set
of cells visible from O (i.e., {O, D, E, F,G, H} in Figure 4.11). We compute the observer’s eye-to-cell
visibility by culling S and V against C. We discuss several methods of performing this cull, in order of
increasing effectiveness and computational complexity. All but the last method yield an overestimation
of the eye-to-cell visibility; that is, they can fail to remove a cell from V for which no sightline exists in
C. The last method computes the exact eye-to-cell visibility set.
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Figure 4.11: Culling O’s stab tree against a view cone C.

Disjoint cell. The simplest cull removes from V those cells that are disjoint from C; for example,
cells D, E and F in Figure 4.11-a. This can be done in O(|V|) time, but does not remove all invisible
cells. Cell G in Figure 4.11-a has a non-empty intersection with C, but is not visible; any sightline to
it must traverse the cell F', which is disjoint from C. More generally, in the cell adjacency graph, the
visible cells must form a single connected component, each cell of which has a non-empty intersection
with C. This connected component must also, of course, contain the cell O.

Connected component. Thus, a more effective cull employs a depth-first search from O in S,
subject to the constraint that every cell traversed must intersect the interior of C. This requires time
O(|S|), and removes cell G in Figure 4.11-a. However, it fails to remove G in Figure 4.11-5, even though
G is invisible from the observer (because all sightlines in C from the observer to G must traverse some
opaque input face).

Incident portals. The culling method can be refined further by searching only through cells
reachable via portals that intersect C'’s interior. Figure 4.11-c shows that this is still not sufficient to
obtain an accurate list of visible cells; cell H passes this test, but is not visible in C, since no sightline
from the observer can stab the three portals necessary to reach H.

Exact eye-to-cell. The critical observation is that for a cell to be visible, some portal sequence
to that cell must admit a sightline that lies inside C' and contains the viewpoint. Retaining the stab
tree S permits an efficient implementation of this sufficient criterion since S stores with O every portal
sequence originating at O. Suppose the portal sequence to some cell has length m. This sequence implies
2m linear constraints on any stabbing line. To these we add two linear constraints, ensuring that the
stabbing ray lie inside the two halfspaces whose intersection defines C. That is, a stabbing line exists
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if and only if some vector, anchored at the eye, can have a nonnegative dot product with each of the
2m + 2 halfspace normals (Figure 4.12). The resulting 2D linear program of 2m + 2 constraints can be
solved in time O(m), i.e., O(]V|) for each portal sequence.

Figure 4.12: The 2m + 2 halfspace normals arising from a portal sequence of length m (a), and the
corresponding 2D linear program (b). The dashed arrow is a feasible solution.

This final refinement of the culling algorithm computes exact eye-to-cell visibility. Figure 4.11-¢
shows that the cull removes H from the observer’s eye-to-cell visibility since the portal sequence [O/F,
F/G, G/H] does not admit a sightline through the viewpoint. This linear programming formulation is
not optimal in two dimensions, however. The next section describes a procedure which requires constant
time per portal, computes exact eye-to-cell visibility, and computes eye-to-region visibility at constant
added cost per encountered cell.

4.4.3 Eye-to-Region Visibility

During the walkthrough phase, the visible region can readily be computed from the stored stab tree.
The visible area in any cell is the intersection of that (convex) cell with one or more (convex) wedges
emanating from the observer’s position (Figure 4.13).

The two-dimensional eye-to-region visibility query can be implemented as an action to be applied
whenever the eye-based cull reaches a cell through a specified portal. After the view wedge is suitably
narrowed by the portal (requiring constant time), the resulting infinite wedge is intersected with the
reached cell. The union of all such areas for each path reaching a cell constitutes the source’s eye-to-
region visibility in that cell. Note that the current portal sequence terminates when the current wedge
has no intersection with the newly encountered portal.
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Figure 4.13: The view cone during the stab tree DFS.

4.4.4 Eye-to-Object Visibility
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The eye-to-object set comprises those objects potentially visible to an observer. Objects must satisfy
many constraints to be visible: 1) they must be located in a cell visible to the source; 2) they must lie
in the source’s cell-to-object visibility set; 3) they must lie in a cell in the source’s eye-to-cell visibility
set; 4) they must intersect the interior of the observer’s view cone; and 5) there must exist a sightline
between the eye and the object, stabbing each portal in a sequence reaching the cell containing the
object. The first three constraints are implemented via a straightforward marking algorithm on the cell

adjacency graph.
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Figure 4.14: The 2D eye-to-object visibility computation.
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To see how the final two constraints may be checked, again conceptualize the observer as a light
source; this time, as a “flashlight beam” emitting light from a point only in a specific range of directions
(the interior of the view cone). The eye-to-region DFS maintains the wedge of light that survives through
each encountered portal (Figure 4.14). This wedge can be stored in constant space, using a leftmost
and rightmost oriented line, and can be updated in constant time per portal. The wedge “illuminates”
an area of constant complexity in every reached cell- namely, the intersection of the current wedge with
the cell. The object bounding boxes incident on this illuminated area can be found in constant time per
object with a straightforward 2D intersection computation.



