Chapter 9

Results: Soda Hall Data

9.1 Geometric Data Set

The test case for these algorithms is a complex geometric model of a planned computer science building.
The original floorplan and elevation data were obtained in AutoCAD format [Aut90], but have since
undergone substantial, and crucial, alteration [Kho91]. Some alterations were relevant to visibility
determination, and these are described in what follows. Many were effected as team efforts by members
of the Walkthrough research group.

After the elevation data and floorplan were integrated into a collection of 3D wall, floor, ceiling,
door, and window polygons, the data was converted into a convenient format. We chose the Berkeley
UNIGRAFIX format [SSW83, SS91], since it is simple, human-readable, and has many associated utilities
available in the form of textual filters. Moreover, oriented polygonal faces are central UNIGRAFIX
definitional primitives.

The articulated (but unpopulated) geometric model was then subjected to a series of automated
filiers and to some interactive editing, to attain a sensible form [Kho91]. Interpenetrating or overlapping
polygons were adjusted or removed. Misoriented polygons (e.g., wall polygons whose face normals
pointed into the wall interior, not into the room interior) were reversed. Cracks, or small gaps, in the
model were filled by subtly adjusting nearby polygons. This filtering task is formidable, perhaps even ill-
defined, for general polyhedral environments. However, it seems tractable for architectural environments
which, after all, are intended to represent physically realizable structures.

The filtering task was a practical necessity, rather than a theoretical one, since omitting it would
only have increased the running time of the visibility algorithms, without compromising their correct-
ness. In practice, we observed that leaving cracks uncorrected noticeably increased the time spent in
preprocessing, since each uncorrected crack (i.e., portal) became a conduit for many dynamic and on-
line visibility tests that otherwise would not have occurred. In the sense of algorithmic correctness, the
filtering operation is independent of any abstract notions of visibility determination. We have assumed,
throughout, the availability of filtered input to the visibility computation module, and we perform no

107

108 CHAPTER 9. RESULTS: SODA HALL DATA

systematic analysis of the possible time and storage penalties incurred by violations of the filtering goals.

9.1.1 Test Models and Test Walkthrough Path

We extracted two test cases from the geometric model. The “partial” model comprised only the sixth
and seventh floors, and the roof, of the building. The “full” model was all five completed floors and the
roof; its geometric data required almost three times as much storage as that of the partial model. We
constructed the two models in order to analyze the effect of tripling the model data size on visibility
storage requirements and computation times.

Our goal in instrumenting the algorithms was to probe their effectiveness under realistic workloads,
rather than random or systematic queries. Consequently, we gathered data about the effectiveness of
the visibility algorithms by recording a representative “test path” defined during an actual interactive
walkthrough session. The test path wanders through the sixth and seventh floors of the model, through
the atrium, into and out of several offices, out and in a window, out over the terraces, and through
the open-air regions among the columns (Figure 9.2). The path spends considerable time in free-space
surrounding the building. These regions challenge the more discriminating culling operations, since
almost all portal sequences there admit eye-based sightlines. Consequently, the eye-based DFS spends
considerable time traversing empty cells.

9.2 Implementation

9.2.1 Programming Methodology

The visibility algorithms described in this thesis have been implemented in the C language on a Silicon
Graphics 340 GTX superworkstation. The implementation mirrors the progression of this thesis; the
abstract operations were first implemented for 2D occluders, for axial 3D occluders, and finally for
general 3D occluders.

These algorithms exist as part of a large collection of programs that support interactive graphical
visualization and manipulation of geometric data. The development of each algorithm was facilitated
by a “visual programming” framework in which visual, selectable instantiations were defined for each
geometric data type, in order not only to display the behavior of the data, but to manipulate it directly,
for example by use of an interactive input device. This implementation methodology had some surprising
and beneficial aspects, and some noteworthy implications.

First, the notion of displaying geometric data objects as they are manipulated gives powerful clues
as to the correct or incorrect behavior of associated algorithms. We found that if the computed solution
“looked wrong,” i.e., contradicted intuition, it generally was wrong, or at least merited further exam-
ination. Second, manipulating a geometric algorithm’s input with an interactive device is a powerful
method for exploring the space of possible inputs. This coverage of, for example, input degeneracies
and boundary cases facilitates the development of extremely robust algorithms, because instances of
exceptional input are effortlessly generated as test cases. Third, the easy availability of a graphics in-
frastructure for prototyping algorithms removed much of the onus of implementing complex geometric

9.2. IMPLEMENTATION 109

Figure 9.1: The top two floors and roof of the geometric model. The test path (grey) snakes in and out
of the building.

Figure 9.2: The test path, grey-scaled from low z-values (black) to high z-values (white).

110 CHAPTER 9. RESULTS: SODA HALL DATA

algorithms.

9.2.2 Free-Space

In practice, our system encountered a difficulty that we termed the “free-space” problem. Define a
free-space cell as one incident on no major occluders or detail objects; i.e., an empty cell all of whose
boundaries are completely transparent. Two factors caused clumps of free-space cells to arise while
subdividing the building model: first, non-local splitting caused by the early k-D tree subdivision planes;
second, subdivision of large cells and bad-aspect cells (for example, large open areas such the balconies
and atrium, or long corridors) to reduce their visibility to and from the remainder of the model.

The free-space problem arises because of conflicting demands on the subdivision method. First, it
should exploit the presence of occluders wherever possible (e.g., by splitting along them). Cell boundaries
should therefore be obscured by occluders. Second, the subdivision method should produce cells that
have usefully small cell-to-cell visibilities, thus highly constraining the generalized observer, even when
no occluders are present. This forces some splitting to occur in regions of little “nearby” occlusion.

One important future aspect of this research is the development of improved spatial subdivision
techniques for both axial and general three-dimensional data. In the interim, however, we rely on ad-hoc
techniques for handling problematic local cell configurations such as clusters of free-space cells.

r-r-r-r—-——~"r—-~—-~"~r—-=—"r ~-=—-<-
1 1 1 1 |
1 1 1
1 1 1

== r - ="rC= - —— - T

entry | ———— :
portal S

Figure 9.3: Naive search through free-space causes a combinatorial explosion. Dashed lines are portals;
some of the sightlines computed are shown.

Clusters of free-space cells, treated naively, slow both the precomputation and query visibility
phases. During precomputation, a sightline search encountering the cluster explores all combinatorial
paths through it (Figure 9.3), expending time and storage to compute essentially no useful information
(since no objects are populated in free-space cells, no cell-to-object visibility determinations can be
made). During the query phase, the eye-to-cell search expends computational effort to find eye-based

9.2. IMPLEMENTATION 111

sightlines, and manipulates dynamic stacks of halfspace constraints that need never be applied to discover
eye-to-cell visibility. This search is wasteful in that it discovers no visible objects to be drawn; it is
necessary, however, because otherwise the traversal algorithms would not be able to proceed beyond
free-space cells to more typical cells containing visible objects. Consequently, we have developed a
method which searches through a free-space cluster, and emerges from its perimeter, in time comparable
to that required for searching a single cell.

Handling Free-Space Cells

We developed a method for handling free-space cells which is a straightforward generalization of the cell
and adjacency graph, and of the notion of traversing such a graph. Moreover, in the case of sparsely
occluded environments such as terrains, our method has the desirable feature that it degenerates to a
purely spatial cull (cf. [GBW90]) — probably as well as one can do in such an environment without a
fully general object-space hidden-surface algorithm.

We generalize the notion of a spatial cell and define a metacell as any connected cluster of constituent
cells. The metacell is generally non-convex, and has a portal set containing all constituent cell portals
that lead to a non-constituent cell. Note that this definition prevents a metacell portal from leading
into itself or another metacell, a desirable property that simplifies the abstract operations defined over
metacells. Point-locating into any constituent cell is equivalent to point-locating into the associated
metacell.

The geometric notion of portals is unchanged. However, without cell convexity, it is no longer true
that portals in general are mutually visible through their common cell interior (Figure 9.4). Consequently
we associate, with each portal entering the cell, a list of portal crossover constraints which, given the
metacell and an entry portal, catalogues those portals through which the metacell may be exited. The
crossover constraints can be statically computed by finding all pairs of portals A and B that admit
a stabbing line in the interior of the metacell, and can be done with the standard cell-to-cell DFS,
constrained to traverse only constituent cell portals. Although this sub-problem may be combinatorially
expensive, the advantage of constructing the portal crossover lists is that it need be done only once per
metacell (e.g., when the cell is first encountered during visibility precomputation), rather than once each
time any of the constituent cells is encountered, as in the unmodified scheme. Finally, note that the
size of the portal-crossover table can be O(p?), where p is the number of constituent cell portals in the
metacell.

Figure 9.4, depicts a sightline search that enters a metacell via portal A, but that is unable to leave
the metacell via portals C or K since, to do so, the sightline would have to reverse itself (i.e., the portal
pairs [4,C] and [4,K] do not admit sightlines). The stabbing line search further rules out exit via portals
D or J because no sightline entirely within the metacell exists to either of them from A. Thus the portal
crossover constraints for portal A comprise the remaining metacell portals, the set B, E, F,G, H, I, L.

Once the notion of a conforming subdivision has been generalized to include metacells, we need only
generalize the abstract operation to be performed upon encountering a metacell in the precomputation
and query phases. Recall that, in the precomputation phase, the sightline and cell-to-region DFS arrives
at a cell with a set of halfspaces encoding the portal constraints encountered so far. When encountering
a metacell, rather than recursing and searching through the constituent cells, we merely subject the

112 CHAPTER 9. RESULTS: SODA HALL DATA

_lllllllr el B LU R
]

"""""""" cell portal

constituent
cell center

metacell
portal

1 TO® T |
®
TEERRRERE I e o o el DDRRRRRRRRNNL

[ENENEE e R R TR RN R (RN R

crossover portals (A) ={B,E,F, G, H,I,L}
crossover portals (B) ={A, G, H,1,J, L}

hourglass of portals A and E

Figure 9.4: A metacell (bold dashed outline), with portal crossover constraints attached to each entry
portal.

constituent cell eztents to the cell-to-object computation as if they were objects, and continue the search
using the portal crossover list, as a function of the entry portal (Figure 9.5). (The constituent cells, by
definition, contain no occluders or objects to be found visible, and consequently can be ignored for the
purposes of computing cell-to-cell or cell-to-object visibility.) Note that without the portal crossover
constraints, this algorithm could recurse indefinitely by entering and leaving the same metacell in a
single portal sequence.

Similarly, during the query phase, when the eye-to-cell and eye-to-region DF'S arrives at a metacell,
it subjects the constituent cells to the active halfspace constraints. Note that reporting the incident cells
visible, and subjecting their contents to the eye-to-object test, will generally be unnecessary since the
cells have no associated occluders or detail objects. Moreover, the portal crossover list can be used to
recurse, through visible portals only, out of the metacell to surrounding cells. For example, in Figure
9.5, the constituent cell A is not visible to the observer, and the crossover list portal K should not be
traversed.

Note that the portal crossover constraints serve not only to generalize the notion of cells to include
non-convexity, but might also be useful in determining the effect of incident detail objects on inter-portal
visibility within a given source cell (Figure 9.6). We have not fully explored this possibility.

9.3 Utility Metrics

Several metrics serve to evaluate the effectiveness of the visibility preprocessing and on-line culling
scheme. These are empirical metrics, in that they describe quantities measured by instrumenting al-
gorithms to record their storage needs, culling and drawing time, output size, visibility overestimation,
and depth complexity, in units to be described below.

9.3.

UTILITY METRICS

AN RN

= -
= i P i
= v ey &
L EEEE . eeTe A L
AT A B
. s s
QOO AR
£ P P
. i OO
A LR
RO o
Ry o § IR
S RELCs
o
[NERARRERNRRNRE]

— — — &IIIIIIIIIIIII||

.»\\\\\\\\\\ R
S 2

mn;;,m,mwmg.

g
%H‘*u}\ﬁﬁu”
R s

SN NN ~ R \\'\s\\\'H‘\\\}'\/\\\\1\\\\\\\\\\\\\\'

g = A o AR

entr metace” B = P 1 y 1 B
y = R
portal = | | =

[RRRREE. B B I IRERRRRERRN

Figure 9.5: Encountering a metacell during a constrained DFS.

—_
)
o23e
i
,Qu >
A
e
s
anind
/\f
/\/
R
R
2
03 .
z
o

RS

A
LEE S LELLLE L FEEEEEEE

f R
TR R R R RS SEE
N
R o
R RN AR R R R
R RS
MR
PR RIEEE, 5
e
- £
Lo
)
QXN

detalil
objects

AR

(N
22

]
s

metacell

cell portal

metacell
portal

active
halfspace

Figure 9.6: Detail objects can prohibit inter-portal visibility (constituent cells not shown)

113

114 CHAPTER 9. RESULTS: SODA HALL DATA

The storage overhead metric quantifies the storage overhead incurred in computing and storing
visibility information for a geometric model, expressed both in absolute terms and as a percentage of
the storage required to store the model elements (the model “geometry” [FST92]) alone. We do not
formulate an analogous time overhead metric, since it is difficult if not impossible to objectively weigh
the value of off-line CPU resources expended in light of the fact the on-line simulation may be run
indefinitely long for any given populated model with precomputed visibility.

The culling time and drewing time metrics quantify the time, in milliseconds, required for the
culling operation (i.e., producing a collection of potentially visible objects), and the drawing operation
(i-e., rendering the collection), as a function of the culling mode. The frame time speedup quantifies how
much the visibility computation accelerated the rate of delivery of successive images to the framebuffer,
compared to rendering using only the graphics hardware and no on-line culling. A frame was cull-bound
if culling took longer than drawing, and draw-bound if drawing took longer than culling; the frame-time
speedup is defined as the base (unculled) drawing time divided by the maximum of the culling and
drawing times. (In practice, things are more complicated, since the culling and drawing processes may
run in parallel and, depending on transport delay, may be almost entirely decoupled [Jon92, FST92].)

For all timing measurements, we simulated a machine with infinite memory (or, equivalently, a
perfect database intermediary that incurred no swapping penalty) by “touching” potentially visible
objects to bring them in to memory, then performing the culling or drawing operations in a timing loop.
We used a hardware clock with 16 p-second resolution to time operations typically requiring tens of
milliseconds. All timing measurements reflect “wallclock time”; that is, we did not instrument CPU
usage, but actually measured time-to-completion of the culling and drawing operations as if using a
high-accuracy stopwatch. The machine was otherwise quiescent during the timing runs.

The output size metric quantifies the efficacy of the preprocessing and on-line culling algorithms
in upper-bounding the potentially visible set for generalized and actual observers. This metric can be
expressed in units of visible volume, visible objects, or visible polygons. None of these choices is entirely
satisfactory. Visible volume units do not account for the fact that the model space is not uniformly
populated with detail objects. Visible object units do not account for the differing times required to
render different objects. Finally, visible polygon metrics can not encompass the existence of level-of-
detail (LOD) algorithms that strive to render far-away and fast-moving objects with fewer polygons than
close-by objects presumably visible in greater detail. No level of detail polygon-reduction algorithms
[FST92] were used; we worked only in units of objects as defined by the modeling system, and rendered
all objects at a constant level of detail (the highest available).

Although LOD algorithms do draw fewer polygons for far-away objects, the polygons drawn are
typically larger, on average. Large polygons can cause the graphics hardware we used to become “fill-
limited” [FK91], i.e., exhibit bottlenecks during scan conversion and pixel writes. The result is that,
although LOD modeling might reduce the number of polygons drawn by a factor of five or more, the
drawing time typically decreases by only a factor of two to three [FST92]. On the other hand, eschewing
LOD analysis can result in wasted detail rendering, needlessly high depth-complexity, and transform-
limited drawing, i.e., a bottleneck at the top of the graphics pipeline. We have tried to minimize these
confounding factors by rendering at a constant level of detail throughout, and by counting rendering in
units of objects, assuming the time to render any given object is roughly constant.

The object survival and object overestimation metrics quantify how much of the graphics hardware

9.3. UTILITY METRICS 115

capacity is “wasted” by rendering invisible objects (i.e., by classifying invisible objects as potentially
visible). We say that an object survives in a rendered image if some pixel in the image is painted
by some polygon of the object and this pixel is never obscured by a closer polygon. Clearly a culling
operation with perfect knowledge would render only surviving objects; our culling algorithms generally
overestimate by rendering non-surviving objects. One measure of how well the culling performs is the
percentage by which object visibility is overestimated; i.e., the ratio of the number of objects that are
rendered to the number that actually survive in the framebuffer.

The depth complezity metric quantifies the reduction in pixel depth complexity, or the number of
times each pixel is “painted”, due to on-line culling (a depth-buffer test counts as a painting operation).
A depth complexity of 1.0 can occur only in an environment containing only a single convex object (with
backfaces removed), or when using an “ideal” visibility algorithm with perfect knowledge of the entities
and entity fragments visible to the observer (e.g., a screen-space scan-line renderer that writes each pixel
exactly once). We ignore the fact that each pixel is painted exactly once while clearing the framebuffer
at the start of each frame. This fixes the theoretically optimal depth complexity at one rather than at
two (the former choice is more intuitive).

In practice, the lowest-achievable depth complexity is substantively higher than one, since the whole
point of depth-buffering is to obviate fragmentation of polygons for rendering; consequently if polygons
have to be either drawn, or not drawn, they will overlap substantially in any given (interesting) scene
and even exact visibility algorithms (those that render only surviving entities) must produce depth
complexities greater than one. Finally, we note that the computed depth complexity may sometimes be
less than 1.0, since some scenes (for example, when looking outside of the building) do not paint the
entire window.

Analogously, we justify our use of object-based utility metrics, rather than metrics based on poly-
gons, on the fact that the abstract visibility operations don’t “know” about polygons — but only about
objects. The culling algorithms make binary decisions about objects, determining only whether to draw
them or not. The definition of what constitutes an object is more properly left to the modeling agent
than to the visibility scheme.

We quantify depth complexity discretely using the graphics hardware. The rendering engine can be
configured to count, in hardware, the number of times each screen pixel is touched during rendering. In
Silicon Graphics terminology, depth-buffering is disabled, the framebuffer is cleared to zero, the color of
each polygon is set to the integer 1, and the blending function is set to add each rendered pixel value to
the existing framebuffer value. The final values of each pixel are then summed and divided by the total
number of pixels (in our case, 800,000 pixels in a window 1,000 pixels wide by 800 high).

Each of the six metrics — objects drawn, survived, and overestimated, culling and drawing times,
and depth complexity — were tabulated (average, minimum, and maximum, where appropriate) for each
of seven interesting culling modes. In the following, the “observer cell” is that cell containing the actual
observer. The seven culling modes were (Figure 9.7):

1. No Culling (NC): all cells and all objects were drawn (not shown in Figure 9.7).

2. Spatial Culling (SC): cells and objects incident on the view frustum were drawn. We imple-
mented the method of [GBWY0] on a conforming subdivision, but did not parallelize the cull as
did those researchers.

116 CHAPTER 9. RESULTS: SODA HALL DATA

Ojo

O
O
O
O
(W
O
O

O
O
N

10
0

o0 0o

LALLLAEELLLLLY

Figure 9.7: The instrumented culling modes (NC mode not shown).

9.4. EXPERIMENTAL RESULTS 117

3. Cell-to-Cell, Cell-to-Object (CtC,Ct0): all objects potentially visible from the observer cell
were drawn. This metric quantifies how well we can do with no on-line computation.

4. Frustum-to-Cell, Frustum-to-Object (FtC,FtO): all objects incident on the view frustum,
and visible from the source cell, were drawn. This mode intersects the observer cell’s generalized
visibility with the actual (i.e., instantaneous) view frustum.

5. Eye-to-Cell, Cell-to-Object (EtC,Ct0): all objects visible from the source cell, and in a cell
reached by the eye-to-cell traversal, were drawn. This mode performs sightline computations for
cells, and no computation for objects.

6. Eye-to-Cell, Frustum-to-Object (EtC,FtO): all objects visible from the source cell, in a cell
reached by the eye-to-cell traversal, and incident on the view frustum, were drawn. This mode
performs sightline computations for cells, and frustum-incidence for objects.

7. Eye-to-Cell, Eye-to-Object (EtC,EtO): all objects admitting a sightline from the eye were
drawn. This is the “exact” on-line cull described in §5.4.4, in that it performs sightline compu-
tations for both cells and objects. It is as discriminating as is possible without knowledge of the
detail objects’ constituent polygons.

Some of the metrics were not tabulated for all culling modes. For example, the object survival
metric should be constant regardless of culling mode. We verified that this was the case in practice,
and so tabulate it only for the most discriminating culling mode. The culling time for some methods —
No Culling and Cell-to-Object — is theoretically zero (in practice, considerable time is required to make
the visible sets available to the rendering process [FST92])). The pixel depth complexities for methods
differing only by a frustum incidence operation — No Culling vs. Spatial Culling; CtC,CtO vs. FtC,FtO;
and EtC,CtO vs EtC,FtO; — are verifiably identical. These simplifications are evident in the tables to
follow.

9.4 Experimental Results

9.4.1 Test Walkthrough Path

We sampled every eighth element of a 4,000-frustum recorded walkthrough path through the building
model to produce a 500-frustum path (the top two floors and roof of the model, and the test path,
are shown in Figure 9.1). (The statistics instrumentations absorbed tens of hours of CPU time, so the
unsampled path would have used unreasonable machine resources.) The field of view was constant at 90
degrees wide and 77.3 degrees high (the latter figure was determined by the 5-to-4 aspect ratio of the
test window), subtending roughly 15 percent of the observer’s view sphere.

We instrumented the culling algorithms to run on both the partial and full models. By constraining
the test path to the top portion of the building we were able to utilize it in both models, and compare
the resulting storage and time metrics from each run.

118 CHAPTER 9. RESULTS: SODA HALL DATA

9.4.2 Storage Overhead and Precomputation Times
Partial Model

The partial geometric model consisted of the sixth and seventh floors, and roof. In total, this model
comprised 4,598 objects and 238,861 polygons (at the highest level of detail), of which 3,871 (about
1.6%), were classified by the modeling system as occluders. Of these, 325 occluders (about 8.4%) were
not axial rectangles and were ignored during the spatial subdivision rounds. Thus, more than ninety
percent of the occluder-sized polygons in the geometric model supplied suitable axial splitting planes to
the spatial subdivision rounds (this is consistent with the observations of an earlier visibility researcher
who found that roughly ninety-five percent of the candidate splitting polygons in his test model were
axial [Air92]).

Selecting candidate occluders and subdividing the k-D tree to termination required 55 seconds. Once
the subdivision directives were stored, regenerating the k-D tree into 2,163 leaf cells, and enumerating
the 11,500 portals of the conforming spatial subdivision, required 6 and 8 seconds, respectively.

Storing the occluders and conforming spatial subdivision required about 3 megabytes (the details
of the database format are given in [FST92]). Inserting the detail objects at all levels of detail took
about one hour, and increased the size of the model to 62.5 megabytes. Finally, computing visibility
information for the model took almost five hours, and increased the model size by about 5.2 megabytes
to a total size of 67.7 megabytes. (More than one and half million portal sequences were attempted,
with average length of 9.07 portals. The average length of a failed portal sequence, i.e., one that did
not admit a sightline, was 9.94 portals. The successful and failed portal sequence lengths do not differ
by exactly 1.0 because many branches of the DFS terminated not due to impassable portals but to
the fact that many cells had only one entrance and no exit, other than the entry portal, which was
known e priori to be impassable. The reaching portal sequence therefore counted as a success, with no
incremental test and failure.) Thus, the storage overhead incurred by visibility computation was less
than ten percent of the size of the polygon data in the geometric model (less than fifteen percent if the
conforming subdivision is treated as visibility data).

Full Model

The entire geometric model consisted of the third through seventh floors, and roof. In total, this model
comprised 13,191 objects and 712,499 polygons (at the highest level of detail), of which 9,699 (about
1.4%), were classified by the modeling system as occluders. Of these, 550 (about 5.7%) were not axial
rectangles and were ignored during the spatial subdivision rounds. As in the partial model, more than
ninety percent of the occluder-sized polygons in the geometric model supplied suitable axial candidate
splitting planes.

Selecting candidate occluders and subdividing the k-D tree to termination required 4 minutes.
Regenerating the k-D tree into 5,762 leaf cells, and enumerating the 34,916 portals of the conforming
spatial subdivision, required 26 and 21 seconds, respectively,

Storing the occluders and conforming spatial subdivision required about 8.4 megabytes. Inserting
the detail objects at all levels of detail took about four hours, and increased the size of the model to
175.3 megabytes. Finally, computing visibility information for the model leaf cells took almost nineteen

9.4. EXPERIMENTAL RESULTS 119

hours!, and increased the model size by about 13.7 megabytes, to a total size of 189.0 megabytes. (We
did not compile portal sequence length statistics for this data set.) Thus, the storage overhead incurred
by visibility computation was less than 8% of the size of the polygon data in the geometric model (less
than 15% if the conforming subdivision is treated as visibility data).

9.4.3 Tabulated Utility Metrics

Tables 9.1 through 9.10 summarize the data for the partial and full models (the tables are arranged in
pairs). The most important figures of merit are shown in bold.

Averaged Object and Pixel Depth Metrics

Culling # % # Object Discrete
Mode Objects | Objects | Objects | Overestimation Depth
Drawn | Drawn | Survived (%) Complexity

None 4598.0 | 100.0% 40.4 11000% 3.31
Spatial 988.2 21.5% " 2400% 3.31
CtC,CtO 385.8 8.4% " 850% 1.78
FtC,FtO 100.0 2.2% " 150% 1.78
EtC,CtO 87.2 1.9% " 120% 1.56
EtC,FtO 65.6 1.4% " 60% 1.56
EtC,EtO 49.7 1.1% " 23% 1.44

Table 9.1: Object and pixel metrics for the partial model.

The disparity between object overestimation and pixel depth complexity is surprising in both models
(Tables 9.1 and 9.2). While the number of objects drawn varied by a factor of more than one hundred, the
depth complexity varied by only a factor of about three. Depth complexity grows slowly with the number
of objects since, as objects get farther away, they paint fewer screen pixels. The difference between the
object counting and depth complexity metrics arises from the fact that the culling operations are best at
culling remote objects, but these typically paint relatively few screen pixels. In contrast, nearby objects
paint relatively large screen areas but do not interact in the culling operation; i.e., they cannot prevent
each other from being rendered, as can occluders.

The number of objects passed by each culling mode, on average, drops monotonically with increasing
cull complexity. Note that static (i.e., cell-to-object) alone reduces the amount of visible data to 8.4% of
the model, on average; subjecting this generalized visibility to a frustum-incidence operation reduces this
amount by almost three-quarters, to 2.2% of the model (in a roughly spherically symmetric model, we
expect frustum-incidence to reduce the generalized visibility by the fraction of the unit sphere excluded
by the view frustum — in our case, about 85 percent).

1 Static visibility computations were truncated after thirty minutes for free-space cells.

120 CHAPTER 9. RESULTS: SODA HALL DATA

Culling # % # Object Discrete
Mode Objects | Objects | Objects | Overestimation Depth
Drawn | Drawn | Survived (%) Complexity
None 13191 100 % 40.4 32600 % 4.93
Spatial 2433.5 18.5 % " 5900 % 4.93
CtC,CtO 418.8 3.2 % " 940 % 1.84
FtC,FtO 105.4 0.80% " 160 % 1.84
EtC,CtO 90.8 0.69% " 124 % 1.58
EtC,FtO 66.7 0.51% " 65 % 1.58
EtC,EtO 49.5 0.38% " 22.5% 1.46

Table 9.2: Object and pixel metrics for the full model.

Finally, note that the number of surviving objects is identical in the partial and full models (viz.
Table 9.1, Table 9.2). This is expected, since object survival should be independent of the spatial
subdivision or (superset) culling algorithm used.

Average Object Counts and On-Line Operation Times

Culling # % Cull Draw | Frame Time
Mode Objects | Objects | Time Time Speedup
Passed | Culled | (msec) | (msec) Factor

None 4598 0.0% n.a. 2805.2 1.0
Spatial 988.2 78.5% 73.1 655.0 4.3
CtC,CtO 385.8 91.6% n.a. 252.3 11.1
FtC,FtO 100.0 97.8% 6.4 96.4 29.1
EtC,CtO 87.2 98.1% 25.6 90.9 30.9
EtC,FtO 65.6 98.6% 26.1 72.9 38.5
EtC,EtO 49.7 98.9% 75.8 55.0 37.0

Table 9.3: Culling and drawing time metrics for the partial model.

Note that, for either model, the two most discriminating modes exhibit culling and drawing times
that bracket an intermediate frame rate (in this case, about 50 milliseconds). In the partial model,
EtC,FtO culling requires only 26 milliseconds but produces a potentially visible object set requiring
73 milliseconds to draw (Table 9.3). The exact EtC,EtO cull takes three times as long to complete,
but produces a potentially visible set 25 percent smaller (50 vs. 66 objects), reducing the corresponding

9.4. EXPERIMENTAL RESULTS 121

Culling # % Cull Draw | Frame Time
Mode Objects | Objects | Time Time Speedup
Passed | Culled | (msec) | (msec) Factor
None 13191 0 % n.a. | 8900 1.0
Spatial 2433.5 81.6% 192.4 2050 4.3
CtC,CtO 418.8 96.8% n.a. 316.7 28.1
FtC,FtO 105.4 99.2% 7.3 103.9 85.7
EtC,CtO 90.8 99.3% 33.2 96.9 91.8
EtC,FtO 66.7 99.5% 33.5 76.5 116.3
EtC,EtO 49.5 99.6% 86.8 56.9 102.5

Table 9.4: Culling and drawing time metrics for the full model.

rendering time by about a quarter to 55 milliseconds (57 milliseconds in the full model?). In practice,
parallelizing the culling and drawing processes decreases the dependence of frame time on worst-case
cull time, but at the cost of increased transport delay.

Average, Minimum and Maximum Object Counts

The purely spatial cull exhibited a wide variance in the number of objects passed for rendering: from
one-fifth of one percent of the model to almost seventy-five percent of it (Table 9.5). In practice, the real
worst-case frame time for this culling mode is much worse than the six-tenths of a second we quote using
the infinite-memory machine model. Since at worst seventy-five percent of the model data (about 45
megabytes) must be read from disk and issued to the graphics pipeline, even (optimistically) assuming
a one megabyte per second disk bandwidth, drawing the data returned by the spatial cull would take
about forty-five seconds. Drawing all objects in the partial model (i.e., performing no culling) would
take a full minute per frame, even under this optimistic bandwidth assumption; drawing the full model
in its entirety would require three minutes.

Static culling (CtC,CtO) exhibited worst-case maximum visibility of about a fourth of the partial
model, or a tenth of the full model. All of the occlusion-based dynamic culling modes did much better.
The least discriminating occlusion-based cull mode FtC,FtO, categorized no more than 10% (3.5%, in
the full model) of the model objects visible. As the complexity of the dynamic cull mode increases, the
maximum number of objects drawn decreases monotonically, as expected.

Average, Minimum and Maximum Cull Times

The minimum cull time roughly the same for each culling mode. In the case of purely spatial culling,
this is coincidentally due to the fact that the test path leaves the building and the actual observer looks

2Small discrepancies in times between the partial and full models arise from timer aliasing and different caching effec-
tiveness while simulating the two data sets.

122

CHAPTER 9. RESULTS: SODA HALL DATA

Culling Avg. # (%) Min # (%) Max # (%)
Mode Objects Objects Objects
Passed Passed Passed
None 4598 (100 %) | 4598 (100 %) | 4598 (100 %)
Spatial 988.2 (21.5%) 9 (0.19 %) | 3439 (74.8%)
CtC,CtO | 385.8 (84%) | 88 (1.9 %) | 1130 (24.6 %)
FtC,FtO | 100.0 (2.2%) 6 (0.13 %) | 455 (9.9%)
EtC,CtO 87.2 (1.9%) 8 (0.17 %) | 298 (6.5%)
EtC,FtO 65.6 (1.4%) 5 (011 %) | 218 (4.7 %)
EtC,EtO | 49.7 (1.1%) 1 (0.022%) | 177 (3.8%)

Table 9.5: Average, minimum and maximum object metrics for the partial model.

Culling Avg. # (%) Min # (%) Max # (%)
Mode Objects Objects Objects
Passed Passed Passed
None 13191 (100 %) 13191 (100 %) | 13191 (100 %)
Spatial 2433.5 (18.5 %) 66 (0.5 %) | 8278 (62.8%)
CtC,CtO | 418.8(3.2 %) | 131(1.0 %) | 1257 (9.5%)
FtC,FtO | 105.4(0.8 %) 6(0.05%) | 462(3.5%)
EtC,CtO 90.8 (0.69%) 17(01 %) | 313(2.4%)
EtC,FtO 66.7 (0.51%) 5(0.04%) | 219(1.7%)
EtC,EtO 40.1 (0.30%) 1(0.007%) | 136(1.0%)

Table 9.6: Average, minimum and maximum object metrics for the full model.

9.4. EXPERIMENTAL RESULTS 123

outside of the model; an observer keeping to the core of the building would experience consistently higher
spatial cull times (and consistently lower sightline-based cull times due to the rarity of free-space cells
in the core regions).

Table 9.7: Average, minimum and maximum culling times for the partial model.

Culling Average Minimum | Maximum
Mode Cull Time | Cull Time | Cull Time
(msec) (msec) (msec)
None n.a. n.a. n.a.
Spatial 73.1 4.1 225.4
CtC,CtO n.a. n.a. n.a.
FtC,FtO 6.4 1.6 21.2
EtC,CtO 25.6 2.7 159.0
EtC,FtO 26.1 2.8 157.8
EtC,EtO 75.8 2.8 499.7

Culling Average Minimum | Maximum
Mode Cull Time | Cull Time | Cull Time
(msec) (msec) (msec)
None n.a. n.a. n.a.
Spatial 192.4 14.0 555.6
CtC,CtO n.a. n.a. n.a.
FtC,FtO 9.1 2.1 46.7
EtC,CtO 31.0 3.5 429.5
EtC,FtO 30.6 2.7 318.8
EtC,EtO 86.6 2.8 669.2

Table 9.8: Average, minimum and maximum culling times for the full model.

Maximum culling times (Table 9.7) behave differently than object counts as a function of culling
mode. The maximum cull time no longer drops monotonically as culling effectiveness increases, but is
minimum at FtC,FtO (21 milliseconds, in the partial model) and climbs again as the sightline-based
cull is applied first to cells, then the frustum-based cull to objects, then finally the sightline-based cull
to both cells and objects. The sightline-based cull exhibited a worst-case computation time of half a
second in the partial model, five times slower than the desired 10 Hz frame rate, which occurred in a
complex free-space region outside the model. For the full model, the worst-case culling time increased
by about 170 milliseconds (34%).

124 CHAPTER 9. RESULTS: SODA HALL DATA

Average, Minimum and Maximum Draw Times

The average and maximum drawing times drop monotonically with increasingly expensive culling modes
for both the partial and full model, as expected.

Culling Average Minimum | Maximum
Mode Draw Time | Draw Time | Draw Time
(msec) (msec) (msec)
None 2805.2 2732.2 3339.0
Spatial 655.0 18.1 2069.5
CtC,CtO 252.3 37.6 957.3
FtC,FtO 96.4 13.5 509.8
EtC,CtO 90.9 13.0 330.3
EtC,FtO 72.9 13.3 247.7
EtC,EtO 55.0 7.9 157.6

Table 9.9: Average, minimum and maximum drawing times for the partial model.

Culling Average Minimum | Maximum
Mode Draw Time | Draw Time | Draw Time
(msec) (msec) (msec)
None 9146.4 9042.3 9485.1
Spatial 2052.3 89.1 6253.0
CtC,CtO 316.7 81.7 1138.7
FtC,FtO 103.9 18.7 513.3
EtC,CtO 96.9 14.4 373.4
EtC,FtO 76.5 14.3 266.1
EtC,EtO 56.9 8.1 159.1

Table 9.10: Average, minimum and maximum drawing times for the full model.

When no culling is employed, the draw time is fairly consistent at just under three seconds for the
partial model, and just over nine seconds for the full model. Some variation occurs because, although
all of the model data is drawn each frame, the graphics hardware expends differing amounts of time to
dispense with polygons that are, for example, outside the view frustum, partially clipped, backfacing,
or obscured by nearer polygons, and these types of polygons occur in different relative numbers as the
actual observer moves through the model.

If the infinite-memory model is abandoned, drawing either the full model or the entities passed by
the purely spatial cull would require more than two minutes.

9.4. EXPERIMENTAL RESULTS 125

For both models, the spatial culling mode exhibited widely varying draw times (Tables 9.9 and
9.10), spending as much as two to six seconds (on the idealized infinite-memory machine). The dynamic
culling modes exhibited draw times in a tighter range, most notably the EtC,EtO, which in the worst
case passed objects that required about 160 milliseconds to draw in either model. That is, the worst-
case drawing time increased by about one-and-a-half milliseconds (1.0 %) under a tripling of the model
complexity.

126 CHAPTER 9. RESULTS: SODA HALL DATA

9.4.4 Museum Park

Figure 9.8: The ten museums in museum park.

We briefly tested the spatial subdivision algorithm, which had been devised for building interiors, on a
data set that we call “museum park.” Ten one- and two-story structures with similar footprints were
assembled in a loose array (Figure 9.8), but the individual buildings were not aligned with one another.

The minimum-cleaving subdivision criterion produced a fairly good spatial subdivision of the mu-
seumn park. Major splitting planes between the rows of museums were found early, as was the ground-
plane on which the museums rested (Frames 1 through 3 of Figure 9.9). After the rows of museums
had been separated, the minimum-cleaving criterion separated each individual museum within rows (the
delineation of one such museum is shown in Frames 4 through 8). Finally, the interior of each museum
was subdivided as usual (Frames 9 through 12). The splitting process took less than 30 seconds. The
final subdivision (Figure 9.10) has substantial free-space splitting, but very few superfluous partition
planes inside the structures themselves.

9.4. EXPERIMENTAL RESULTS 127

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 7

Frame 8 Frame 9

128 CHAPTER 9. RESULTS: SODA HALL DATA

Frame 10 Frame 11 Frame 12

Figure 9.9: Snapshots of the museum park spatial subdivision.

Figure 9.10: The final subdivision of museum park.

9.5. SUMMARY AND REFLECTIONS 129

9.4.5 General Polyhedral Data

Although the implementations of the conforming subdivision for generally oriented occluders are still
in somewhat embryonic stage, we compared subdivision construction and portal enumeration times for
identical data. Unfortunately, we have no access to non-axial data sets of complexity comparable to the
building model. Consequently, we timed the general BSP-tree based subdivision scheme on the partial
geometric model, rotated about two axes to cause all occluders to become non-axial (although they
remained rectangular).

Selecting candidate occluders and subdividing the k-D tree to termination required 15 minutes. Once
the subdivision directives were stored, regenerating the k-D tree into 1,963 leaf cells, and enumerating the
9,465 portals of the conforming spatial subdivision, required 284 and 475 seconds, respectively. Storing
the occluders and conforming spatial subdivision required about 12 megabytes of memory. We did not
compute cell-to-cell and cell-to-object visibility, as the implementation is still somewhat nascent. We
can observe that the storage requirements and computation times grew at different rates. The storage
required by the conforming subdivision was four times larger than that for the equivalent axial data
set. On the other hand, the conforming subdivision construction times was fifty times longer than that
for the equivalent axial data set. The considerable computation increase is partially due to substantial
“sanity-checking” code that ensured the correctness of the incremental spatial subdivision after each
split. Finally, we observe that both the number of cells and number of portals generated are actually
slightly smaller for the rotated data set.

9.5 Summary and Reflections

One benefit of implementing the subdivision and visibility schemes described in this thesis was the body
of practical intuition and engineering experience that resulted. In the following, we briefly describe
the non-theoretical, but nonetheless extremely important, issues that arose during the implementation
process.

9.5.1 ADTSs, Invariants, and Witnesses

First, use of ADTs or abstract data types [AHU83|, and data and program invariants such as Unix
C-language “assertions” [Bel79], facilitates the connection between the logical conception and the im-
plementation of an algorithm. An abstract data type encapsulates the definition of, and all operations
defined upon, any data object. For example, an ADT for convex polygons might store an ordered list of
vertices forming a simple convex planar contour, with an associated normal, plane equation, bounding
region, centroid, etc., and provide the operations of creation, deletion, intersection, rendering, etc. This
encapsulation hides the details of defining, manipulating, storing, and releasing the data object from
conceptually higher-level algorithms that manipulate such data objects as primitive operands.

The C-language assert() construct ([Bel79], §3X) provides a very simple and powerful mechanism
for gaining confidence in implemented algorithms. The functional statement assert (predicate) can be
embedded anywhere in the program text, where the predicate is simply any boolean expression that can
be computed at that point in the program. When the assertion is encountered, the boolean expression

130 CHAPTER 9. RESULTS: SODA HALL DATA

is evaluated (this itself may cause function evaluation and other assertions to occur), and if it is found
to be false, an error message is generated, an image of the memory state of the running program is
stored as a “core” file, and program execution is terminated. For optimization, or when the algorithm
is considered iron-clad, all assertions can be deactivated by a recompilation. Even in this deactivated
state they serve as logical sidebars to the program’s text. We have augmented the assert() statement
to execute a run-time definable action before terminating execution, so that, for example, troublesome
interactively-generated input can be saved for later study in isolation.

Another useful notion is that of a date invariant which can be enforced when an algorithm receives
input. For example, a program that operates only on convex polygons might simply discard any non-
convex polygons in its input (and generate a warning message), ensuring that any later computation
will operate only on convex polygons.

Finally, a witness is a data object that evinces the outcome of a geometric query. This outcome can
be a success or failure; for example, a witness to the intersection of a line and a plane is a point lying on
both flats (if there is no intersection, the witness might be a polygon edge with the requisite sidedness
with respect to the query line, as in Chapter 6). Witnesses can be thought of as short geometric proofs
that particular geometric configurations do or do not have specific properties. During implementation,
we often relied on witnesses during visual inspection of algorithmic behavior for assurance that our
algorithms were functioning correctly. Indeed, the absence of a witness was often a powerful short proof
of the misbehavior of an algorithm.

9.5.2 Input Filtering

We have found it useful to enforce data invariants on the geometric model for the walkthrough system,
since its occluders and objects are derived from a real-world modeling system. Since the architectural
model should represent a physically realizable space, it is intuitively clear that the model should have
“inhabitable” portions (e.g., common areas, corridors) and “uninhabitable” portions (e.g., the insides of
walls, crawl-spaces beneath floors). Moreover, both portions should consistently have non-zero thickness,
so that, for example, a single occluder can not serve as a wall to two rooms on opposite sides of the
occluder. Ignoring passable elements such as doors and windows, the inhabitable space of the building
model should form a single connected component and have a manifold (although perhaps high-genus)
boundary.

The manifold nature of the model can be checked by inspecting the orientation and connectivity of
occluders. Every occluder can be oriented according to the ordering of its vertices. The occluder’s front
face (i.e., that face on which the vertices appear counter-clockwise) should abut an inhabitable portion of
the model, and its back face an uninhabitable portion. The occluder’s connectivity is inspected through
its shared edges with other occluders; these edges should be oppositely directed, and every edge should
be shared by exactly two occluders.

Models satisfying these data invariants prove easier to process both theoretically and in an engineer-
ing sense. In particular, it should not be possible to move from an inhabitable region to an uninhabitable
one (i.e., inside the wall) without traversing some occluder. The advantage of enforcing this invariant
is that the spatial subdivision and adjacency graph construction then “find” the inhabitable portions of
the model and store them as connected components. All subsequent visibility computations, defined as

9.5. SUMMARY AND REFLECTIONS 131

traversals of this graph, will then be guaranteed to operate only within inhabitable regions of the model.
In other words, this invariant assures that no portals exist between inhabitable and uninhabitable model
regions.

The “thickness” of the model has also proven extremely important to the efficiency of the visibility
algorithms, in practice: it prevents an observer looking down a long corridor from seeing into far-away
offices. Typically, the observer’s lines of sight cannot propagate “around” the door frames into the offices
(cf., for example, Figure 1.4 in the Introduction).

Polygon orientation proved useful in another sense. The fastest stabbing algorithm for an unordered
sequence of general, unoriented polygons having e edges total, requires O(e*a(e)) time [MO88]. When
the polygons (i.e., portals) of the sequence are oriented to admit stabbing lines in only one direction,
the complexity of the stabbing algorithm can be reduced to O(e?) time (cf. §8.3.1).

9.5.3 Spatial Subdivision

In the presence of general occluders, subdividing three-dimensional space well is an ill-defined and difficult
task. Since even the relatively well-posed problem of deciding whether a polyhedron is tetrahedralizable
is NP-complete [RS89], it seems plausible that finding “optimal” general subdivisions may be as hard or
harder. In the near term, therefore, the most one can practically hope for is “good” subdivisions that
exhibit subquadratic size and near-logarithmic depth for practically occurring environments, and which
satisfy our occlusion requirements acceptably well.

We have generated useable subdivisions for general occluders using BSP trees, although they are
both slower to construct and search, and more expensive to store, than k-D trees in practice. We have
seen that BSP trees may cost as much as O(n?®) time and O(n?) storage to construct in the worst case
[PY90]. Things are somewhat easier when the occluders are axial. It has been shown, for example, that
BSP trees over n axial 3D occluders can be constructed with size O(n?) in optimal O(n3) time [PY89].
We have not yet implemented this algorithm and so do not know if the subdivisions so generated have
reasonable complexity constants, and behave well when subjected to combinatorial visibility algorithms
such as those described here.

Another issue concerning subdivisions is that of symmetry between source and reached cells. Our
framework uses the same set of cells both as visibility sources (i.e., bounds on a generalized observer)
and as reached cells (i.e., bounds on potential visibility of the generalized observer). Perhaps the notions
should be decoupled. Thus, a cell could be more highly constrained when acting as a source, but less
constrained when traversed by the search algorithms, to reduce the amount of effort spent searching
through portals. The concepts of free-space and metacells are essentially ad hoc modifications to the
subdivision implementation (but not, substantively, to the abstraction) so that it may operate more
asymmetrically in this sense.

The abstraction of a conforming spatial subdivision allows the annotation of the cell adjacency
graph with transition visibility information. Since the cell-to-cell and cell-to-object visibility sets change
qualitatively only when a portal is traversed, one might attach to each portal the changes in these
visibility sets experienced by a generalized observer crossing the plane of the portal. Such difference
lists, of course, would be antisymmetric and functions of the sense in which the portal was traversed
(i-e., objects added while traversing the portal from cell A to cell B would be subtracted when traversing

132 CHAPTER 9. RESULTS: SODA HALL DATA

it from cell B to cell A). This seems like a worthwhile generalization of the conforming spatial subdivision
data structure, but it has not yet been implemented.

The base issue is not one of adjacency graph annotation, since this can be viewed as a compacting
postprocess to follow the visibility computations. More importantly, the issue of reusing the visibility
information, while it is being computed, is itself a challenging theoretical issue (cf. §10.2). This remains
an active area of investigation.

9.5.4 Scaling Effects

We set out to measure the effects of increasing model complexity on three metrics: the storage overhead
incurred by precomputing visiblity information; the time required to precompute visibility information;
and the cull time and speedup factor during on-line culling, for a fixed path.

We found that tripling the complexity of the geometric model increased the amount of computed
visibility information by a factor of roughly two and two thirds. Since the spatial subdivisions were
not identical for the two data sets, it is difficult to compare the storage factors with a high degree of
confidence. However, we find it encouraging that the increase in visibility storage requirements was
about the same as that for geometric data storage.

Visibility computation time scaled less well; tripling the model complexity caused a fourfold increase
in visibility precomputation times. This increase had two causes. First, the relative amount of free
space in the full model increased, causing greater numbers of expensive cell-to-cell and cell-to-object
determinations from empty cells and through clusters of empty cells. Second, the working set and
memory requirements of the full model visibility precomputation were greater for the (180 megabyte)
full model, and in some cases taxed the (64 megabyte) physical memory capacity of our hardware
platform. Excessive swapping activity may have substantially lengthened the observed “wall clock”
precomputation times for certain cells with very high visibility.

Finally, the average on-line culling time worsened only slightly when the model tripled in size, from
75.8 to 86.6 milliseconds for an increase of about 14%. During most of the interior portions of the
walkthrough path, the culling times were roughly equivalent for the two models. When in the free-space
of the full model, however, the cull time increased substantially over the cull time in the same region
of the partial model. For example, the longest measured cull time was 500 milliseconds in the partial
model, and almost 670 milliseconds in the full model; a difference of 34%.

From these results we can garner two insights. First, we are optimistic that visibility storage needs
will indeed scale linearly with geometric data size, for visual models of similar visual complexity. Second,
it is clear from the increases in precomputation and on-line cull time that good spatial subdivisions and
minimization of problems due to free-space cells are cells must be more thoroughly investigated.

Chapter 10

Discussion

10.1 Spectrum of Applicability

We have classified as “densely occluded” those geometric models for which interior visibility is very
limited. Such models occur at one end of a spectrum, which at its other extreme includes “sparsely
occluded” models, such as relatively open terrain. The visibility algorithms proposed here would not
perform well for sparsely occluded models, because of the predominance of free-space cells (cf. §9.2.2).
The cell-to-cell computations would explore (and find sightlines through) all portal sequences, and would
find very few restrictions on cell-to-cell, cell-to-region, or cell-to-object visibility.

The spectrum of geometric models implies a corresponding spectrum of visibility, and shadow al-
gorithms. Classical rendering algorithms make the basic assumption that the universe (i.e., geometric
model) is fully illuminated, unless it can be established that light is prevented from reaching a particular
region by an occluder. This is probably the right approach when space is sparsely occluded, for exam-
ple when the model represents predominantly open terrain, or is a complex localized environment with
little gross occlusion, such as a complicated ray-traced scene. Visibility preprocessing makes little sense
for this class of model, since computing, storing, retrieving, and reusing coarse visibility information
might be computationally harder than simply deriving fine-grain visibility (illumination) information as
a function of the instantaneous observer (light source) position.

Light propagation algorithms, such as those presented in this thesis, make the opposite assumption:
that nothing is visible (illuminated) unless a path can be found to it from the observer (light source). This
turns out to be an effective assumption for certain common kinds of scenes, like architectural models,
and leads to dramatic reductions in rendering times. Computing this visibility information requires a
few CPU hours on models with complexity corresponding to a design cycle of weeks or months. Storing
the visibility information required less than ten percent of the space required for the geometric model
data.

Spatial subdivision and hierarchical representation are promising techniques for management of
complexity, a pressing problem for many engineering applications such as visual simulation systems.

133

134 CHAPTER 10. DISCUSSION

These techniques exploit the coherence inherent in spatial data. This coherence is spatial, since nearby
entities can be stored near each other, and temporal, since nearby entities are typically referenced (e.g.,
rendered) near each other in time. Coherence can also be exploited in a host of other ways, for example,
while editing or performing global illumination calculations on the model.

The ability to predict visibility-related data demands is a continuing part of an engineering effort to
build a working walkthrough system that simulates geometric models several times the size of physical
memory [FST92]. We conclude that the tradeoff between expending precomputation and storage, in order
to gain predictive power and reduce on-line rendering time, is a worthwhile one for architectural models.
Finally, we are optimistic that the techniques presented here will scale to larger environments, since
visually complexity seems to grow less than linearly with overall model size. We observed average portal
sequence lengths to be roughly constant for a one-story, three-story, and eight-story building model.
We expect also that the on-line algorithms will straightforwardly generalize to multiple processors, since
they are essentially “read-only” graph traversals.

10.2 Algorithmic Complexity

We have presented the complexity of the stabbing and visible-volume algorithms only in terms of the
length of the portal sequence to which they are applied. The question remains as to the length of an
average portal sequence, and how many such feasible portal sequences can be expected to emanate from
a particular cell, in either two or three dimensions.

Since linear programs are solvable in linear time, Find_Visible_Cells adds or rejects each candidate
visible cell in time linear in the length of the axial portal sequence reaching that cell. Determining a
useful upper bound on the total number of such sequences as a function of the total number of cells visible
to a given source cell seems challenging, as this quantity appears to depend on the spatial subdivision
in a complicated way. However, for architectural models, we have observed the length of most portal
sequences to be a small constant (about ten; cf. §9.4). That is, most cells see only a constant number
of other cells (and this constant is small enough to have practical implications). Were this not so, most
of the model would be visible from most vantage points, and visibility preprocessing would be futile.
The consequence of the small stabbing length is that visibility storage requirements should be only
linear in the number of subdivision cells, since each cell will have only a constant amount of associated
information.

The incremental stabbing and antipenumbra algorithms do not fully exploit the coherence and
symmetry of the visibility relationship. Visibility is found one cell at a time, and the sightlines and
visible regions so generated are meaningful only for the source cell. Later visibility computations on
other cells do not “reuse” previously computed sightlines, but instead regenerate them from scratch.
To see why reusing sightlines is not easily accomplished, consider a general cell with several portals.
Many sightlines traverse this cell, each arriving with a different “history” or portal sequence. Upon
encountering a cell, it may be more work for a sightline to check every prior-arriving sightline than it
is for the new sightline to simply generate the (typically highly constrained) set of sightlines that can
reach the cell’s neighbors. It is difficult to see how the constraints due to a reaching portal sequence of
arbitrary length may be manipulated efficiently.

10.2. ALGORITHMIC COMPLEXITY 135

For example, a common efficiency technique is to perform algorithmic operations incrementally,
by considering the input data in turn, and maintaining a correct solution (in our case, a stabbing line
and description of the cell-to-region visibility) as each input element (e.g., portal) is encountered. The
advantage of incrementality is that we generally do not need to examine and construct the entire portal
sequence each time a new portal is encountered.

On the other hand, when used as part of a DFS, incrementality has some important disadvantages.
First, we must be able to “undo” the insertion of a portal as efficiently as we can add a portal, since
we ascend (i.e., backtrack on) the call stack as often as we descend it. For stabbing lines, this is
easy; we merely maintain a stack of (constant size) stabbing lines (constant size) linear constraints and
“cut it back” whenever the DFS backs out of a cell. But cell-to-region volumes present a problem;
their complexity is linear in the length of the active portal sequence, and their detailed structure (i.e.,
polyhedral face graph) may involve every edge of the active sequence. Thus, “backing out” of a general
portal sequence involves general insertion and deletion operations on convex polyhedra, or (equivalently,
but even less efficiently), maintaining a copy of the polyhedron generated for each cell, and discarding
it upon ascension of the call stack.

The second disadvantage of incrementality is that the DFS nature of the constrained graph traversal
search forces portals to be added in the order in which they are encountered; this destroys the random
nature of the linear programs we use, and without randomness the expected time of [Sei90b], for example,
increases to O(n?) from O(n) time. In practice, we do use incrementality and exploit the fact that, for
axial portals, the cell-to-region polyhedra have constant complexity.

The other complexity issue, apart from incrementality, is re-use of portal sequences. Suppose
some source cell DFS reaches a cell through a long portal sequence, and finds no further portals to
explore. This portal sequence should, in principle, be useable by the neighbors of the source cell for
their visibility computations and, when those sequences fail, by their neighbors, until all cells have had
visibility computed. Analogously to the incrementality case, we are effectively faced with problem of
removing portals from the beginning, rather than the end, of the portal sequence, and appropriately
propagating all resulting changes in cell-to-region visibility through the resulting sequence. It is difficult
to see how to do this robustly and efficiently. Consequently, we are still seeking satisfactory solutions to
the portal incrementality and sequence-reuse problems.

Although the visibility computations are not optimal, their results may be compacted by annotating
the adjacency graph with visibility information. We call this compacted representation portal transition
data, since it exploits the fact that qualitative changes in cell-to-cell cell-to-object visibility can only
occur at cell boundaries, i.e., along portals. Cell-to-cell and cell-to-object visibility can be encoded as
a pair of lists attached to each portal. Each list describes the changes in the associated visibility set
encountered by a generalized observer traversing the portal. This consists of a set of cells no longer
visible from the attained cell (i.e., those cells to be subtracted), and a set of cells newly visible from the
attained cell (i.e., those cells to be added).

10.2.1 Time and Storage Complexities

We summarize the complexity results of the subdivision and visibility algorithms described in the pre-
ceding text. Foremost, all of our complexity results are highly dependent on the quality of the spatial

136 CHAPTER 10. DISCUSSION

subdivision produced for the given input, and indeed the extent to which visibility is curtailed inside the
environment model. Since our algorithms are conceptually independent of the type of spatial subdivision
employed, we have chosen to express algorithm running times as functions of the length of the portal
sequences over which the algorithms are run. We reason that the average length of a portal sequence is
an inherent attribute of the geometric model, and that the relative goodness or badness of the spatial
subdivision should not affect this average length by more than a constant factor. In practice, moreover,
for most architectural environments to which these algorithms will be applied, the average stabbable
portal sequence length is itself a small constant, perhaps ten or twenty.

There are four critical algorithms whose running times and storage complexities are of theoretical
and practical interest here. First, a conforming spatial subdivision must be constructed. We express the
construction times and sizes as functions of f, the number of occluders. Next, stabbing, antipenumbra,
and on-line queries must be performed. We consider the latter algorithm running times as functions of
the portal sequence length n, total edge complexity e, and antipenumbra boundary complexity b (in 3D).
First, how efficiently can a stabbing line be found through a portal sequence? Second, how efficiently
can the antipenumbra be cast through a portal sequence, and an object bounding box be examined for
inclusion in the antipenumbra? Third, how efficiently can an eye-centered sightline be found through a
portal sequence, and an object bounding box be examined for admission of an eye-centered sightline?

The complexity results are presented in the Table 10.1, organized by the three occluder input classes
(2D, axial 3D, and general 3D), and by the algorithm of interest. The quantity f is the number of input
occluders; O(b) is the complexity of the antipenumbral boundary, which is at present known only to be
upper-bounded by O(e?).

10.3 Frame-to-Frame Coherence

In practice, there is considerable frame-to-frame coherence to be exploited in the eye-to-cell visibility
computation. During smooth observer motion, the observer’s view point will typically spend several
frame-times in each cell it encounters. The point-location query will often produce the same result as
its previous invocation, and this result (i.e., an identifier for the previously found cell) can be cached.
The stab tree for that cell can also be cached as long as the observer remains in the cell. Moreover, the
cell adjacency graph allows substantial predictive power over the observer’s motion. For instance, an
observer exiting a known cell through a portal must emerge in a neighbor of that cell (our implementation
disallows “walking through walls” by prohibiting incremental paths that penetrate occluders). A well-
designed walkthrough system might prefetch all polygons visible to that cell before the observer’s arrival,
minimizing or eliminating the waiting times associated with typical high-latency mass-storage databases
[FST92].

10.4 Scaling to Larger Models

In practice, we have observed that these subdivision and visibility methods scale well with increasing
model size. Our test model appeared to have a fairly constant visual complexity, even when increased

10.4. SCALING TO LARGER MODELS

137

Occluder Class = General Axial General
Algorithm | 2D 3D 3D
Spatial Subdivision O(flg f) time O(f%) time O(f?) time
O(f) space O(f%) space in [PY89] O(f?) space in [PY90]
Static Portal O(n) O(nlgn) O(e?)
Stabbing O(n) in [Ame92, Meg91]
Static O(n) O(n?) O(e?)
Antipenumbra polyhedral bounds in O(nlgn)
Static Object o(1) o(1) O(b)
Incidence (per object) O(e) linearized
On-line Portal o(1) o(1) O(e)
Stabbing (per portal)
On-line Object o(1) o(1) O(e)
Incidence (per object)

Table 10.1: Summary of algorithm complexities for operations described in this thesis, as functions of:
f, the number of occluders; n, the length of an active portal sequence; e, the total number of edges in a
3D portal sequence; and b, which is O(e?), the worst-case complexity of the 3D antipenumbral boundary.

from a single floor to seven floors. The achieved rendering speedup therefore improved almost linearly
as the size of the model increased. Indeed, one could imagine replicating the building model verti-
cally and horizontally several times, without significantly increasing the number of occluders and detail
objects visible to an interior observer. This is consistent with the intuitive notion that the internal
visual complexity of many architectural environments “tops out” locally, rather than globally. That is,
the visual complexity of most architectural models tends to be determined more by local effects (e.g.,
furnishings, realistic detail, room style) than by global effects (e.g., the total size of the model). For
instance, from most points inside a typical apartment or office, an observer can not visually determine
whether the apartment is a singleton or part of a block, or whether the office is a single floor or part of
a huge skyscraper. Even if this fact could be determined visually (say, by looking out of a window), the
remainder of the model would not be visible in its entirety.

Theoretical complexity measures can be reasonably good indicators of how well a given algorithm
will scale. However, one must be wary of algorithmic constants, since they are hard to express exactly
for non-trivial algorithms. Moreover, any implementation of an algorithm will be, at some level, highly
machine-dependent. In our case, the walkthrough system depends on such quantities as computation,
memory, bus, and disk bandwidth, and on such hard-to-quantify graphics characteristics as transforma-
tion, clipping, and fill rates [DL90]. Since there is no “typical” rendering load, one must often gather
empirical data (as we have done) as one measure of the utility of an implemented algorithm.

Scaling must also be regarded in the context of a practical difficulty, the problem of subdivision in
“free space.” Our algorithms are posited on the assumption that many occluders exist, and that they

138 CHAPTER 10. DISCUSSION

are good candidates for splitting space. However, current techniques for subdividing three-dimensional
space have “non-local” effects. At early stages of splitting, some occluder must be chosen to split along.
Choosing any such occluder may result in the introduction of a subdivision surface (i.e., a splitting plane)
in a region of no occlusion, elsewhere in the model. This subdivision surface then later contributes
to a large number of cell boundaries, none of which have any coaffine occluders. Consequently, the
graph traversal algorithms expend computational resources to traverse these open portals. In §9.2.2, we
described a modification to the data structures, precomputation, and query algorithms that overcomes
local free-space cell clusters. However, global free-space problems are sure to arise when applying these
techniques to, say, an office complex, in which many densely-occluded clusters populate an otherwise
sparse space. In these instances, we propose an initial splitting round that attempts merely to separate
clusters, rather than to find gross occlusion. This approach has been shown to improve the storage
behavior of BSP trees in such environments [Tor90]. We found that the minimum-cleaving splitting
criterion, originally formulated for building interiors (§5.2.1), efficiently found cluster separators in our
“museum park” test dataset (§9.4.4).

10.5 Future Directions

Practical visibility determinations in three dimensions is by no means a closed subject. Fruitful avenues
of investigation abound. Here, we briefly catalogue some areas which seem ripe for further attention.

10.5.1 Practical Spatial Subdivisions

Foremost is the question of efficient and effective spatial subdivision techniques in three dimensions.
Managing complex spatial and general data is an important open problem. At present there exist
no general, practical schemes for partitioning data in three dimensions in a local fashion (much as
the constrained Delaunay triangulation and Voronoi diagram partition point and segment data in the
plane [Sei90a]). Indeed, one has some reason to be pessimistic on this front, since even the task of
determining whether or not a polyhedron can be tetrahedralized has been shown to be NP-hard [RS89].
Nevertheless, algorithms that do spatially subdivide real environments continue to emerge (e.g., [CP89,
DBS91, MW91, SP91]). Although convexity of cells is a powerful and useful invariant to rely upon,
perhaps this may be shown to be unnecessary as more powerful subdivision abstractions emerge (e.g.,
[Rap91]). Eventually, these schemes will have to handle more general environments as well, including
curved surfaces, procedurally generated objects and occluders, and time-dependent entities such as
moving objects and multiple visual simulation participants. We are optimistic about the use of cell-
based visibility algorithms in large and ever-more variegated architectural models.

10.5.2 High-Order Visibility Effects

In the specific realm of visibility, there are many other interesting open questions. For example, how
might the visibility computation influence the subdivision algorithm in order to increase subdivision in
the regions where visibility is changing most rapidly? Our scheme approximates “zeroth order” visibility

10.5. FUTURE DIRECTIONS 139

effects by splitting on occluders, “first-order” effects by splitting along portal boundaries (i.e., at occluder
edges), and partially recognizes “second-order” and “third-order” effects by identifying antipenumbral
boundaries arising from two-way and three-way interactions among occluder (portal) edges. A more
complete investigation of these multiple-order visibility effects, as well as effects due to the interaction
among objects and occluders, is warranted. Visibility is an inherently directional phenomenon, and this
too may be incorporated into the preprocessing phase, although angular variables are generally more
difficult to manipulate than spatial variables.

The methods described here are particularly appropriate for densely occluded environments, such
as many architectural models. However, if the model has many “holes”, many distinct portals will
be produced along cell boundaries, confounding the cell-to-cell and cell-to-object computations with a
combinatorially explosive set of sightlines and halfspaces. This problem can be ameliorated by coalescing
portals to allow at most one per cell boundary. Since portals must be convex, this generally results in
an aggregate portal bigger than the union of its components, and larger (i.e., less useful) upper bounds
on visibility. It would be useful to strike an optimal balance between these competing effects.

It may occur that subdivision on the scene’s major structural elements alone does not sufficiently
limit cell-to-cell visibility. In this instance, further refinement of the spatial subdivision might help
if it indeed reduces visibility, or hurt if it leaves visibility unchanged but increases the combinatorial
complexity of finding sightlines. We may avoid this dilemma by exploiting the hierarchical coherence
inherent in the spatial subdivision and its associated visibility information: after a leaf cell is subdivided,
its children can see only a subset of the cells seen by their parent, since no new exterior portals are
introduced (and the motion of the child generalized observers is reduced). Thus each child’s sightline
search is heavily constrained by its parent’s portal/visibility list. Typically, the subdivision will further
restrict eye-to-cell visibility during the walkthrough phase. Another future direction of this research is
the potential of adaptive cell and object subdivision, based on the results of the cell-based (cell, region
and object) visibility computations.

10.5.3 Occluders and Objects

We have made an arbitrary distinction between major occluders and detail objects, since conceptually
they have different occlusive properties and because, in practice, they were easily distinguishable in our
data. However, detail objects and occluders clearly form a continuum, and at some density of objects,
sparsity of occluders, or general homogeneity of both, they become indistinguishable. Another worthy
area of investigation is the automated classification of model entities as occluders or objects (and the
concomitant investigation of visibility effects arising therefrom).

10.5.4 Mirroring and Translucency

Real environments include translucent and reflective surfaces, which themselves affect visibility in com-
plicated ways. Both surface types can be incorporated fairly easily into the visibility framework we
describe. Translucent surfaces can act as occluders or portals, depending on the incident angle of light
encountering them, their condition (i.e., cleanliness), and the difference in light levels on opposite sides

140 CHAPTER 10. DISCUSSION

of the glass (the latter is a perceptual effect that may be exploited, for example, to preclude rendering
dark surroundings as viewed from inside a bright house).

Mirrors, provided they are accompanied by explicit subdivision boundaries, can be treated as portals
that impose a coordinate transform on all visibility searches encountering the mirror. This transform
simply reflects the observer, and all active portals, about the plane of the mirror, and continues searching.
Note that the portal “handedness” must also be reversed.

10.5.5 Visibility Algorithm Efficiency

One basic thrust of this thesis is the hierarchical chunking of data, and the establishment of visibility
links between chunks at different levels of the hierarchy. Practically, the workhorse of this visibility
search has been a stabbing-line or light-propagation algorithm that, for various abstractions of occluders
and spatial subdivisions, finds straight-line paths or light bundles connecting chunks of the model. For
real data, our implementation required six 20-MIP CPU-hours to determine complete cell-to-cell and
cell-to-object visibility links for a realistic architectural model. More efficient algorithms, and faster
implementations, would allow another dimension of interaction with the model (for example by altering
an occluder, or opening or closing a door, and recomputing the affected visibility relationships). These
effects can be simulated currently via a “conditional occluder” approach that embeds the conditional
nature of a small number of occluders into the cell-based visibility sets. This approach, however, requires
foreknowledge of all occluders and objects that may change position over time, and is not viable as a
general technique.

10.5.6 Coherence and Parallelism

Both static and dynamic visibility computations are highly coherent. This coherence makes them attrac-
tive candidates for parallelization, since 1) visually isolated model regions can have no data interaction
in the static phase, and can therefore be isolated in memory, and 2) the eye-based queries amount to
read-only tree traversals in the on-line phase, and are straightforwardly parallelizable.

10.6 Other Applications

The subdivision-based visibility techniques described in this thesis can also be applied in other domains.
Some of these are briefly discussed.

10.6.1 Global Illumination and Shadow Computations

Existing global illumination algorithms treat visibility as a difficulty to be overcome (typically) by sam-
pling [CG85, HSA91]. However, these computations can be driven by visibility determinations in the
sense that only visually interacting entities should be allowed to exchange energy directly. Thus, for
example, the O(n?) “for each face, for every other face” construct in [HSA91] could be replaced by

10.6. OTHER APPLICATIONS 141

“for each face, for every other visible face”; which will typically be sub-quadratic in occluded environ-
ments. Moreover, visually isolated subregions of the model can be solved with independent radiosity
computations, to first order.

The antipenumbra computation algorithm of §8.3.2 can be slightly modified to produce all of the
VE and EEE critical surfaces induced by a given portal sequence. These critical surfaces encode strong
and weak visibility information about source and receiver polygons, and the first- and second-derivative
illumination discontinuities that arise due to interactions between two or three occluders. Polygon
meshing algorithms that wish to capture these discontinuities as data objects (see, e.g., [BRW89, CF90,
Hec91, SLD92]) should find the antipenumbra characterization useful.

10.6.2 Geometric Queries

The subdivision and portal abstractions might be of use to computational geometers, in answering
queries about the entities intersected by a given line segment or volume, or about collision-free paths
between pairs of points. Similarly, ray-tracing queries typically use sampling to determine the fraction
of an area light source visible to a point; analytic visibility-based methods could be used instead.

142 CHAPTER 10. DISCUSSION

Chapter 11

Conclusions

We have shown that practical visibility preprocessing and on-line culling is achievable, both theoretically
and as a functioning implementation, for an important class of densely-occluded environments. The vis-
ibility scheme first subdivides a geometric model into spatial cells, introducing cell boundaries wherever
major occluders are present in the model. Next, a coarse visibility determination links cells, and objects
within them, that are mutually visible through sightlines, or incident on conservative light bundles.

This coarse visibility determination constitutes a per-cell potentially visible set or PVS of objects
as an upper bound on the set of objects visible to any actual observer in a given cell. Thus, a simulated
actual observer can be tracked through the spatial cells, while the coarse visibility information stored
with each cell is retrieved, and subjected to on-line culling operations. The observer’s instantaneous
view position and field of view are used to reduce the set of objects potentially visible from anywhere
in the cell, to those potentially visible from the observer’s eyepoint. The resulting subset, typically
a small fraction of the model data, is then issued to graphics hardware for rendering and discretized
hidden-surface removal.

These subdivision and visibility determination techniques have been implemented for general poly-
hedral geometric models in three dimensions. Using a furnished model of a planned computer science
building as test data, we have achieved static culling rates of over 90% and dynamic culling rates of
more than 99%, on average, decreasing the average refresh rates of a simulated walk through the model
by a factor of about one hundred. The subdivision and visibility precomputation stages required sev-
eral hours of compute-time for a five-story building, a reasonable figure given the design time cycle for
a project of this size. The results of the visibility computation incurred less than 10% storage over-
head (15 megabytes) with respect to the amount of storage required by the geometric model itself (180
megabytes).

Together, these techniques demonstrate a successful application of computational geometric and
computer graphics techniques to the engineering problem of visually simulating a very large geometric
model. Due to the hierarchical and local nature of the partitioning and constrained graph traversal
computations involved, these techniques should scale effectively to even more complex models. Finally,
the visibility computations should have other applications in areas such as global illumination, ray-

143

144 CHAPTER 11. CONCLUSIONS

tracing, and shadow computations.

Bibliography

[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.

[Air90]

[Air92]

[AK87]

[Ake89]

[Ame92]

[ARB90]

[Arv88]

[Aut90]

[AW87]

[Bau72]

[Bel79]

Addison-Wesley, 1983.

John M. Airey. Increasing Update Rates in the Building Walkthrough System with Automatic
Model-Space Subdivision and Potentially Visible Set Calculations. PhD thesis, UNC Chapel
Hill, 1990.

John Airey. Personal communication, 1992.

James Arvo and David Kirk. Fast ray tracing by ray classification. Computer Graphics
(Proc. SIGGRAPH ’87), 21(4):55——63, 1987.

Kurt Akeley. The Silicon Graphics 4D/240GTX superworkstation. IEEE Computer Graphics
and Applications, 9(4):71——83, 1989.

Nina Amenta. Finding a line traversal of axial objects in three dimensions. In Proc. 37¢

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 66——71, 1992.

John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards image realism with
interactive update rates in complex virtual building environments. ACM SIGGRAPH Special
Issue on 1990 Symposium on Interactive 3D Graphics, 24(2):41——50, 1990.

James Arvo. Ray tracing with meta-hierarchies. SIGGRAPH ’88 Course Notes (Introduction
to Ray Tracing), 1988.

AutoDesk, Inc. Autocad reference manual release 10, 1990.

D. Avis and R. Wenger. Algorithms for line traversals in space. In Proc. 374

on Computational Geometry, pages 300——307, 1987.

Annual Symposium

B. Baumgardt. Winged-edge polyhedron representation. Technical Report No. CS-320, Stan-
ford Artificial Intelligence Report, Computer Science Department, 1972.

Bell Telephone Laboratories, Incorporated. UNIX User’s Manual, 1979.

145

146 BIBLIOGRAPHY

[Bel92] Gavin Bell. Personal communication, August 1992.

[Ben75] J.L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18:509——517, 1975.

[BRW89] Daniel R. Baum, Holly E. Rushmeier, and James M. Winget. Improving radiosity solutions
through the use of analytically determined form factors. Computer Graphics (Proc. SIGGRAPH
’89), 23(3):325——334, 1989.

[CF90] A.T. Campbell III and Donald S. Fussell. Adaptive mesh generation for global diffuse illumi-
nation. Computer Graphics (Proc. SIGGRAPH ’90), 24(4):155——164, 1990.

[CF92] Norman Chin and Steven Feiner. Fast object-precision shadow generation for area light sources
using BSP trees. In Proc. 1992 Symposium on Interactive 3D Graphics, pages 21——30, 1992.

[CG85] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A radiosity solution for complex
environments. Computer Graphics (Proc. SIGGRAPH ’85), 19(3):31——40, 1985.

[CHG*88] K. Clarkson, H.Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl. Combinatorial complexity
bounds for arrangements of curves and surfaces. Proc. 29" Annual IEEE Symposium on
Foundations of Computer Science, pages 568——579, 1988.

[Cla76] James H. Clark. Hierarchical geometric models for visible surface algorithms. CACM,
19(10):547——554, 1976.

[Com90] Computer Science 270: Combinatorial Optimization. Class notes. NP-completeness of minimal
parallelepipedization, 1990.

[CP89] Bernard Chazelle and Leonidas Palios. Triangulating a nonconvex polytope. In Proc. 5%

Annual ACM Symposium on Computational Geometry, pages 393——400, 1989.

[CS86] R. Cole and M. Sharir. Visibility problems for polyhedral terrains. Technical Report 92, NYU
Courant Institute of Mathematical Sciences, Computer Science Division, 1986.

[CS89] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational
geometry II. Discrete Computational Geometry, pages 387——421, 1989.

[DBS91] Tamal Dey, Chanderjit Bajaj, and Kokichi Sugihara. On good triangulations in three dimen-
sions. In Proceedings of 1991 ACM/SIGGRAPH Symposium on Solid Modeling Foundations
and CAD/CAM Applications, pages 431——441, 1991.

DFP*86] Leila DeFloriani, Bianca Falcidieno, C. Pienovi, D. Allen, and George Nagy. A visibility-based
g g
model for terrain features. In Proc. Int. Symp. on Spatial Data Handling, July 1986.

[DG87] J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail. CACM,
30(5):403——407, 1987.

BIBLIOGRAPHY 147

[DL90]

[DS89]

[dV91]

[Ede85]

[EGS86]

[FI85]

[FK91]

[FKN80]

[FST92]

[FvD82]

J. Craig Dunwoody and Mark A. Linton. Tracing interactive 3D graphics programs. ACM
SIGGRAPH Special Issue on 1990 Symposium on Interactive 3D Graphics, 24(2):155——163,
1990.

David P. Dobkin and Diane L. Souvaine. Detecting the intersection of convex objects in the
plane. Technical Report No. 89-9, DIMACS, 1989.

René de Vogelaere. Personal communication, November 1991.

H. Edelsbrunner. Finding transversals for sets of simple geometric figures. Theoretical Computer
Science, 35:55——69, 1985.

Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in mono-
tone subdivisions. SIAM Journal of Computing, 15:317——340, 1986.

Akira Fujimoto and Kansei Iwata. Accelerated ray tracing. Computer Graphics: Visual Tech-
nology and Art (Proc. Computer Graphics Tokyo ’85), pages 41——65, 1985.

Sharon Fischler and George Kong. Graphics Tuning, Section 20 of the Power Series Perfor-
mance Guide, Ed. Veeleen Roufchaie. Silicon Graphics Computer Systems, 2011 N. Shoreline
Boulevard, Mountain View, CA 94039-7311, February 1991.

H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priori tree structures.
Computer Graphics (Proc. SIGGRAPH ’80), 14(3):124——133, 1980.

Thomas A. Funkhouser, Carlo H. Séquin, and Seth Teller. Management of large amounts of
data in interactive building walkthroughs. In Proc. 1992 Workshop on Interactive 3D Graphics,
pages 11——20, 1992.

J.D. Foley and A. van Dam. Fundementals of Interactive Computer Graphics. Addison-Wesley,
1982.

[GBW90] Benjamin Garlick, Daniel R. Baum, and James M. Winget. Interactive viewing of large

[GCS91]

[GI79]

[Gla84]

geometric databases using multiprocessor graphics workstations. SIGGRAPH ’90 Course Notes
(Parallel Algorithms and Architectures for 3D Image Generation), 1990.

Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and representing aspect
graphs of polyhedral objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):542——551, 1991.

Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman, 1979.

Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and
Applications, 4(10):15——22, 1984.

148

[GM90]

[Grii67]

[GS85]

[GV8Y]

[Han84]

[Hec91]

[Her87]

[HSA91]

[HT92]

[Jon71]

[Jon92]

[Kho91]

[Kir83]

[KLZ85]

[Kv79]

[KV90]

BIBLIOGRAPHY

Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings of polyhedral
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):113——122,
1990.

Branko Grinbaum. Convez Polytopes. Wiley-Interscience, New York, 1967.

Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74——123, 1985.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns Hopkins University
Press, 1989.

Patrick Hanrahan. A homogeneous geometry calculator. Technical Report 3-D No. 7, Computer
Graphics Laboratory, New York Institute of Technology, 1984.

Paul S. Heckbert. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, Com-
puter Sciences Department, UC Berkeley, June 1991.

John E. Hershberger. Efficient Algorithms for Shortest Path and Visibility Problems. PhD
thesis, Stanford University, 1987.

Patrick Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algo-
rithm. Computer Graphics (Proc. SIGGRAPH ’91), 25(4):197——206, 1991.

Michael E. Hohmeyer and Seth Teller. Stabbing isothetic rectangles and boxes in O(nlgn)
time. Computational Geometry Theory and Applications, 4:201——207, December 1992.

C.B. Jones. A new approach to the ‘hidden line’ problem. The Computer Journal,
14(3):232——237, 1971.

Michael T. Jones. A high performance visual simulation toolkit. Technical report, Silicon
Graphics Computer Systems, Mountain View CA, 94043, March 1992.

Delnaz Khorramabadi. A walk through the planned CS building. Technical Report UCB/CSD
91/652, Computer Science Department, UC Berkeley, 1991.

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journael of Computing,
12:28——35, 1983.

M. Katchalski, T. Lewis, and J. Zaks. Geometric permutations for convex sets. Discrete
Mathematics, 54:271——284, 1985.

J.J. Koenderink and A.J. van Doorn. The internal representation of solid shape with respect
to vision. Biol. Cybern., 32:211——216, 1979.

David Kirk and Douglas Voorhies. The rendering architecture of the DN10000VS. Computer
Graphics (Proc. SIGGRAPH ’90), 24(4):299——307, 1990.

BIBLIOGRAPHY 149

[Meg83]

[Meg91]

[Mit92]

[MO8S]

[MW91]

[NN83]

[NN85]

[O’R87]

[PD90]

[Pel90a]

[Pel90b]

[PS85]

[PW8S]

[PW89]

N. Megiddo. Linear-time algorithms for linear programming in R® and related problems. SIAM
Journal Computing, 12:759——776, 1983.

N. Megiddo. Stabbing isothetic boxes in deterministic linear time. Personal communication to
Nina Amenta, 1991.

Don Mitchell. On the quadratic behavior of BSP trees for real-world data. Personal Commu-
nication, 1992.

M. McKenna and J. O’Rourke. Arrangements of lines in 3-space: A data structure with
applications. In Proc. 4** Annual Symposium on Computational Geometry, pages 371——380,
1988.

Doug Moore and Joe Warren. Bounded aspect ratio triangulation of smooth solids. In Proceed-
ings of 1991 ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD/CAM
Applications, pages 465——464, 1991.

Tomoyuki Nishita and Eihachiro Nakamae. Half-tone representation of 3-D objects illuminated
by area sources or polyhedron sources. In Proc. IEEE COMPSAC, 1983, pages 237——242,
1983.

Tomoyuki Nishita and Eihachiro Nakamae. Continuous-tone representation of three-
dimensional objects taking account of shadows and interreflection. Computer Graphics
(Proc. SIGGRAPH ’85), 19(3):23——30, 1985.

Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

W_.H. Plantinga and C.R. Dyer. Visibility, occlusion, and the aspect graph. Int. J. Computer
Vision, 5(2):137——160, 1990.

Marco Pellegrini. Stabbing and ray-shooting in 3-dimensional space. Technical Report 540;
Robotics Report No. 230, NYU Courant Institute of Mathematical Sciences, Computer Science
Division, 1990.

Marco Pellegrini. Stabbing and ray-shooting in 3-dimensional space. In Proc. 6" ACM
Symposium on Computational Geometry, pages 177——186, 1990.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry: an Introduction.
Springer-Verlag, 1985.

Ken Perlin and Xue-Dong Wang. An efficient approximation for penumbra shadow. Technical
Report 346, NYU Courant Institute of Mathematical Sciences, Computer Science Division,
1988.

R. Pollack and R. Wenger. Necessary and sufficient conditions for hyperplane traversals. In
Proc. 5" Annual Symposium on Computational Geometry, pages 152——155, 1989.

150

[PY89]

[PY90]

[Rap91]

[RS89]

BIBLIOGRAPHY

M.S. Paterson and F.F. Yao. Optimal binary space partitions for orthogonal objects. In
Proc. 1% Annual ACM-SIAM Symposium on Discrete Algorithms, pages 100——106, 1989.

Michael S. Paterson and F. Frances Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete and Computational Geometry, 5(5):485——503, 1990.

Ari Rappoport. The n-dimensional extended convex differences tree (ECDT) for representing
polyhedra. In Proceedings of 1991 ACM/SIGGRAPH Symposium on Solid Modeling Founda-
tions and CAD/CAM Applications, pages 139——147, 1991.

Jim Ruppert and Raimund Seidel. On the difficulty of tetrahedralizing 3-dimensional non-
convex polyhedra. In Proc. 5* Annual ACM Symposium on Computational Geometry, pages
380——392, 1989.

[SBGS69] R. A. Schumacker, B. Brand, M Gilliland, and W. Sharp. Study for applying computer-

[Sei90a]

[Sei90b]

[Sha87]

[SLD92]

[Som59]

[SP91]

[5590]

[5591]

generated images to visual simulation. Technical Report AFHRL TR-69-14, U.S. Air Force
Human Resources Laboratory, 1969.

Raimund Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obstacles.
Eztended Abstract, 1990.

Raimund Seidel. Linear programming and convex hulls made easy. In Proc. 6** ACM Sympo-
sium on Computational Geometry, pages 211——215, 1990.

Micha Sharir. The shortest watchtower and related problems for polyhedral terrains. Technical
Report 334, NYU Courant Institute of Mathematical Sciences, Computer Science Division,
1987.

David Salesin, Dani Lischinski, and Tony DeRose. Reconstructing illumination functions with
selected discontinuities. In Proc. 3"¢ Eurographics Workshop on Rendering, pages 99-112, May
1992.

D.M.Y. Sommerville. Analytical Geometry of Three Dimensions. Cambridge University Press,
1959.

Nickolas Sapidis and Renato Perruchio. Domain Delaunay tetrahedrization of arbitrarily shaped
curved polyhedra defined in a solid modeling system. In Proceedings of 1991 ACM/SIGGRAPH
Symposium on Solid Modeling Foundations and CAD/CAM Applications, pages 465——480,
1991.

Sack and Suri. An optimal algorithm for detecting weak visibility of a polygon. IEEE Trans-
actions on Computers, 0(0):0——0, 1990.

Carlo H. Séquin and Kevin P. Smith. Introduction to the Berkeley UNIGRAFIX tools (Version
3.0). Technical Report UCB/CSD 91/606, Computer Science Department, UC Berkeley, 1991.

BIBLIOGRAPHY 151

[SSS74]

[SSW83]

[ST86]

[Sto89]
[TH92]

[Tor90]

[WAT77]

Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characterization of ten
hidden-surface algorithms. Computing Surveys, 6(1):1——>55, 1974.

Carlo H. Séquin, Mark Segal, and Paul R. Wensley. UNIGRAFIX 2.0 user manual and tutorial.
Technical Report UCB/CSD 83/161, Computer Science Department, UC Berkeley, 1983.

Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees. CACM,
29(7):669——679, 1986.

Jorge Stolfi. Primitives for computational geometry. Technical Report 36, DEC SRC, 1989.

Seth Teller and Michael E. Hohmeyer. Stabbing oriented convex polygons in randomized O(n?)
time. Technical Report UCB/CSD 91/669, Computer Science Department, UC Berkeley, 1992.

Enric Torres. Optimization of the binary space partition algorithm (bsp) for the visualization
of dynamic scenes. In Proc. 1°* Eurographics Workshop on Rendering, pages 507——518, 1990.

Kevin Weiler and Peter Atherton. Hidden surface removal using polygon area sorting. Computer
Graphics (Proc. SIGGRAPH ’77), 11(2):214——222, 1977.

[WMB92] Allan Wilks, Allen McIntosh, and Richard A. Becker. The data dual. In preparation, 1992.

