Contemporary Mathematics
Volume 00, 0000

Stabbing Oriented Convex Polygons in
Randomized O(n?) Time

SETH TELLER AND MICHAEL HOHMEYER

May 28, 1994

ABSTRACT. We present a randomized algorithm that determines, in ex-
pected O(ng) time, whether a line exists that stabs each of a set of oriented
convex polygons in R?® with a total of n edges. If a stabbing line exists, the
algorithm computes at least one such line. We show that the computation
amounts to constructing a convex polytope in R® and inspecting its edges
for intersections with a four-dimensional surface, the Pliicker quadric.

1. Introduction

Consider a collection of oriented convex polygons; that is, directed planar con-
tours in R3. Suppose one wishes to determine whether any line simultaneously
intersects every polygon, while traversing the plane of each polygon in a consis-
tent sense (Figure 1). We show how to compute whether such a stabbing line
exists for a given set of polygons, and if so, how to compute one such stabbing
line. This problem can be of practical importance in visibility computations. For
example, a polygonal scene in R3 can be partitioned into convex cells, intercon-
nected via portals, or translucent holes on shared boundaries between adjacent
cells. A stabbing line through a sequence of portals serves as a witness of sight-
line visibility between two non-adjacent polyhedral cells [13, 14]. The polygonal
portals between each cell, in this case, would be oriented by the sense in which
each portal is traversed along the sequence (for example, during a search of the
subdivision adjacency graph).

For a given set of polygons, let n be the total number of edges comprising
the set. Various stabbing line algorithms for unoriented polygons have been
formulated. Avis and Wenger presented an O(n*lgn) time algorithm to compute
stabbing lines [2]. McKenna and O’Rourke improved this to O(n*a(n)) time [6],
where «(n) is the functional inverse of Ackermann’s function. If the polygons
are triangles, and together comprise ¢ distinct normals, an algorithm due to
Pellegrini computes a stabbing line in O(g?n?1gn) time if one exists [8]. When
g is O(n), this time bound is the same as that due to Avis and Wenger.

For the case of input polygons consisting only of isothetic (axis-aligned) rect-
angles, Hohmeyer and Teller proposed an O(nlgn) time stabbing line algorithm
[5]. Amenta improved this with a randomized linear time algorithm [1]. Finally,

1991 Mathematics Subject Classification. 51M30, 68U05; 51A45, 51M20, 52A20, 52A40.
The first author gratefully acknowledges the support of Silicon Graphics, Inc.

©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

2 SETH TELLER AND MICHAEL HOHMEYER

FIGURE 1. A stabbing line for a sequence of polygons in R3.

Megiddo reduced the problem to linear programming, yielding a deterministic
linear time algorithm [7].

Here, we consider the case in which the input polygons are convex, have an
arbitrary number of edges, and an arbitrary plane normal. Each polygon has a
specific orientation or front face according to one of its two antiparallel plane
normals. (Oriented polygons arise often in real applications, e.g. from topologi-
cal constraints or, as described above, during combinatorial search algorithms.)
We then search for a directed stabbing line whose direction vector has a posi-
tive inner product with each polygon normal. Knowing the direction in which
any stabbing line must traverse each of the polygons allows the formulation of a
randomized O(n?) expected time algorithm, which we have implemented.

We use the Pliicker coordinatization of lines [11], mapping directed lines in
R3 into points (hyperplanes) in R®. We show that finding a solution to the
stabbing line problem is equivalent to finding a point on the intersection of a
polytope and a quadric surface (the Pliicker quadric) in R®. The complexity of
a d-dimensional polytope, described by its face graph, is O(nL%J) [4]. Thus the
worst-case complexity of a polytope in 2 is O(n?), and we spend at most O(n?)
time inspecting it for a solution.

2. Plucker Coordinates

Any ordered pair of distinct points p = (pz, py, p:) and ¢ = (¢z, ¢y, ¢-) defines
a directed line ¢ in R3. This line corresponds to a projective six-tuple II, =
(Te0, Te1, Te2, Tes, Tea, Tes), each component of which is the determinant of a 2 x 2
minor of the matrix

1) (Pe Py P2 1)

Te Gy q- 1

There are several conventions dictating the correspondence between the mi-

STABBING ORIENTED CONVEX POLYGONS IN RANDOMIZED O(N2?) TIME 3

nors of (2.1) and the m;. We define the 7y as:

o = Prdy — 9zPy
1 = Peq: — 92Dz
T2 = Pr —{4x
m3 = Pyq: — QyP:
T4 = Pz — 4z
s = Gy — Py

(this somewhat asymmetric order was adopted in [9] to produce positive signs
in some identities about Pliicker coordinates).

If @ and b are two directed lines, and II,, II; their corresponding Pliicker
mappings, a relation side(a,b) can be defined as the permuted inner product
I, ® ,:

I, ® Iy = (Ta0Tea + Ta1 s + Ta2Tp3 + TaaToo + TasTo1 + TazTho)

side(a, b)< 0 side(a, b)=0 side(a, b)>0

FIGURE 2. The right-hand rule and the relation side(a,b).

This sidedness relation can be interpreted with the “right-hand rule” (Figure
2): if the thumb of one’s right hand is directed along a, then side(a, b) is positive
(negative) if b goes by a with (against) one’s fingers. If lines @ and b are coplanar
(i.e., intersect or are parallel), side(a,b) is zero.

Thus, the six-tuple II; can be treated either as a (homogeneous) point in
RS or, after permutation, as the coefficients of a 5-dimensional hyperplane. The
advantage of transforming lines to Pliicker coordinates is that detecting incidence
of lines in R® is equivalent to computing the inner product of a homogeneous
point (the mapping of one line) with a hyperplane (the mapping of the other).

Pliicker coordinates simplify computations on lines by mapping them to points
and hyperplanes, which are familiar objects. However, although every directed

4 SETH TELLER AND MICHAEL HOHMEYER

line in B3 maps to a point in Pliicker coordinates, not every six-tuple, interpreted
as Plicker coordinates, corresponds to a real line. Only those points II satisfying

the quadratic relation
(2.2) OoO=0

correspond to real lines in k2. All other points map to imaginary lines [11], or
lines whose direction cosines are complex.

The six Plicker coordinates of a real line are not independent. First, since
they describe a projective space, they are distinct only to within a scale factor.
Second, they must satisfy Equation 2.2. Thus, the six Plicker coordinates de-
scribe a four-parameter space. This confirms basic intuition: one could describe
all lines in R? in terms of, for example, their intercepts on two standard planes.

The set of points satisfying Equation 2.2 is called the Plicker quadric [11].
One might visualize this set as a four-dimensional ruled surface embedded in R®,
analogous to a quadric hyperboloid of one sheet in k&3 (Figure 3).

R3 RS

FIGURE 3. Real lines map to points on, or hyperplanes tangent
to, the Plucker surface.

Strictly speaking, Pliicker coordinates comprise an oriented projective space.
However, our problem has special structure: we need only search for stabbing
lines whose direction coefficients are, say, positive with respect to some reference
direction. Thus we can work in the relatively simpler coordinates of R>.

Henceforth, we use the notation Il : [— II; to denote the map II that takes
a directed line { to the Plicker six-tuple II;, and the notation £ : II — Iy to
denote the map that takes any point II on the Pliicker quadric and constructs the
corresponding real directed line Iy in 3. Finally, given a six-tuple h representing
a hyperplane in Pliicker coordinates, we use ht to denote the closed halfspace
bounded by h.

STABBING ORIENTED CONVEX POLYGONS IN RANDOMIZED O(N2?) TIME 5

3. Computing a Stabbing Line

The input polygons to be stabbed have a total of n edges Ey, 0 < k < n. Each
edge Ey is a segment of a directed line e. Since the polygons are oriented, the
er can be directed so that if a stabbing line S exists through all of the polygons,
it must have the same sidedness relation with respect to each of the e;. That is,
S must satisfy (Figure 3):

side(S,ex) >0 Vk.

FIGURE 4: S must pass to the
same side of all the eg.

Define hy as the oriented Plicker hyperplane corresponding to the directed
line eg:

hy = {z € R® : wpamo + Tps2y + T3ty + Trows + Thota + Ty = 0},

or
(3.1) hy ={z e P’:x0m =0}

For any stabbing line S, side(S,er) > 0. That is, s ® m; > 0, where s = II(5).
Thus, s must be above all the hyperplanes hy (Figure 3), and inside or on the
boundary of the convex polytope [, h;l'. We say that such a point s is feasible
with respect to the hy.

I1(S) must be above all of the hy in R°.

i Se ‘a FIGURE 5: If S is a stabbing line, s =
hy

The face graph of the polytope), h;’ has worst-case complexity quadratic in
the number of halfspaces defining it [4], and can be computed by a randomized
algorithm in optimal O(n?) expected time [3]. Tt is not sufficient merely to find
a point inside this polytope, since most such points will not correspond to real
lines. Rather, a stabbing line through the polygons exists if and only if there

6 SETH TELLER AND MICHAEL HOHMEYER

exists some point inside or on the boundary of the convex polytope, and on the
Plicker quadric. Our algorithm computes such a point, if one exists.

Four lines are required to determine another line via incidence. Consequently,
if any stabbing line exists through the polygon sequence, some stabbing line
exists that is tight, or incident, on four edges from the original polygons. The
set of all such lines are the so-called eztremal stabbing lines [?]. They may
arise via incidence on two vertices from different polygons; from a single vertex
and two skew edges from different polygons; or from four mutually skew edges
from different polygons. It is these extremal stabbing lines which our algorithm
identifies.

Consider the structure of the polytope bounding (1, h,'c". Its zero-simplices,
or vertices, arise as the intersection of five hyperplanes h. Its one-simplices, or
edges, arise from the intersection of four of the hr. Thus, any point on an edge
of N, h{ and on the Plicker quadric corresponds (by the Pliicker mapping) to
a real line tight on four of the lines e (by projective transformation, we can
always choose the plane at infinity so that it does not intersect (1, h;’)

FIGURE 6: The algorithm intersects the

“‘ edges of (), ki with the Pliicker quadric.
L7/

Thus, to discover a stabbing line, we need only find the intersection of an edge
of the polytope N, hg’ with the Plicker quadric (Figure 3). The combinatorial
structure of (), ~{ implies O(n?) sets of four lines chosen from the e;. Any four
lines I; determine 0, 1, 2, or an infinite number of lines tight on the l;. This is
simply because the four lines imply an intersection of four hyperplanes in R,
which is just a line in R®. This line intersects the Pliicker quadric in 0, 1, 2,
or an infinite number of points. (The infinite intersection can arise due to the
fact that the Pliicker quadric is a ruled surface.) A procedure for computing the
tight lines, and determining the type of line-surface intersection, is given in [12].

For each edge of), hz', we examine the infinite line containing the edge for
intersections with the Plicker quadric. Any such intersections represent lines
incident on four of the ey (the lines affine to the polygon edges in k3). However,
we must check that the intersection point in R® actually occurs inside [, h}. We
do so by comparing this point to the faces (hyperplanes) bounding the convex
hull edge. This can be done in constant time for any edge of (), k}, assuming
that its face graph is suitably represented.

STABBING ORIENTED CONVEX POLYGONS IN RANDOMIZED O(N?) TIME 7

Ficure 7: The thirty-six ex-
tremal stabbers of three oriented
polygons (with n = 13).

4. Implementation

Our implementation is based on three “primitives”: 1) a d-dimensional linear
programming algorithm; 2) a d-dimensional convex hull algorithm; and 3) an
algorithm that computes the line(s) through four lines. The implementation of
the stabbing line algorithm can be sketched as follows:

(1) input the directed edges Ej

(ii) orient the edge endpoints to produce the directed lines ey
(iii) transform the e to oriented Pliicker halfspaces hy = [(ex)
(iv) find f such that f ® hy > 0 for all k

(linear programming: find (f,c) maximizing ¢ subject to f ® hy — ¢ > 0)

(v) if no such f exists, return; there is no stabbing line
(vi) if ¢ = 0 handle degenerate input
ii) dualize the hy about f to produce the point set py = he in RS

i)

)

(vii Tor

(viil

(ix) compute the dual of Conv(py); i.e., the polytope [, h;’
(x) examine the edges of [, ki for intersections with the Pliicker quadric
(xi) if an intersection is found, check that it is in the interior of (), h}

(xii) if the intersection is valid, remap via £ to construct a real stabbing line.

compute the convex hull Conv(py)

The first primitive, linear programming, is implemented as a randomized al-
gorithm and runs in expected linear time [10]. The second primitive, convex hull
computation in R® requires O(n?) expected time in principle [3]. We have imple-
mented it, however, using a d-dimensional Delaunay simplicialization algorithm,
which is somewhat slower. The third primitive, line incidence, requires O(1)
time. (We are grateful to Allan Wilks and Allen McIntosh of AT&T Bell Labs
for supplying the code to compute d-dimensional Delaunay simplicializations.)

Figure 4 depicts one output of the algorithm, on an input consisting of three
polygons: a square, a hexagon, and a triangle (thus n = 13). There are 270
possible extremal stabbing lines; one vertex and a pair of edges can be chosen in
4x6x3x3=216 ways; two vertices can be chosen in 4 x 6+4x3+3 x 6 = 54
ways. For this input, however, the convex hull in R® has 130 edges (that is, only
130 of the 270 possible lines incident on four input edges satisfy all n Plicker
constraints). These 130 edges yield 36 intersections with the Plicker quadric,
and thus 36 real, extremal stabbing lines.

SETH TELLER AND MICHAEL HOHMEYER

5. Conclusion

Using a duality relationship connecting directed lines in three-space, and

point-hyperplane relationships in five-space, we have described a randomized
algorithm that finds all extremal stabbing lines through a set of oriented poly-
gons with total complexity n, if any exist. The algorithm invokes a randomized
convex hull computation in R®, requiring expected O(n?) time. Only the edges
of the generated polytope need be checked for a stabbing line solution. The
combinatorial structure has complexity O(n?) and is inspected deterministically,
yielding an expected O(n?) time algorithm.

10.

11.
12.

13.

14.

REFERENCES

. N. Amenta, Finding a line traversal of axial objects in three dimensions, Proc. 3¢ Annual

ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 66-71.

. D. Avis and R. Wenger, Algorithms for line traversals in space, Proc. 3¢ Annual ACM

Symposium on Computational Geometry, 1987, pp. 300-307.

. K. Clarkson, K. Mehlhorn, and R. Seidel, Four results on randomized incremental con-

structions, Computational Geometry Theory and Applications 4(3) (1993), 185-212.

. B. Griinbaum, Convex polytopes, Wiley-Interscence, New York, 1967.
. M. Hohmeyer and S. Teller, Stabbing isothetic rectangles and boves in O(nlgn) time,

Computational Geometry Theory and Applications 4 (1992), 201-207.

. M. McKenna and J. O'Rourke, Arrangements of lines in 3-space: A data structure with

applications, Proc. 4t Annual ACM Symposium on Computational Geometry, 1988,
pp. 371-380.

. N. Megiddo, Stabbing isothetic bores in deterministic linear time, Personal communication.
. M. Pellegrini, Stabbing and ray-shooting in 3-dimensional space, Proc. 6t" Annual ACM

Symposium on Computational Geometry, 1988, pp. 177-186.

. M. Pellegrini and Peter Shor, Finding stabbing lines in 3-dimenstonal space, Proc. ond

ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 24-31.

R. Seidel, Linear programming and conver hulls made easy, Proc. 6" Annual ACM
Symposium on Computational Geometry, 1990, pp. 211-215.

D. Sommerville, Analytical geometry of three dimensions, Cambridge U. Press, 1959.

S. Teller and M. Hohmeyer, Computing the lines piercing four lines, Tech. Report
UCB/CSD 91/665, CS Department, UC Berkeley, 1991,

S. Teller and C. Séquin, Visibility preprocessing for interactive walkthroughs, Computer
Graphics (Proc. Siggraph '91) 25 (1991), no. 4, 61-69.

S. Teller and P. Hanrahan, Global Visibility Algorithms for Illumination Computations,
Computer Graphics (Proc. Siggraph '93) 27 (1993), 239-246.

COMPUTER SCIENCE INSTITUTE, HEBREW UNIVERSITY, GIVAT RAM, JERUSALEM 91904 ISRAEL
Current address: Dept. of EE & CS, MIT, 77 Massachusetts Avenue, Cambridge MA 02139
E-mail address: seth@lcs.mit.edu

COMPUTER SCIENCE DEPT., UC BERKELEY, BERKELEY CA 94720 USA
Current address: Pacific Marketing and Consulting, 2600 Etna street, Berkeley CA 94704
E-mail address: hohmeyer@cs.berkeley.edu

