Application Challenges to Computational Geometry

CG ImpAcT TASK FORCE REPORT*

Abstract

With rapid advances in computer hardware and visualization systems, geometric com-
puting is creeping into virtually every corner of science and engineering, from design and
manufacturing to astrophysics to molecular biology to fluid dynamics. This report assesses
the opportunities and challenges this presents for the field of computational geometry in
the years ahead. Can CG meet the algorithmic needs of practitioners? Should it look to
applied areas for new sources of problems? Can CG live up to its potential and become a
key player in the vast and diverse world of geometric computing? These are some of the
questions addressed in this document. It was prepared by a group of computer scientists,
engineers, and mathematicians with extensive experience in geometric computing. This
report is intended as a wake-up call rather than an agenda setter. It is hoped it will engage
a community-wide discussion on the future of computational geometry.

This document is available as Technical Report TR-521-96, Princeton University, April
1996. It also accessible on the Web at URL,

http://www.cs.princeton.edu/~chazelle/taskforce /CGreport.ps

1 Preamble

The fraction of computing falling under the loosely defined rubric of “geometric computation”
has been on the rise and is likely to become dominant in the next decade. Computer graphics,
manufacturing, scientific visualization, computer vision, astrophysics, molecular biology, and
fluid mechanics are just a few in a crowd of avid users of geometric computing. Where does
computational geometry fit into all this?

Twenty-odd years ago, the nascent field of computational geometry set sail on a mission
to build general tools — analytical and computational — to satisfy the algorithmic needs of
geometric computing [45, 64, 98, 108, 114, 120, 129]. The intention was to create a body of
knowledge to which computer programmers could turn for help when wrestling with geometric

*The Computational Geometry Impact Task Force: Nina Amenta (Xerox PARC), Tetsuo Asano (Osaka
Electro-Comm. U.), Gill Barequet (Tel Aviv U.), Marshall Bern (Xerox PARC), Jean-Daniel Boissonnat
(INRIA), John Canny (U.C. Berkeley), Bernard Chazelle (Chair, Princeton U.), Ken Clarkson (AT&T Bell
Laboratories), David Dobkin (Princeton U.), Bruce Donald (Cornell U.), Scot Drysdale (Dartmouth U.), Her-
bert Edelsbrunner (U. Illinois at Urbana-Champaign), David Eppstein (U.C. Irvine), A. Robin Forrest (U. East
Anglia), Steve Fortune (AT&T Bell Laboratories), Ken Goldberg (U.C. Berkeley), Michael Goodrich (Johns
Hopkins U.), Leonidas J. Guibas (Stanford U.), Pat Hanrahan (Stanford U.), Chris M. Hoffmann (Purdue U.),
Dan Huttenlocher (Cornell U.), Hiroshi Imai (U. Tokyo), David Kirkpatrick (UBC), D.T. Lee (Northwestern
U.), Kurt Mehlhorn (Max Planck Inst.), Victor Milenkovic (U. Miami), Joe Mitchell (SUNY at Stony Brook),
Mark Overmars (U. Utrecht), Richard Pollack (Courant Institute, NYU), Raimund Seidel (U. Saarbriicken),
Micha Sharir (Tel Aviv U. and NYU), Jack Snoeyink (UBC), Godfried Toussaint (McGill U.), Seth Teller
(MIT), Herb Voelcker (Cornell), Emo Welzl (ETH Ziirich), and Chee Yap (Courant Institute, NYU).

problems. The vision was that of a two-way pipeline: applications areas feeding CG with
important practical problems, and CG in turn providing answers in the way of algorithmic
tools and mathematically sound analyses.

What is the state of the “pipeline” today? Before answering this question, one may want
to step back a little. Any new field needs to build itself a home and a home needs foun-
dations. On that score one may strike a celebratory note. Indeed, computational geometry
has met with considerable success in resolving the asymptotic complexity of basic geometric
problems (e.g., convex hulls, Voronoi diagrams, triangulations, low-dimensional optimization)
[31]. Most of the classical problems posed in the first decade of the field have been solved.
Many of them entailed building entirely new sub-areas in the field of algorithm design. For
example, the twin use of randomization and derandomization has been the main force behind
some truly remarkable success stories (e.g., optimal algorithms for convex hull and Voronoi
diagrams, linear-time solutions of LP-type problems). Multidimensional searching, triangula-
tion, geometric sampling, the theory of Davenport-Schinzel sequences, and zone theorems are
some of the crowning intellectual achievements in the field of CG.

Computational geometry has been remarkably dynamic, productive and creative. In fact,
in the area of algorithms and data structures, CG is arguably where most of the action has
been in the last decade. Building theoretical foundations was undoubtedly the proper course
to chart at the outset: CG can look back to its accomplishments with legitimate pride.

In the midst of its success, however, the field is standing at a crossroads. There are
two options: CG can use its successes as justification for keeping the pursuit of theoretical
investigations as the centerpiece of its agenda. Or it can move towards building an effective
pipeline with geometric computing. In the first case, CG might simply fall out of the economic
loop altogether: it might even shrink to the status of a recreational activity. In the second case,
CG might grow to become as indispensable to geometric computing as, say, civil engineering
is to bridge-building. The choice is for the CG community to make.

Why such alarm? The sobering reality is that, notwithstanding a few exceptions, the
pursuit of practical solutions that specifically address the users’ needs has lagged behind.
At the same time, the computational geometry community has been largely unsuccessful in
reaching out and communicating its more practical discoveries to potential users. Technology
transfer has been slow and sporadic. To put it bluntly, the much-vaunted pipeline looks more
like a pipe dream.

It need not be so. An effective pipeline is probably a feasible project: one certainly worth
undertaking given the stakes. Among the problems to overcome first are the “obvious” ones:
CG’ers must start thinking not only in terms of asymptotic complexity but also in terms of
code robustness, precision, CPU times, standards, benchmarks, distribution, etc. Perhaps less
obvious, though just as important, are communication problems of a more cultural nature: For
example, why is it that in the graphics and computer vision literatures, rotating an object is
considered (rightly so) a linear algebra problem, but computing a visibility graph or matching
a geometric pattern is rarely considered a computational geometry problem? There are many
computational-geometric questions in vision, graphics and robotics that are not recognized
within those fields to belong in the province of CG’ers.! For this CG deserves most of the

!Defined loosely as the community gathered around such conferences as ACM SOCG, CCCG, and journals
such as D&CG, [JCG&A, CGT&A, or more broadly, the geometric components of Algorithmica, J. Algorithms,
SIAM J. Computing, JACM, etc. We recognize that many people not attached to that community do bona-fide
computational-geometric work nevertheless. The focus of this report, however, is on the community that makes
the design and analysis of geometric algorithms its primary occupation.

blame. It has failed to address the problems that people in practice want to see solved. In the
absence of a pipeline, CG can never hope to be the place practitioners turn to for help. The
sobering fact is that, realistically, the pipeline is mostly for CG’ers to build.

Does geometric computing need CG7? It is too easy and tempting for CG’ers to convince
themselves that it is the case. We try not to succumb to this temptation here. We simply
state our belief that computational geometry is the only arena dedicated solely to algorithmic
pursuits in geometric computing: discrete geometers want to understand countable geomet-
ric structures; combinatorial geometers want to count or approximate or enumerate them;
practitioners want to produce working code for solving specific geometric problems. Only
computational geometers make the algorithmic understanding of geometric problems their
central preoccupation. We believe such pursuits can be the key to breaking current and fu-
ture computational bottlenecks in many areas of engineering. This document gives abundant
evidence to support this view.

If so, then why has CG broken so few “computational bottlenecks” that practitioners care
about? Perhaps CG has been reluctant to cast itself in the demeaning role of “algorithm
caterer” at the service of practitioners. This narrow view of CG is both false and dangerous.
CG’s link to the real world is essential to its intellectual vitality. The current feebleness of
that link has been harmful to the field as a whole. Not only has it squelched the impact
of CG in the engineering community, but research opportunities have been missed, scientific
challenges have been overlooked. The intellectual landscape of CG has much to gain from
close interaction with the real-world practice of geometric computing.

It is not our intent to pit theory and practice against each other, and decree the relative
worthiness of each. We also want to make it absolutely clear that we are firm believers in
the crucial importance of theoretical work. If anything we believe that the existence of an
effective pipeline would further motivate all sorts of new theoretical investigations which the
current insularity of the field has hindered. Our view is that a mature field of computational
geometry should be home to a diversity of interests, some theoretical and some practical, most
of them feeding on and contributing to the others.

It is particularly important to create a platform linking theoretical research at one end to
production-quality, usable software at the other end. Such a platform exists in combinatorial
optimization, where some of the most impressive theoretical advances (such as interior-point
methods) have had tremendous impact in practice. CG is nowhere near this happy state of
affairs.

To get there will require a concerted effort. The prevailing winds are favorable, however.
A combination of factors, from the intellectual maturing of CG to more prosaic forces such as
the job market and funding agencies, are causing a subtle but profound reorientation of the
field. Instead of letting these factors alone dictate this reorientation, this document attempts
to make the CG community itself the main agent of reform.

This report includes a set of specific recommendations (§2), followed by a sample of problem
areas where computational-geometric techniques can have a major impact:

§3 Computer Graphics and Imaging
§4 Shape Reconstruction
§5 Computer Vision

§6 Geographical Information Systems

§7 Mesh Generation

§8 Robotics

§9 Manufacturing and Product Design
§10 Robustness

§11 Molecular Biology

§12 Astrophysics

This list of problem areas is not comprehensive by any means. It is a compendium of short
case-studies, which, it is hoped, will stimulate research and in a modest way help to redirect
computational geometry towards more practical ends. To illustrate what might be achieved
we also include a few concrete success stories, where cutting-edge research in computational
geometry has had a pivotal role in the production of geometric software.

In Section §13 we list some important resources for computational geometers (journals,
conferences, Web sites, mailing lists, software).

We wish to close this section on a note of optimism. Computational geometers are blessed
with a field whose scope dwarfs most other areas of computer science. Cryptography, graph
algorithms, optimization, computational biology, etc., are all critically important, but they
are relatively well-focused areas. By contrast, computational geometry spreads its wings over
the entire computing spectrum. This breadth is an asset. But it is also a challenge. Indeed,
the field is so vast that it is fragmented and has trouble recognizing itself under one roof.
Computational geometry is diverse and so is its community. Within this diversity, however,
we must strive to build an identity and unity of purpose. This is the main objective of our
effort.

This is not meant to imply that all worthy computational-geometric research is to be done
under the aegis of the CG community. Researchers in graphics, modeling, manufacturing,
biology, etc, have their own traditions of fine geometric work: there is no need for this to
change. What must be remedied is the lack of communication between practitioners and
theoreticians of geometric computing.

It is imperative to make CG research more responsive to the needs of users. But, again let
us restate our belief that not all computational geometers need to work in directly applicable
research. Long-term structural explorations are also needed. Our point is not to emphasize
practice to the detriment of theory. On the contrary, our chief goal is to broaden —not simply
to shift—the band which CG occupies in the spectrum of computer science: Instead of a
collection of small houses scattered across town and oblivious to one another, we envision CG
as a large edifice with a theoretical wing and a practical wing and many aisles (the “pipeline”)
connecting them. Our purpose is not to bring down one of the wings, but to consolidate the

edifice.

2 Recommendations

It will take more than a change of heart to reform computational geometry. Structural changes
are necessary. Happily some of them are already underway. We identify four broad categories:
(1) Production and distribution of usable (and useful) geometric codes; (2) Joint forums

between CG and applied areas; (3) Experimental research; (4) Reform of the reward structure
in CG.

Remark: Educational matters were left out from our discussion. Teaching and research in
CG at the undergraduate and graduate levels are critical issues that must be addressed. But
the great differences among national education systems precluded a discussion that would
have been of much meaning to the international CG community at large.

1. PRODUCTION AND DISSEMINATION OF GEOMETRIC CODE: Journals are the time-honored
repository of scientific knowledge. But what about software? Journals are woefully in-
adequate. An on-line library of geometric code available through the Internet would be a
useful starting point. Many questions need to be ironed out. Should the library conform
to rigid formats and should contributions be refereed (ie, pass a number of standardized
tests) before being archived? Or should it follow the freewheeling, open-door policy of
most archives on the Web? What programming languages should be used? What docu-
mentation and maintenance service should be expected? Should data type conventions
be enforced?

Applied areas such as graphics and geometric modeling have produced vast amounts of
geometric code over the years, some of it publicly available. Sometimes, differences in
programming languages and standards might make integration difficult, but this need
not be always the case. At the very least, how to tap into such resources effectively
should be addressed. Our sense is that many of these issues cannot be settled once and
for all before trying out various alternatives on a smaller scale. There are models to
learn from in optimization, computer algebra, and numerical analysis. But it is unclear
that any of them can be replicated verbatim to fit the needs of CG. For example, the
uniquely complex data typing in CG places formidable hurdles in the way to correctness,
robustness and portability. Only preliminary efforts have been attempted in CG so far,
and to plan the perfect system in a vacuum is perhaps utopian. People should feel
encouraged to try out their ideas and time will tell what works and what does not.

2. INTERDISCIPLINARY FORUMS: CG’ers should attend conferences in applied areas and
practitioners should be invited to address the main CG conferences. This is already
happening. Clearly, this is not enough. To provide fresh grist for CG’s mill, means must
be found so that CG’ers are given opportunities to hear about computational-geometric
bottlenecks in applications areas. For example, one could organize joint conferences
between CG and specialized topics. Special issues of non-CG journals could be devoted
to such meetings. At the same time, the potential users of CG’ers’ output must be
kept informed of new developments. A series of “CG gems” books patterned after the
computer graphics gems might be useful. Or at the least the graphics gems books, which
already include significant amounts of geometry, should be given greater attention (and
perhaps receive more contributions) by CG’ers. The current CG newsletters and mailing
lists might spawn special wide-distribution issues (announcing newly released software
or recent developments of interest to practitioners).

3. EXPERIMENTATION: To feed the CG pipeline with usable results, experimental work
must be integrated within mainstream CG research. Actually, it is one of the great assets
of CG that it lends itself so naturally to experimental work. Regrettably, that asset has
been grossly neglected. The standard programming cycle (design, code, debug, test and
benchmark) is painfully slow, so the number of iterations tends to be small. The field of

optimization has shown that practical algorithmic innovations tend to require repeated
iterations through the programming cycle. Because this does not happen often enough
in computational geometry, algorithmic innovations tend to be mostly of a theoretical
nature. The unusual slowness of the implementation cycle is due to the complexity
of geometric data types and the lack of adequate software tools (code libraries, visual
debuggers, dataset catalogs, etc.).

Quality experimental research (as practiced in, say, biology or physics) must satisfy
highly demanding criteria. Any geometric algorithm that is claimed to be the “method
of choice” should be not only implemented and tested, but benchmarked against its
competitors. Claims of strengths should be backed up by credible evidence and weak-
nesses should be identified. None of this is possible as long as every piece of code must
be written from scratch, as long as every test input must be produced by hand, and as
long as every debugging, visualizing, and measuring tool must be hand-crafted. There
is a need for a large-scale effort in building software tools for computational-geometric
experimentation. Standards should be set by which to judge the quality of experimental
work.

To allow for benchmarking, representative data sets should be collected and archived.
Input data should enable effective robustness and efficiency testing. Raw data should
be included as well as highly structured or datatyped data.

One might ask: experimental computational geometry in applied areas has been alive
and well for years. Why do we need to create anew something which already exists?
The answer is that in many cases experimental work has been so closely tied to applica-
tions that more general pursuits might have been overlooked. An analogy would be that
although the oil, food, and pharmaceutical industries each pursue their own brand of
experimental chemical engineering tailored to their needs, few chemical engineers would
deny the value of unfettered experimention. The same is true in computational geom-
etry. Unfettered geometric experimentation will complement (not supplant) ongoing
experimental work in applied areas.

. REwARD sTRUCTURE. Conferences, workshops and journals should be receptive (as
some already are) to experimental work and software building. One possible suggestion is
to run an annual workshop devoted solely to experimentation in CG, featuring geometric
results as well as software tools. Researchers in relevant applied fields with a tradition
of experimentation (like drug design) could be invited to share their experience with
CG. For an experimental culture to take hold, it is essential that quality experimental
work should be rewarded through the standard channels (journals, conferences, hiring,
promotion, grant awards, etc.) For this to happen, experimental research must be
judged and evaluated according to recognized standards. Of course, this is a bit of a
chicken-and-egg question, and a certain amount of bootstrapping might be necessary.
It probably means that quality standards should be made flexible enough at first to
reflect the relative immaturity of CG experimentation. Within a few years, however,
firm standards should be put into place.

Together with an experimental culture, a software systems culture must be encouraged
to grow within CG. Building novel geometric software that transforms the practice of
geometric computing should be considered on par with proving a theorem that changes
the mathematical landscape of the field. The reward structure must be adjusted, and

CG must learn how to judge non-theoretical research. This is not to say that one should
systematically reward any attempt at writing code. On the contrary, yardsticks for
distinguishing bad from good code should be introduced, and the standards should be
just as rigorous as they are for evaluating mathematical work. Promotion and hiring
decisions should reflect these cultural changes. Again, none of these changes can be
decreed. A new way of thinking must first take hold.

Finally, CG needs not only to open up to experimental and software-building work but
also to rethink its approach towards theoretical research. Several fundamental theoreti-
cal questions remain open in geometric optimization, combinatorial geometry, geometric
primitives, geometric searching, etc. [31]. But the list of open problems whose centrality
is so compelling as to draw a consensus —even within the CG community— is not nearly
as long as one might think. We believe that many of the more interesting theoretical
questions have not been formulated yet. These questions will surface as firmer bridges
between CG and applied areas are created. For example, fundamental questions in com-
putational topology might arise from geometric work in biology or astrophysics. Many
of the classical computational-geometric concepts, such as convex hulls and Voronoi dia-
grams, arose from exposure to the natural sciences. Because CG is not a “foundational”
science but a part of applied mathematics, it must draw its main inspiration from the
physical world that it tries to model.

While CG must look outside for new frontiers to conquer, it must also become more
critical of its current theoretical research. Problems whose only merit is to be open
should probably be left as such. There are so many more open problems than what CG
can ever hope to solve that it should focus on problems of identifiable importance, be
they theoretical or practical.

3 Computer Graphics and Imaging

Rendering and image synthesis are two areas replete with geometric problems, some of which
create significant computational bottlenecks. We discuss some of the problems encountered
in rendering and we briefly report on a success story in image synthesis, where computational
geometry has had a direct successful impact.

Radiosity. Graphics can be divided into two main sub-areas: Modeling concerns itself with
the description of surfaces and their properties, light, and the media in which these are embed-
ded, while simulation applies these computational models to predict behavior. One of the most
important types of simulation is rendering, in which a description of scene and light sources
is processed to generate synthetic imagery corresponding to one or a sequence of specified
viewpoints. Rendering affords a rich source of computational-geometric problems. Typically,
rendering a scene involves a visibilily operation, in which the surfaces and/or surface fragments
visible to the synthetic eyepoint are identified, followed by a shading operation, in which color
values, derived from radiometric quantities, are computed at sample points on each visible
surface. Computer graphics therefore combines the notion of combinatorial structures with
some notion of each element’s weight or importance [44].

Rendering is one of the most computationally intensive tasks in computer graphics. For
example, some state-of-the-art rendering techniques use radiosity methods to compute global
illumination distributions in the scene [37]. Such methods recursively divide the surfaces in

the environment into smaller patches, then reduce the rendering equation to a linear system
based on the pairwise interaction between these patches. At the inner loop of these methods
is the computation of form factors. Informally, a form factor is defined for a pair of surface
patches as the average solid angle spanned by one patch and visible from points of the other
through the obstacles in the scene. Computing visibility in this manner is a well-studied
problem in computational geometry, but one for which efficient practical solutions have yet to
be found. Fast, practical methods for computing form factors could have a significant impact in
rendering. Efficient approximation methods should also be sought [117]. Current methods use
quadtrees or k-D trees to divide each patch into a hierarchy of patches at different resolutions.
Interactions between surfaces occur at different resolutions determined by the ratio of their
sizes to the distance separating them, and by some estimate of the energy flowing between
them.

For the sake of concreteness, here are some specific problems. Note that in any real
graphics application, a successful algorithm should be output-sensitive and incremental (as,
for example, fly-throughs in complex building environments [2, 54, 55, 137]).

Given a scene of n convex polygons (or balls) in general position:

1. Determine the scene visible from a synthetic eyepoint. If z-buffer hardware is available,
it might be advantageous to identify a superset of the surfaces visible from the eyepoint.

2. Given a frame rendering cost model of the form ¢ Vi + ¢ A, where ¢y, ¢5 are technology-
dependent constants, Vj, is the number of vertices of the k** polygon, and Ay, is its screen
area, identify a superset of polygons visible from an eyepoint so as to minimize the total
frame rendering cost. (This is a fairly good model of the cost to render a polygon using
standard computer graphics hardware, eg, an SGI [55].)

3. Given a surface fragment with non-zero area, what (portions of) other surfaces are visible
from this fragment? (This is the “area-to-area” visibility problem, which is much harder
than the standard “point” visibility problem.)

4. Identify all pairs of intervisible polygons, or a tight superset. For each intervisible pair
A, B, identify the “blockers” for the pair, ie, the set of polygons that block some stabline
from A to B. (These problems arise in global illumination computations, which attempt
to find a radiation distribution at equilibrium among the scene surfaces.)

Note that some of these problems call for hybrid solutions that mix object-space criteria
(such as minimizing the combinatorial complexity of the rendered objects) image-space con-
siderations, (such as expending more computation processing objects that occupy large screen
areas), or other weighting factors (such as ignoring energy sources that have no discernible
effect on the computed solution). It would be highly desirable to have algorithms that are
parametrized by “knobs” that could be adjusted manually (or automatically) to reflect the
particular technology in use (like the constants ¢y, ¢ above).

Existing methods are very slow because they seek to produce exact solutions. Correspond-
ing lower bounds indicate that dramatic speed-ups computing exact solutions are unlikely.
Limited error tolerance is often acceptable in practice, however, and efficient approximation
methods should be sought. In practice, current techniques are often based on quadtrees, oc-
trees, or BSP trees, all elementary data structures that have been around for decades. There
has been considerable progress in the theory of space partitioning recently. Can some of the
new ideas be used or extended to provide simple, fast algorithms for visibility computation?

A Success Story in Image Synthesis. Thomson Training and Simulation (a subsidiary
of Thomson) has developed a new generation of machines for image synthesis. The approach
followed departs drastically from its predecessors. Instead of relying on massive, dedicated
hardware, the new machines are mostly software-driven and use standard processors (for
example, the i860). This change allowed the flexibility to provide new functionalities, such as
inserting moving objects or supporting different types of animation. Expectedly, this return
to software dependency entailed redesigning and reimplementing a new generation of data
structures and algorithms, many of which fell squarely within computational geometry.

A new “polygon engine” was built to allow the user to view collections of thousands of
nonconvex polygons with holes at interactive rates. In addition, a fully dynamic algorithm
for constructing Delaunay triangulations was developed, which runs in real-time on the new
machine. Many of the underlying ideas were borrowed from the recent work on randomized
algorithms in computational geometry [36, 108]. In particular, the algorithm uses a hierar-
chical representation, the so-called Delaunay tree [19], to construct a terrain in real-time and
automatically adapt the database to the specifications of the graphics device as well as to the
distance of the observer from the terrain.

4 Shape Reconstruction

In many application domains, it is necessary to reconstruct 3D models of objects from 2D
cross-sections: medical imaging, microscopy, geology, and aerospace manufacturing are all
heavy users of shape reconstruction [107, 131]. Two main approaches have been developed.
The first is inspired by image processing techniques and treats the data as a 3D image obtained
by piling up the images of the cross-sections. This approach is volume- or voxel-based; the
interpolation is usually done in the vicinity of each voxel, or based on a pillar of voxels of all
slices with the same (z,y) coordinates [94].

The second approach is more boundary oriented; it attempts to construct a polyhedral
model of the object that interpolates the boundaries of the cross-sections. It considers slice
entities (contours) and, by considering each pair of successive slices in turn, it then concate-
nates all the layer interpolations. Hybrid methods have also been tried: for example, one
might fit a surface to an unstructured cloud of points in 3D [17].

The first approach has been dominant in the past decade, despite the severe limitations
caused by its storage requirements. At UCLA Medical Center, a human skull was recon-
structed in this fashion: it involved 800,000 triangles, which was small enough to allow visual-
ization on a computer screen but too large to be manufactured. Efficient geometric solutions
began to emerge on the practical scene only in the late eighties.

With few exceptions, all such methods make use of recent data structuring techniques
developed by computational geometers. For example, a Voronoi-diagram based method was
developed at INRIA (France) [16, 18]. It involves computing the Delaunay triangulation of
pairs of successive slices, then projecting each pair element against the other, thus tetrahe-
dralizing the space between consecutive slices.

The code was commercialized by two companies. One (NOESIS) produces general-purpose
software for medical imaging and industrial vision; the other (CRIL) maintains a large library
for processing 3D medical images (into which the reconstruction algorithm was included). A
non-commercial version can be accessed via ftp and has been used at over 300 sites. The
program has been used for research on neurons: the cover page of the Journal of Comparative
Neurology (April 1994) shows a result obtained with the commercial version of the software.

Experimental results on reconstruction of craniofacial cartilage are reported in the Anatomical
Record (1991). Other applications of the code are mentioned below:

¢ Clinical use in radiation therapy planning software (DKFZ German center of cancer research).
¢ Reconstruction of a shark kidney (Max Planck Institut fiir Molekulare Biologie).

¢ Finite-element method mesh for a dog heart (Purdue University).

e Heart movement model (Yale University).

¢ Brain from MRI (University of Colorado).

¢ Body surface potential mapping (Dalhousie University).

¢ Volume calculation of surfaces undergoing wear (Utah Supercomputing Institute).

¢ Bone reconstruction (Center for Medical Robotics & Computer Assisted Surgery, Carnegie Mellon Uni-
versity).

e Rapid prototyping from medical data (Higher Technical Institute, Cyprus).
e Mesh generation for finite-element method (University of Waikato, New Zealand).
o Tessellations of brain surfaces (Washington University).

¢ Reconstruction of MRI scans of arteries (University of Waterloo).

An alternative approach was recently pursued in Israel [14] (see this paper for an extensive
review of the relevant literature). This technique is based on the idea of geometric hashing,
which was developed for object recognition problems in computer vision. This software package
has been tested intensively on a variety of complex solid reconstruction problems, in medical
imaging and in the reconstruction of terrains from topographic elevation contour data. It was
shown to be robust, applicable in fairly complex situations, and to produce ‘intuitively correct’
solutions.

Here are some specific computational geometry problems related to reconstruction from
parallel cross sections:

1. Given two parallel slices, when is it guaranteed that there exists a non-self-intersecting
polyhedral surface that interpolates between them? How does adding Steiner points (on
the edges of the polygons) help?

2. Define a geometric measure that characterizes the “goodness” of the interpolation.

3. Extend any of the existing geometric (contour-based) methods to consider more than
two successive slices at each step.

Of course, shape reconstruction does not necessarily proceed from parallel cross sections.
Many problems related to geometric probing, object recognition, and pattern matching use
various different models of shape, and each presents its own set of problems.

Finally, it is worth reiterating that medical applications motivate a wealth of interesting
geometric reconstruction and analysis problems. For example, sometimes an organ needs to be
reconstructed so that its volume can be estimated [39]. Rapid prototyping of medical models
is an area of growth with an abundance of challenging computational-geometric problems [85].
Advances on these problems might have a significant impact in fields such as computer-aided
surgery.

10

5 Computer Vision

Most problems in computer vision are inherently computational-geometric. Why they have
not been tackled by computational geometers is a mystery. Perhaps the answer lies in the fact
that the appropriate mathematical formulations of these problems are elusive. In computer
vision, to find the proper level of abstraction in formalizing questions is often an integral
part of the research effort. At the same time, it is one of those rare fields of computing (like
speech recognition) where the computer always takes a back seat to the human brain: put
simply, humans are better at vision than computers. A direct benefit is that humans are
good benchmarkers and can effectively judge the quality of a program from its output. Two
areas which have made considerable use of geometric algorithms are model-based recognition
(or pattern matching) and the recovery of three-dimensional structure from two-dimensional
images (in particular, stereopsis and structure from motion).

Model-based Recognition. In model-based recognition problems, a model of an object un-
dergoes some geometric transformation that maps the model into a sensor coordinate system
(say, an image plane or a cylindrical coordinate system from a 3D scanner). The development
of efficient algorithms for identifying such transformations is central to many model-based
recognition systems. In reconstruction problems such as stereopsis and structure from mo-
tion, the geometry of multiple projections of a scene provides constraints that enable efficient
algorithms.

There are several approaches to the problem which explicitly rely on results from compu-
tational geometry. For instance, in certain approaches to recognition, an object is represented
implicitly by a set of two-dimensional projections. When the objects are polyhedra it is useful
to be able to bound the number of combinatorially distinct projections (those with different
faces, edges or vertices visible). The set of combinatorially distinct views is referred to as
the aspect graph. Combinatorially precise descriptions of the aspect graph and algorithms for
computing it were developed using techniques from computational geometry [56].

There are a number of other approaches to model-based recognition which employ non-
trivial geometric algorithms, and which often draw explicitly on results from computational
geometry. The affine hashing method [87] uses a redundant representation of a set of points in
order to locate that point set under an affine transformation, in the presence of extraneous data
points. The underlying idea is to use each triple of points in the model as an affine basis, and
rewrite the other model points in terms of each basis. In order to recognize an object, triples
of image points are selected, and for each triple all remaining image points are expressed in
terms of the basis. When a correct basis is found, this will result in affine invariant coordinates
that are the same (up to sensing error) as one of the encodings of the model. In practice this
algorithm has better running time than the hypothesize-and-test approach, which consists of
considering each pair of model and image bases explicitly, as is done in the alignment method
[80]. However, the sensitivity of the affine hashing approach to sensor errors is difficult to
characterize.

Several researchers have developed recognition methods that explicitly account for sensor
errors. These methods make considerable use of results on arrangements from computational
geometry. Most of these methods represent each point or line segment in an “image” set as
a polygonal region (say, the Minkowski sum of the image set with a box). The matching
problem is then to search for transformations bringing each point or line segment of the model
into such a polygonal region in the image. These problems can be structured as sweeping

11

arrangements, using algorithms from computational geometry [12, 28].

A different approach to model-based matching problems involves the development of cost
functions for measuring the difference between two sets of points and line segments under var-
ious transformations. Cost functions based on the Hausdorfl distance have been investigated
in both the computational geometry [1, 3, 78] and computer vision [79, 128] literatures. The
applied methods developed in the vision community are provably good approximation schemes
for solving the combinatorial problems that were originally investigated in the computational
geometry community.

Image Representation. Quantized images are commonly represented as sets of pixels en-
coding color/brightness information in matrix form. An alternative model is based on contour
lines: A contour representation allows for easy retrieval of the full image in bitmap form [9].
It has been used primarily for data compression of an image. The idea is to encode, for each
level I, the boundaries of connected regions of pixels at levels greater than or equal to [. It
is easy to reconstruct an original image from those boundaries. There exist output-sensitive
algorithms for computing contour representations.

One problem is how to store such representations in a compact manner. In practice one
seldom needs the entire contour representation. Typical use is in the form of a query asking
for the contours matching a given gray level. Current data structuring techniques should be
called upon to provide efficient solutions. So far, they have not. Attempts to remedy this are
underway.

Here is a typical problem encountered with this kind of representation. Suppose that we
wish to erase wrinkles around the eyes of a person in a digitized picture given in contour
representation. Because wrinkles might intersect contour lines, these might become discon-
nected after removal of the wrinkles. To reconnect them is not so easy. Dynamic programming
might be a natural approach for this problem. In fact, it has been tried successfully in several
experiments. Dynamic programming tends to be costly, however, and faster heuristics should
be investigated.

Another problem ripe for a computational-geometric attack is resolulion enhancement.
Suppose we have an image scanner with 6-bit resolution for each of the three colors (RGB),
and we wish to increase the resolution to, say, 8 bits. The naive approach, which consists
of adding the gray levels of four pictures of the same object, has immediate flaws. Of the
numerous solutions proposed in the computer vision literature, most suffer the drawback of
causing blurring. As it turns out, the problem has a natural formulation in terms of weighted
Voronoi diagrams, a well-studied construction in computational geometry.

Since such a Voronoi diagram is hard to compute especially in the presence of high de-
generacy, a different approach might be preferable. An important observation here is that
the objects are not continuous but discrete. This is the main difference with interpolation of
contour lines in geographic information systems. Indeed, suppose that we want to improve
the resolution on an intensity level k by a factor of M. This means partitioning the pixels at
intensity level k into M different finer levels. Let S denote the set of all pixels with intensity
level k, and By (resp. Bgy1) denote the set of all contour edges between pixels with intensity
levels lower (resp. higher) than k. For each pixel in S we may compute the Euclidean distance
to the nearest boundary edges in By and Byy1. Using the ratio between these distances we can
thus classify those pixels into M finer levels. Without getting into details, it is apparent that
several variants of this heuristic can be designed. Efficient implementations and classifications
of these heuristics would be very useful.

12

Image Segmentation. A central problem, called segmentation, is to distinguish objects
from background [10]. For intensity images (ie, those represented by point-wise intensity
levels) four popular approaches are: threshold techniques, edge-based methods, region-based
techniques, and connectivity-preserving relaxation methods.

Threshold techniques, which make decisions based on local pixel information, are effective
when the intensity levels of the objects fall squarely outside the range of levels in the back-
ground. Because spatial information is ignored, however, blurred region boundaries can create
havoc.

Edge-based methods center around contour detection: their weakness in connecting to-
gether broken contour lines make them, too, prone to failure in the presence of blurring.

A region-based method usually proceeds as follows: the image is partitioned into connected
regions by grouping neighboring pixels of similar intensity levels. Adjacent regions are then
merged under some criterion involving perhaps homogeneity or sharpness of region boundaries.
Overstringent criteria create fragmentation; lenient ones overlook blurred boundaries and
overmerge. Hybrid techniques using a mix of the methods above are also popular.

A connectivity-preserving relaxation-based segmentation method, usually referred to as
the active contour model, was proposed recently. The main idea is to start with some initial
boundary shape represented in the form of spline curves, and iteratively modify it by applying
various shrink /expansion operations according to some energy function. Although the energy-
minimizing model is not new, coupling it with the maintenance of an “elastic” contour model
gives it an interesting new twist. As usual with such methods, getting trapped into a local
minimum is a risk against which one must guard; this is no easy task.

In contrast to the heuristic nature of these approaches, computational geometry suggests a
more algorithmic tack. One would first formalize a mathematical criterion for the “goodness”
of a given segmentation. This would allow us to formulate the segmentation problem as an
optimization problem under certain geometric constraints.

The objective function that one would seek to optimize is the interclass variance that is
used in discriminant analysis. Experimentation seems to suggest that this approach might be
very promising. Formally, the criterion is described as follows. Imagine that an image is to
be partitioned into two connected sets Sg and 57. The average intensity levels of the sets are
denoted by po and uq, respectively. Then, the objective is to minimize the potential function

V(S0,51) = |Sol[S1|(po — p1)*.

Computational geometry provides several tools (for instance, hand probing, Monge matrix
searching) that lead to efficient solutions for optimal segmentation, as long as one is only
interested in separation of an object defined by monotone chains. Without such assumptions
the problem is NP-hard, and efficient heuristics remain to be found.

Discriminant analysis has also been applied successfully to the problem of transforming
an intensity image into a binary black&white picture. This line of research relates directly
to what has long been an active line of research in computational geometry, point clustering:
Partition a set of points in R? into k clusters so that some inter-cluster criterion is minimized.

6 Geographical Information Systems

Geographic Information Systems (GIS) [89] are increasingly being cited as a motivating ap-
plication for computational geometry research. According to Unit 1 of the NGCGIA Core

13

Curriculum [63], “a GIS can be seen as a system of hardware, software and procedures de-
signed to support the capture, management, manipulation, analysis, modeling and display of
spatially-referenced data for solving complex planning and management problems.”

The key phrase is “spatially-referenced data.” A database system that combines data sets
of different types from different sources about different features/objects is likely to find that
converting data sets into a common form dominates the processing efforts, when it is possible
at all. Data that can be assigned a spatial location, however, can be combined by simply
displaying data sets simultaneously on a map or computer screen. Add a mechanism to select
which data sets to display, and you have a rudimentary GIS.

Many systems have been developed in natural resource management applications—either
in connection with remote sensing or from computer-aided design tools—and some have been
highly successful in making up-to-date information available for management decisions in a
manner that was not possible using a large inventory of paper maps. GIS use in government
and marketing applications continues to expand.

Of course, a rudimentary GIS leads to the complaint [81]: “A GIS is basically a tool that
mines data and displays it. It doesn’t clean it up, or maintain it, and seldom even looks
to see if it’s reasonable.” Computational geometers see their potential contribution here:
in providing the algorithms and data structures to support analysis of geometric data. A
forthcoming special issue of Algorithmica, editted by J. Snoeyink, will focus on the interface
between computational geometry and GIS.

6.1 Snapshots of the parallel history of GIS and CG

While computational geometers might like to see GIS as an instance of the practical im-
plementation of computational geometry, this is not historically accurate. The GIS and CG
communities have, for the most part, developed their understanding of geometric computation
independently. In some key instances (“topological structure” for storing planar subdivisions,
and “TINs”—triangulated terrains, interpolation properties of the Voronoi and Delaunay),
development in GIS has preceded that in CG.

Computer cartography emerged in the 1960s. Many basic concepts (map layers, topological
structure, TINs) can be traced back to work done in the The Land Inventory branch of
the Canadian government or the Harvard Lab for Computer Graphics and Spatial Analysis.
ESRI’s ARC/INFO, which is the most popular commercial GIS system, got its start with
Harvard Lab technology.

Interaction between CG and GIS has increased in recent years. CG papers at the biennial
International Symposium on Spatial Data Handling have been generally well received. ESRI,
Caliper Corp., and other companies have been hiring from the computational geometry com-
munity and taking in research results (including, for example, nearest-neighbor properties of
Delaunay triangulations, and the use of Voronoi diagrams of line segments to assist in “buffer-
ing” (offsetting) operations). A common complaint has been that publication delays and the
lack of textbooks in CG hampers the adoption of research results by other fields such as GIS.

6.2 Data Model and Data Structure Debates

Which data model is best for the spatial information stored in a GIS? This question leads to
several recurring debates that consider various parameterizations of the spaces of possible data
models and data structures. We list three examples: the long-running raster/vector debate
is limited by GIS implementation technology, the tiled /seamless debate is concerned with the

14

practical and conceptual views of a large data set, and the object/layer/field debate appeals
to human cognition of space.

Raster/Vector. Whether data should be stored and processed in raster or vector form has
historically been a source of much debate. The debate is perhaps dying down slightly because
most systems, at least from a user’s perspective, have some provision for handling both. It is
still true that not all operations are supported in both—typical systems compute buffer zones
around vector features by converting to the raster domain and back.

Raster has many advantages including simplicity of concepts and algorithms, and hardware
support. Remotely-sensed data, displayed output, and many digital elevation maps (DEMs)
are in raster form. It is good for data that should be sampled evenly. Rasters are huge, do
not scale well, and introduce aliasing effects.

Vector data is natural for linear features such as roads and boundaries, and mandatory for
accuracy in instances of land survey. The speed of vector computation is most often criticized;
geometers should rejoice in this as an opportunity to provide significant improvements. We
should remember, however, that these improvements will need to be realizable for “typical
data” and will need to provide some feature that raster processing does not provide. Paper
descriptions of worst-case optimal algorithms do not constitute significant improvement in a
community that wants implementations of solutions.

Tiled/Seamless. In vector databases as well as raster databases, the quantity of data be-
comes overwhelming. Practical considerations dictate that the data must be partitioned and
considered in smaller chunks. People who converted to GIS and computer cartography systems
from paper maps were accustomed to dealing with map sheets, quadrants, and tiles. Other
users, however, demand a seamless structure—maybe even one that allows a wide range of
levels of detail. Debates rage about what data structure is best for the partitioning: uniform
grid, quadtrees, R-trees, binary space partitions, BANG files.

Object/Layer/Field. In the last few years some members of the GIS community have
argued that the raster/vector debate obscures more essential issues about how people think
about and manipulate space. Suppose that you want to describe the agricultural activity in a
certain region. There are several spatially-referenced variables that may be of interest: owner,
crop grown, soil type, elevation, rainfall, etc.

One might speak of farms in the region as geometric objects that have owner attributes.
Fields could be objects with a crop grown attribute, and could inherit an owner from the
farms that contain them. This is an example where an object-oriented approach to the data
is natural: There is clear separation of objects, their representation can be encapsulated, and
they form a hierarchy in which representations and attributes can be inherited.

When one adds soil type, however, one may find that a field can contain several soil types
or that a soil type may encompass several fields. Subdividing fields into objects that can be
given a single soil type attribute may or may not be a good idea—it depends on the importance
of the soil type variable. It seems more natural to start a new layer. This in turn creates
problems where the same object may have different representations in different layers. A
stream, for example, may be represented as a change of ownership and a change in soil type.

It might be natural to think of soil type, elevation, and rainfall as functions defined over
the region—cropland as a “vector field.” Defining data structures to support continuous data
models is difficult because data is usually obtained by discrete sampling. Even so, the amount

15

of data can be unwieldy and data can be expensive to collect. The traditional soil map
quantizes the domain into subjective categories (clay, clay with gravel, sandy, very sandy,
etc.) and creates a raster or partitions the region into cells that are assigned one of these
soil types to obtain an object-oriented, vector-based map. An implementation of a vector
field idea might represent the proportion of each possible component (clay, gravel, sand, etc.)
as elements of a vector. One then needs algorithms to quantize this vector space to present
understandable output.

Arguments in this debate usually conclude by recommending raster or vector implemen-
tation so that the object/layer/field debate, too, becomes limited by current technology.

6.3 Geometric problems in GIS

Two things should be kept in mind when looking at geometric problems that arise in GIS.
First, even though computational geometers are likely to see themselves as solvers of geometric
problems, the concepts of space, shape, and geometric computation that develop can be a more
important contribution than the solution of any particular problem. Second, the “geometric”
is only one aspect of a GIS. In a survey for cartographers, Goodchild [61] lists four ways
in which to view GIS; geometers may want to keep these views in mind when weighing the
importance of problems motivated by GIS:

1. Automated Mapping: facilitating the production of standard maps,

2. Map Analysis: providing measurement and overlay tools that are cheaper than tradi-
tional methods,

3. Inventory: giving geographic access capabilities to existing governmental and corporate
databases,

4. Spatial analysis and spatial decision support: enabling new uses for old data by giving
users query and analysis tools.

Data Structure Tuning. To a GIS salesman, one of the most important features of their
product is how fast it can sift through the data and put the layers that the user has selected
onto the screen. Because users can select data based on spatial location, attributes, and
level of detail, multidimensional access structures (B-trees, k-D trees, quadtrees, R-trees)
are important and tuning these is a difficult task: van QOosterom’s book on reactive data
structures [139] is an example of what can be done.

Existing legacy data limits the applicability of new research. One cannot expect people
to adopt a data structure if it involves expensive conversion. An emerging opportunity, how-
ever, is the partitioning of GIS tasks between server and clients. For various reasons (data
management, resource needs, etc) it is natural to put spatial data on a large server and have
clients request the regions and attributes for the problem that they are interested in. With
this architecture, what information should be sent by the server to help clients build geometric
structures for local analysis? If the input is line segments, then sending a trapezoidation helps
a number of algorithms, but maintaining a trapezoidation on the server may increase the data
structure size and involve data conversion. Sorting by first coordinate may be a less-costly
improvement.

16

Generalization. Since almost all GIS systems allow a user to zoom in on data, there is
no intrinsic scale associated with the computer representation of a map. Nevertheless, there
is an associated level of detail which determines a range of scales at which the data can be
displayed without being too crowded or too sparse. Generalization is the process whose goal is
to extend this range [23]. Several geometric problems fall under the heading of generalization:

LINE SIMPLIFICATION: Approximate a polygonal line by one with less data (but hopefully the
same information). This is has been the subject of much research in GIS, image process-
ing, and computational geometry. Interesting problems remain for simplifying several
lines (as in a contour map) or for demanding topological properties (e.g., forbidding
self-intersection) from the result.

CLUSTERING: Separate geometric objects can be aggregated and represented symbolically as
a polygon or as a point.

DisTorTiON: Moving or changing the representation of geometric objects to enhance read-
ability of the output. A railway that parallels a river may need to be displayed at
lower resolution. A driver would prefer that a winding mountain road have some bends
exaggerated on a map rather than being simplified to a line segment.

The more advanced generalization tasks are difficult to define a precise geometric optimization
problems. Automating these tasks is often seen as an application for artificial intelligence
techniques and “knowledge-based” heuristics. Computational geometry can offer not only
efficient implementation of lower-level primitives, but also structures such as Voronoi diagrams
and constrained triangulations that provide a more continuous model of space.

Digitizing. Many maps are constructed by a labor-intensive digitization process. One of the
exciting applications of computational geometry in GIS is an idea of Chris Gold [58]. Rather
than force someone to carefully trace what may be a fuzzy boundary anyway (eg, the edge of
a forest stand), use the digitizer to spray a bunch of points near the boundary, then use the
Voronoi edges that are from bisectors of points in different regions to be the boundary. This
speeds up digitization by a factor of 4, avoids problems with dangling or intersecting edges,
and still gives reasonable accuracy because the Voronoi edges average between the points.

Building Topology. What the GIS community calls “building topology” is to establish
the ordering information for a planar subdivision—determining the edges (arcs) around faces
(polygons) and vertices (nodes). This task is complicated by the fact that the input data
may be huge, imprecise, and occasionally erroneous; it is usually seen as an expensive batch
computation process. Gold [57] has further advocating Voronoi diagrams as way of maintaining
topology as a map is constructed. Because of the increase in data and computational effort,
this will work best with smaller maps. What is the best way to combine these ideas with tiling
ideas to operate on large amounts of data?

Polygon Overlay and Update. The spatial data in GIS’s from ARC/INFO [50] down to
the Digital Chart of the World [51] is organized into layers, each of which is a subdivision of
the plane with explicitly stored neighbor relations. Custom maps are produced by selecting
layers of interest and overlaying them to produce new maps. This “overlay” process is the
primary tool for map analysis.

17

As a theoretical geometric problem, computing the regions defined by a set of segments
or pixels is perhaps not so difficult. But as an engineering problem, tuning algorithms is a
challenge. When one considers the errors and different levels of generalization in the input,
the task becomes more interesting. If the same feature, say, a stream bed, appears in more
than one map, an overlay will likely have many spurious polygons in the vicinity of the stream
bed. It would then be desirable to remove one copy from the overlay. Even better would be
to average the two maps in some principled manner to improve overall accuracy.

A special form of the general polygon matching is to match two maps and try to determine
what has changed from one to the other. This is important for observing historical change,
checking map completeness, rectifying common boundaries, or using a higher resolution map
to improve a lower resolution map. Again, generalization and error make this an intriguing
problem.

Label placement. Label placement is a source of many geometric optimization problems.
Even when labels are to be placed in fixed positions relative to point features, these are
typically NP-hard. Since maps do need labels, heuristics and efficient algorithms for identifying
constraints and possible positions are needed.

Spatial Accuracy. Current GIS data structures do not support error bounds. This is one
of the major weaknesses of analysis carried out in a GIS—one does not know how to asses
the quality of the result. One of the major challenges in GIS is a computationally efficient
theory of spatial error. There has been much discussion on the topic. In 1966, Perkal [118],
for example, proposed fattening boundaries by convolving them with a disk of radius €; these
are usually called buffer zones [146], and queries with buffer zones are an important type of
overlay. See the survey [62]. Computation in floating point is one source of error. GIS data
sets are riddled with degeneracies, so robust computation can be important.

Spatial Analysis. Thus far, GIS’s have offered only rudimentary spatial analysis capabili-
ties [60], such as polygon overlay and area computation. More interesting queries require more
interesting data structures: e.g., Okabe et al. [112] list 35 GIS queries that can be answered
using different types of Voronoi diagram.

Terrain analysis. Research on representation and computation of terrains has been an
active area.

e TIN: Triangulated surfaces were suggested in GIS in 1978, and dubbed TINs or Tri-
angulated Irregular Networks [119]. Delaunay triangulations are often suggested (and
used) as good TINs. Other (data-dependent) triangulations may sometimes be more
appropriate.

e SIMPLIFICATION: Kumler’s monograph [86] compares elevation accuracy of TINs to
DEMs and finds that, byte for byte, Digital Elevation Models are better. The sim-
plification methods he uses, however, are probably not the best possible. (Also, error
measure that reflect curvature or symmetric volume difference should be considered.)
Simplifications with some sort of hierarchical structure are especially useful. See Heck-
bert and Garland’s survey [68] for many citations to geometry and graphics papers on
surface simplification methods.

18

o DRAINAGE: For many natural resource management tasks, the watershed—or region
that drains to the same point—is the natural management unit. Much of the work on
computing drainage networks is raster based; some geometers are looking into prepro-
cessing TINs for drainage queries.

o VIEWSHEDS: Some forestry operations are now required to preserve the visual impact
of the forest. Thus, “viewshed” algorithms become necessary. Location problems for
microwave and cell phone relays also involve line-of-sight constraints imposed by the
terrain.

o FLYBY: Fast graphics engines give the capability to fly-by data models to get a better
feeling for the actual terrain (eg, systems such as PCI's EASY/PACE).

Adding Dimensions 3 and 4. Adding the spatial and temporal dimensions to the flat maps
in a GIS is a subject of current research [125]. None of the standard GIS’s support functions
of three variables. In such systems, geological cross sections or floors of buildings must be
treated as flat, horizontal data sets which offer no geological or architectural interconnections.

Time creates interesting geometric problems. In an agricultural region, the land will be
partitioned into different fields in different years, and land ownership or use changes. Some of
the dynamic data structures in computational geometry may have a role to play in allowing
efficient storage, query, update, and historical summary of changing land uses.

6.4 Resources in GIS

The most relevant journals are the International Journal of Geographic Information Systems
(IJGIS) and Cartography and Geographic Information Systems (CGIS). Other journals include
American Cartographer, CVGIP: Graphical Models and Image Processing, Cartographica, Ge-
ographical Analysis, Journal of Remote Sensing. Duane Marble maintains a ftp-able bibliog-
raphy on GIS (in refer and mac, but not in bibtex format) on bastet.sbs.ohio-state.edu

Of course, the Web is a good source of information and data. The NCGIA activities occur
at the University of California, Santa Barbara, http://www.ncgia.ucsb.edu/,in Buffalo, NY
http://www.geog.buffalo.edu/, and in Maine http://ncgia.umesve.maine.edu/. Maine
has some technical reports on line, including a 1992 update of the research agenda, 92-7.ps. BC
environment has the NCGIA Core Curriculum on its Web http://www.env.gov.bc.ca/gis.

Xerox Parc has a map program http://pubweb.parc.xerox.com/map. NAISMap is a GIS
on the Web http://www-nais.ccm.emr.ca/naismap/naismap.html. GRASS (Geographic
Resources Analysis Support System) is a public domain GIS developed by the US Army
Corps of Engineers http://www.cecer.army.mil/grass/GRASS.main.html. GRASSlinks is
a Web interface http://www.regis.berkeley.edu/grasslinks/index.html. ORES has an
extensive list of data sites and other information. See for example,

http://www.csn.net/~bthoen/ores/gis/index.html
For GIS FAQ, see
http://www.census.gov/geo/gis/faq-index.html

Finally, for ESRI (ARC/Info), see: http://www.esri.com/.

19

7 Mesh Generation

A mesh is a discretization of a geometric domain, e.g., the air around a wing, into small
simple shapes called elements [13, 15, 67, 75, 93, 130]. A structured mesh is usually a warped
grid of boxes, while an unstructured mesh is typically a triangulation. Some advantages
of structured meshes that hold generally over most applications, are simplicity, availability
of code, and suitability for multigrid and finite difference methods. On the other hand,
unstructured meshes conform to the domain more easily and allow element sizes to vary more
dramatically. Structured meshes are currently more popular, but unstructured are catching
up, especially in the more academically-inclined community.

Some mesh generation goals vary with the application. For example, long skinny elements,
aligned with flow, can be quite useful in computational fluid dynamics. Moving features, such
as shock fronts and vortices, require changing meshes.

Compared to GIS, mesh generation is still something of a cottage industry. Research and
development groups in finite-element methods tend to write their mesh generators. There
are a few public-domain codes (e.g., PLTMG, written by Randy Bank, and GEOMPACK,
written by Barry Joe), and some commercially available code (e.g., ICEM CFD), but all large
manufacturing companies use their own codes. There is no publicly available package that is
adequate for generating 3D meshes for computational fluid dynamics. Aerospace engineering
experts even go as far as admitting the lack of adequate code for generating 2D meshes for
viscous flows. There lies an exciting window of opportunity for computational geometry.

Below are a list of open questions in mesh generation. Some are outstanding theoretical
problems; others represent serious computational bottlenecks in practice.

¢ HEURISTICS FOR POINT-SET TRIANGULATIONS: Theoretical analysis of existing heuris-
tics remains to be done. In practice, the “diagonal-flipping” algorithm works quite well
for 2D Delaunay triangulations, but there are no theorems of the form: most initial tri-
angulations are only O(n) flips away from Delaunay. Rivara refinement (split a simplex
by adding the midpoint of its longest edge, then recurse on neighbors) works well in 3D,
but there is no theorem analogous to Rivara’s theorem in the plane, showing that angles
stay bounded away from zero.

o SURFACE REPRESENTATION: Investigate appropriate metrics to measure how well a
mesh conforms with the surface boundary, and design heuristics for constructing good
meshes. When approximating highly curved surfaces, it is important to ensure that edges
of the surface triangulation are aligned with the directions of principal curvatures so as
to avoid “scalloping effects.” One possibility is to make the surface triangulation consist
mostly of right-angle triangles, with the two right sides aligned with the directions of
principal curvature. It seems natural to require that lengths of the right sides should
be inversely proportional to the surface curvature. A theoretical understanding of this
question, and more generally, of the problem of fitting a mesh on a complex geometry,
would be very useful in computational fluid dynamics.

¢ VOLUME MESH GENERATION: As expected, small volume elements must be used in
regions where rapid variations of the computed solution are expected. But the pre-
cise requirements vary from problem to problem. For example, for computations of the
scattering of an electromagnetic wave, it is necessary to use a uniformly spaced mesh
everywhere and ensure that the cell width is small compared with the wavelength of

20

the incident radiation. For computations of fluid flow, particularly Navier-Stokes cal-
culations at high Reynolds number, there will be extreme variations in cell size and/or
aspect ratio.

The Delaunay triangulation is one of the most popular means of generating 3D meshes of
tetrahedra. An effective approach is to insert a mesh node into an existing triangulation,
and repeat this procedure until a sufficiently fine mesh has been achieved. Since the
quality of the final volume triangulation depends on the positions at which the points
are placed, it is natural to investigate point placement strategies. The two-dimensional
case is relatively well understood. For example, placing each new mesh point at the
circumcenter of a triangle with maximum circumradius leads to a triangulation whose
minimum angle is at least 30° and such that the ratio of maximum to minimum edge
length is at most 2. Nothing similar is known in three dimensions. It is a major open
problem whether point placement techniques can be used effectively to generate high
quality 3D triangulations.

When dealing with viscous flow computations at high Reynolds number, extremely fine
meshes are required close to the boundary surface. It is customary to generate meshes so
that the point spacing normal to the boundary surface is very close while allowing a much
larger spacing tangential to the surface. This may lead to poorly-shaped elements near
boundary junctures. New point placement strategies are needed to ensure high-quality
meshes in such extreme situations.

o HEXAHEDRAL MESHES: There are several geometric benefits to be gained from using
meshes of hexahedra (ie, affinely transformed cubes) such as regularity, angle distribu-
tion, anisotropy. Some commercially available systems support such meshes. Unfortu-
nately, the computational geometry of hexahedral mesh generation is so little understood
that existing systems suffer major drawbacks. Is there a good algorithm for partition-
ing a solid into hexahedra that meet face-to-face? The outside-in, or advancing-front,
approach starts with an initial boundary mesh and fills out the volume with hexahedra.
Unfortunately, many starting configurations are unfillable. Conversely, the inside-out
approach fills volume and produces boundary meshes as a side effect. This has the dis-
advantage of leaving us no choice in the boundary meshing. Intermediate strategies are
yet to be investigated.

e ADVANCING FRONT: Some tetrahedral mesh generators use the advancing-front ap-
proach as well. These generators typically place Steiner points in successive layers and
then use the Delaunay triangulation as the mesh. The same difficulties arise: by meshing
the boundary first this method commits to a level of detail too early in the process, and
non-tetrahedralizable pockets can form when fronts collide.

¢ MESH GENERATION AND CAD SysTEMS: Uniting mesh generation with CAD systems
is much needed. The idea is to produce grids directly from the CAD geometry and at
the same time retain independence of grid characteristics. Not only would this solve a
compatibility issue, but it should also make the mesh generation task easier. A mesh
generator has to “parse” the domain, which is hard to accomplish unless the grid gen-
erator is intimately tied to the systems used to represent the geometry. Some systems
(e.g., ICEM CFD) have taken steps in that direction but much remains to be done.

e MESH PARTITIONING: A mesh must often be broken up into pieces to allow for efficient

21

parallelization or vectorization. In the latter case, for example, the number of elements
in each group must be matched to the target architecture. Should processor architecture
influence not just the partitioning of the mesh but also its generation?

¢ MULTIGRID FOR UNSTRUCTURED MESHES: Hierarchical triangulations, as in Kirk-
patrick’s point location algorithm, can be used to combine unstructured meshes and
multigrid methods. Randomized analysis of the incremental algorithm shows that such
hierarchies of small expected size form automatically for Delaunay triangulations. The
hierarchy represents the history of the insertion process. The randomized result also
hold in three and higher dimensions. Can similar results be obtained for triangulations
other than Delaunay or the related regular triangulations?

o ROBUSTNESS: Robustness appears to be a serious issue in mesh generation. In general,
the current state of robustness research in computational geometry leaves practitioners
unsatisfied. In particular, many are wary of automatic degeneracy handling and prefer
explicit treatment of it in their codes. (See Section 10.)

o AUTOMATIC REMESHING: A unified meshing system might be envisioned along the
following lines: first, the domain is meshed, based on the geometry alone; then the
differential equations are solved. Finally, remeshing occurs, based on an automatic error
analysis. The last two steps can be repeated many times. The advantage of such an
approach is that the final mesh is produced from an actual approximation of the solution
and not an educated guess.

We close this section with a brief mention of alternative approaches to mesh generation.
Meshes are used primarily to integrate partial differential equations over complicated domains.
The base of numerical solution technologies is surprisingly narrow: finite-element methods,
boundary-element methods, finite-difference methods, and monte-carlo methods. Are there
alternatives to the methods listed above? Recent research suggests that some might lie in
finding more clever representations of the underlying geometry which exploit the physics of
the problem (in some cases, medial axes and Voronoi methods may come into play) and then
mapping the physics onto the new representations of problem geometry. This results into a
reformulation of the problem that is both geometric and numeric, as opposed to the purely
numeric approaches currently in favor.

8 Robotics

Computational geometry has already had a noticeable impact in motion planning problems.
Years ago the standard approach to motion planning followed one of two methodologies. The
STRIPS planning formalism favored in the Al community was based on pre- and post-conditions
in the propositional calculus. The lack of geometric grounding made it difficult to instantiate
motion, grasping, or assembly actions and obtain guarantees of performance or correctness.
In practice such approaches often showed limitations.

Techniques from control engineering were also attempted. The weakness there lay in their
tendency to be local and thus to become trapped in local minima. Nevertheless, these methods
have been popular in practice because of their simplicity, speed, and integration with the
control layer. There has also been a flurry of interest in algorithms for non-holonomic motion

22

planning, where motion constraints are not integrable. A textbook covering the theory of
non-holonomic planning has recently appeared [109].

Path planning problems have been widely studied by computational geometers, with some
spectacular theoretical successes. General motion planning problems were first shown to be
solvable in polynomial time [132], then with a practical exponent (equal to the number of
degrees of freedom) [26], and then with a tightened exponent in many cases with the aid of
Davenport-Schinzel sequences [133]. For the case of industrial robots, the degrees of freedom
range from four to six. Multi-robot systems and robot hands are much higher. AGVs (au-
tonomous guided vehicles) have 3 degrees of freedom with non-holonomic constraints. These
concrete problems are too large for the methods above to solve at this time. But even though
asymptotic methods are rarely used in practical systems, many effective planners have been
built using concepts from CG. Concepts such as generalized Voronoi diagrams or skeletons,
critical orientations, line and plane sweep, and random sampling have been used in heuristic
planners that are fast and robust. Latombe’s text [88] provides a comprehensive overview.

A basic representational problem for robotics and CG more generally is that the world
contains many curved objects. Curved 3D configuration spaces arise even when objects are
polygonal and motion is restricted to the plane. In graphics, given today’s rendering tech-
nology, it is reasonable to approximate curved surfaces at varying resolution by planar facets.
However, polygonal approximations can lead to errors in mechanical analysis, for example
when computing the stability of parts on a table under gravity. To what extent should CG
deal with algebraic surface representations? The majority of CG work so far has abstracted
away from the algebraic structure, and left the algebraic computations to a black box. There
is certainly nothing intrinsic in the problems to make this be so. Indeed, “computational
geometry” was not that long ago a field which studied algebraic computations on curves and
surfaces. That field has since come to be called “geometric modeling”, and it has maintained
a close ties with practitioners with a shared interest in geometric CAD systems. If CG is to
maintain its claim to the geometric computing turf, it should broaden its definition to include
at least the original one.

In addition to path planning, robotics suggests a rich variety of geometric problems. A
workshop was initiated in 1994 to encourage interaction between researchers from robotics
and computational geometry [59]; a second workshop is currently being planned.

Industrial Robots. To cope with shrinking product life cycles, computational methods are
needed to reduce the time required to configure assembly lines. One idea is to formally model
a small “vocabulary” of parameterized modular components (e.g., robot arms, conveyor belts,
flexible part feeders, modular fixtures, light beams, 2D vision systems) and develop CG-based
algorithms to effliciently compile them into an assembly system for a given CAD product model
[27]. Here are a few relevant problem areas:

1. ConveEX DECOMPOSITION: For motion planning, collision checking is currently most
efficient for convex polyhedra, so we need better methods for convex decomposition of
polyhedra. Algorithms should produce a near-optimal number of convex components.
As for other research areas, fast, robust code is needed. Convex decomposition has many
applications and is currently a bottleneck. See [33] for a survey of current methods and
[32] for a practical approach to the problem.

2. GRASPING AND FIXTURING: The goal here is to place contacts — fingers or fixture
elements — so as to constrain object motion. This is one of the central problems in

23

robotics. A number of basic questions have been answered, such as the minimum number
of contacts sufficient? to hold any nonrotational part in form closure (4 in 2D, 7 for
polyhedra) [96, 84] but efficient algorithms are still needed. In modular fixturing, where
fixture elements are constrained to a regular lattice, recent results suggest a number of

open questions about the existence of solutions for classes of fixtures and parts [154,
142, 115].

When there is uncertainty in part pose or applied forces, minimizing the number of
grasp points can be posed as a convex set covering problem. Recently, CG researchers
have described efficient and probably practical algorithms for near-optimal grasps. This
goes beyond the previous works which either do not consider optimality, or do not allow
search over a large space of possible finger placements. If the CG methods pan out in
practice, this would be a strong vindication of CG in robotics.

3. APPROXIMATION ALGORITHMS FOR GRASP CIRCUIT PLANNING: Consider picking up
parts as they arrive on a conveyor belt: the gripper may have multiple suction cups that
must be “loaded” during each pass: Given a robot gripper with k& suction cups and a
collection of n parts, rapidly approximate an optimal path for loading the suction cups
and depositing the parts in a pallet. Although this problem can be reduced to TSP,
recent approximation results were successfully adapted to this and variations where the
points to be visited are moving with known velocity [29]. Approximation algorithms
have rarely been applied to problems in industrial robotics but hold great promise.

4. GEOMETRIC PROBING: CAD models are assumed by many algorithms but are often
unavailable. Geometric probing can be used to generate such models. Probing hardware
includes touch probes, light beams, scanline and raster cameras. Depending on the
application and sensor, the probing strategy may compute convex hull, line hull or ray
hull. See [134] for a review. More work is needed on online probing strategies that
include models of probe and control uncertainty. The problem of probing to minimize
error turns out to be dual to grasping, so the algorithms mentioned there are directly
relevant.

5. PART ORIENTING: Algorithmic approaches to orienting (“feeding”) parts for industrial
assembly are needed. To be practical and cost effective, feeders must be able to rapidly
and repeatedly orient parts at subsecond rates. Current feeders are designed by human
trial and error. Complete algorithms are needed to take part geometry as input and
generate feeding strategies or feeder hardware specifications as output. A complete
algorithm for feeding 2D parts with algebraic boundaries is described in [124]. More work
is needed to design feeders for 3d parts and to provide accurate mechanical simulation
of collisions and statistical behavior of parts arriving in bulk.

6. ASSEMBLY SEQUENCE PLANNING: The problem of disassembling a collection of parts
has a strong geometric component. For local motions, a disassembly sequence can be
found in polynomial time. The worst case running time is O(n*), but it is fast in
practice [144]. More recently, good worst-case bounds have been given for an important
special case: where the set of possible disassembly directions is fixed a priori (true for
many robotic workcells). The latter methods use lower envelopes and Davenport-Schinzel
sequences to efficient find collisions along the disassembly direction. The main limitation

2The number necessary was demonstrated in 1900.

24

so far is the inability to deal with complex motion during disassembly. e.g. a translation
and twist motion would not be possible. Extensions of this type, plus the addition of
other constraints on the sequence, will make this a rich area for future research.

Autonomous Robots. Autonomous robots have a far more difflicult time than industrial
robots. They must deal with time-varying environments containing unmodeled entities (hu-
mans) and with partial, inaccurate or outdated knowledge of their environment. While some
researchers have nevertheless tackled the model-building problem for mobile robots (which
leaves the robot with a classical motion planning problem on the map), others have sought
simpler routes to navigation. These algorithms are typically online algorithms with limited
state. In [95], robots navigating in the plane used local decision rules to provably reach the
goal. These methods used performance measures derived from path length and were early
examples of competitive ratios in path planning, [116].

Geometric models of uncertainty have been used, based on the existence of landmarks,
which are uniquely recognizable features in the environment. In [90], a nearsighted robot with
a bad compass wandered between “islands” of certainty near landmarks. In [77], a robot with
better vision moved along corridors in space formed by aligning landmarks.

The argument is made below that the chief goals of autonomous robotics require a further
understanding of geometric complexity. A central theme in this line of work is to determine
what information is required to solve a task and how to direct a robot’s actions to acquire
that information. Another key question is to assess the capabilities of a robot in a given
environment or class of environments.

These questions can be difficult. Structured environments, such as those found around
industrial robots, contribute towards simplifying the robot’s task because a great amount of
information is implicitly encoded into both the environment and the robot’s control program.
One goal is to quantify the information encoded under the assumption that, say, the mechan-
ics are quasi-static or the environment is not dynamic. Conversely, one might ask how much
information must the control system or planner compute? Successful manipulation strategies
often exploit properties of the (external) physical world (e.g., compliance) to reduce uncer-
tainty and hence gain information. Often, such strategies exploit mechanical computation, in
which the mechanics of the task circumscribes the possible outcomes of an action by dint of
physical laws. Executing such strategies may require little or no computation; in contrast,
planning or simulating these strategies may be computationally expensive. Since during ex-
ecution one might witness very little “computation” in the conventional sense, traditional
techniques from computer science have been difficult to apply in obtaining meaningful upper
and lower bounds on the true task complexity. It is hoped that a theory can be developed to
measure the sensitivity of plans to particular assumptions about the world, and to minimize
those assumptions wherever possible.

Because geometry is the natural language for characterizing sensors, tasks, and the com-
plexity of robotics operations, such an undertaking is inherently computational-geometric.
More and more, robotics researchers are abandoning off-line models where a priori knowledge
of the whole environment is assumed. For example, in the stereotypical off-line model, one
might assume that the robot, on booting, reads a geometric model of the world from a disk
and proceeds to plan. A preferred alternative now is to consider on-line paradigms where the
robot investigates the world and incrementally builds data structures to the external environ-
ment. As time evolves, the task effectively forces the agent to move, sense, and update its
model of the world. Certainly, from an on-line viewpoint, off-line questions such as “what is

25

the complexity of plan construction for a known environment, given an a prior: world model?”
might often appear secondary, if not downright artificial.

While it is profitable to explore on-line paradigms for autonomous agents and sensorimotor
systems, the framework remains to be extended in certain crucial directions. In particular,
sensing has never been carefully considered or modeled in the on-line paradigm. The chief
difficulty is the absence of tools for measuring the complexity of a robot. Just as complexity
classes are characterized by the amount of resources available, one would hope to have relations
between the computational power of a robot and its hardware. How much power is gained by
adding an extra sensor?

Such questions have been overlooked. As a result, robot builders are able to make un-
verifiable claims about robot performance and resource consumption. What is missing from
autonomous systems is both an accounting method to assess the capabilities of a robot and
tools for arguing correctness and completeness for on-line autonomous robot algorithms. The
inability to compare systems leads to redundant work and inhibits progress. Computational
geometry has established a clear progress metric, while emphasizing completeness and cor-
rectness for control algorithms. But the systems for which it has explanatory power are far
from real embedded systems. Yet such systems are probably best analyzed and characterized
by using geometric methods. This is a direction in which computational geometry could have
a significant impact.

Here is a concrete example of an on-line navigation. Some robots are purely reactive and
plan their moves without retaining knowledge of their past interactions with the environment.
Others build a map, ie, a geometric model of the world it encounters. The former are too weak,
the latter are too slow. What are good intermediate strategies? Navigating in a graph with
bounded storage is a well-studied problem in computer science. Interesting work in on-line
navigation with uncertainty has already been done. To pursue this further and experiment
with physical robots would be extremely useful.

The “minimalist” rationale of complexity theory (ie, using the minimum resources to
achieve a given goal) has parallels in robotics. Resources are more diverse: they are measured
by the number of sensors, sensor probes, actuators, agents, as well as by the amount of
computation time and space and communication. In robotics, minimizing the use of resources
has become an increasing preoccupation. It has been shown that walking/running machines
could be built without static stability, that dextrous manipulation could be performed without
sensing. Biped, kneed walker have been built without sensors, computers, or actuators.

Computational geometry is uniquely poised to demonstrate and prove minimalist solutions
to robotics problems. Key questions include the following:

e What are minimal configurations (resource-wise) for on-line navigation, parts-feeding,
grasping, singulation, recognition, or manipulation.

e Are there sensorless geometric filters® for classes of objects? What on-line filters uses a
minimum amount of sensing? For example, with a distributed actuator system such as a
MEMS array device, one can create a programmable vector-field for parts manipulation:
First one centers a part using a radial, inward-squeezing pattern, which centers the part
at the origin. Next, one makes the array push in the left direction within a narrow band
around the x-axis. The rest of the array pushes in the opposite. This strategy filters
small parts to the left and big parts to the right.

?A geometric filter is a device which filters parts, ie, sends them to different spatial destinations, based on
some geometric characteristic: for example, circular parts to the left, square parts to the right.

26

Micro-Electromechanical Systems. A wide variety of micromechanical structures (de-
vices typically in the pm range) have been built recently by using processing techniques known
from VLSI industry. Various microsensors and microactuators have been shown to perform
successfully. For example, a single-chip air-bag sensor is commercially available; video pro-
jections using an integrated, monolithic mirror array have been demonstrated recently. More
difficult is the fabrication of devices that can interact and actively change their environment.
Problems arise from (i) unknown material properties and the lack of adequate models for mech-
anisms at very small scales, (ii) the limited range of motion and force that can be generated
with microactuators, (iii) the lack of sufficient sensor information with regard to manipulation
tasks, and (iv) design limitations and geometric tolerances due to the fabrication process.

The design, analysis, and control of micro-electromechanical systems (MEMS) are inher-
ently geometric in nature. While much is known about building MEMS, little is understood
about how to use them to manipulate objects. More precisely, manipulation of solid objects
subject to hard or intermittent contact is entirely open. The state of the art is somewhat
similar to that of robotics before geometric planning algorithms. Development of control
strategies for manipulation by MEMS is a key bottleneck. MEMS actuators are tiny; hence
one is forced to consider parallel manipulation strategies by teams or arrays consisting of a
large aggregate of micro-actuators. It is believed that based on work on sensorless and near-
sensorless manipulation, one can develop geometric theories of manipulation and control for
microactuator arrays. Can one develop sensorless (open-loop) manipulation algorithms for
arrays of MEM actuators? Can these strategies be time-invariant, or is a clock necessary?
Can MEMS implement geometric filters? Can MEMS arrays orient or pose parts uniquely,
without sensing? Can MEMS arrays implement assembly algorithms?

9 Manufacturing and Product Design

Computational geometry arises at all levels of manufacturing, from design and simulation,
to process planning, product inspection and testing. A number of recent resources have
emphasized the prominence of geometry in manufacturing [72, 82, 140, 141, 145, 151]. A
forthcoming special issue of Algorithmica (J. Mitchell, guest editor) focuses on applications of
computational geometry to manufacturing.

Solid Modeling. A first issue to tackle is solid modeling, by which is meant the computer
representation and manipulation of 3D shapes. About 20 years ago, the “geometric coverage”
was limited to solids bounded by surfaces from natural quadrics and planes, ie, built with cones,
spheres, cylinders, even with tori. For many years this was considered adequate for mechanical
design, notwithstanding the persistent pressure from the aerospace and ship building industry
to allow for more complex doubly-curved surfaces. Today, it is common to allow as surface
elements subsets of tensor product nonuniform rational B-splines (NURBS), with some systems
going further to consider triangular patches and more general types of parametric surfaces.
In the research arena there was an effort at the University of Bath a few years ago that
resulted in a modeler with general algebraic surface elements. Algebraic surfaces have many
mathematical and computational advantages compared to the parametric elements used now,
and are emerging as an active, forefront research area. The commercial project generally cited
as being the most advanced is Boeing’s design of the 777 aircraft, which was done entirely
using geometric and solid modeling (plus engineering analysis, costing analysis, and other
nongeometric tasks). The Boeing 777 was modeled in CATIA, a commercial system from

27

Dassault in France that is marketed in the US by IBM. Interestingly, CATIA is based on
20-year-old technology, which is an indication of the lag between research and production in
manufacturing.

There are many technical issues that arise from the type of operations one would like
to perform on these surfaces, be it as part of a larger conceptual operation, or in its own
right. They are addressed by a community that variously hails from applied mathematics
and approximation theory to — on the more experimental side — mechanical engineering. A
wide variety of classical computational geometry problems arise in the process; their effective
solutions would have considerable impact. This has already happened in some cases.

An issue somewhat less visible to academics, but important in practice, is the simple
question: How does one express a complex shape? Or more precisely, how can a human
define unambiguously a complex shape to an automaton? This is “the user interface problem”
in CAD. Current practice has resulted in user interfaces that require, as an integral part,
geometric constraint solvers. The issue is partly technical and partly conceptual.

In the technical category one finds such crisply stated questions as, “Given four spheres,
how many lines are tangent to all of them?” (Estimates are known, but the exact answer is
not.)

In the conceptual category one will occasionally witness discussions among mathematicians
on the “fairness” or the “eye-pleasing quality” of a curve in space. While such subjective
discussions might tread on slippery grounds, they are nevertheless essential to the design of
commercial products where aesthetics matters (as in the automobile industry). Although
computational geometry is an unlikely participant in such discussions, it can learn from this
that not all design criteria are quantifiable by optimization functions, and that flexibility and
experimentation are vital components of design tools.

There are deep and pressing problems that CG’ers, as computer scientists, may wish to
ponder. Specifically, there are two “input-and-interaction” modalities for CAD systems: (1)
programming interfaces, and (2) “pick-and-click” graphics user interfaces. Media such as
the PADL-2 system for solids bring much of the usual power to the job: naming, parameter
passing, conditionals, etc. Language interfaces are nicely suited to defining parametric families
of parts, but lack the visual feedback that most engineers consider essential. Graphics user
interfaces provide plenty of feedback, but almost no abstractive power (names, parameters,
etc.); they deal in instances rather than generics. An important challenge is to devise a user
interface with the visualization power of modern GUIs and some of the abstractive power of
a programming system.

In its maturing stage, computational geometry has focused its attention mostly on linear
objects. The motivation was sound: Why deal with curved shapes if we do not even understand
polyhedral objects? In manufacturing, such a limitation is simply unacceptable. The time has
come to bridge this gap.

At present, the frontiers in solid modeling for manufacturing include how to define surfaces
subject to constraints that require variational approaches and differential equations. Another
major push is an attempt to integrate shape design with other aspects of engineering design,
such as analysis and costing [153].

One particular challenge for CG, worthy serious attention, is anisotropy. Loosely speaking,
anisotropy refers to the situation in which material properties vary over the interior of an
object. (Wood is a simple example of an anisotropic material.) Some new methods of rapid
prototyping processes, of which stereolithography is the best known (although not necessarily
the best), are capable of producing parts having anisotropic material properties. The currently

28

popular schemes for representing solids — boundary representations and constructive solid
geometry (CSG) — appear to be incapable of supporting anisotropy; thus, new means must
be found, since customizable anisotropy is one of the most attractive properties of layered
manufacturing processes.

Also, it is still the case that boundary-representation modelers lack robustness: Finite-
precision arithmetic can lead to incorrect results (see Section 10). This is an important area
of research, together with the design of better visualization tools to facilitate — and ultimately
to automate — geometric reasoning.

Solid modeling is the archetypical example of an area of computer science in which object
representations and algorithms are inseparable. Boundary representations and triangulated
solid representations can be used for describing the same objects, but the algorithms that deal
with them are fundamentally different. Representations are often dictated by particular needs.
(For instance, boundary representations are natural for graphics display; triangulated bound-
ary representations are required by fast display hardware.) Thus, manufacturing applications
must be identified first. Next, the appropriate representations must be chosen. Only then can
CG begin to think about efficient algorithms to operate on them. This is a different mode
of operation from traditional CG: in classical problems such as polygonal triangulation or 3D
convex hulls or 2D Voronoi diagrams, standard representations are more or less equivalent (via
linear-time reductions) so it makes sense to think mostly of an object as a geometric entity
rather than as its particular representation. Things are quite different in solid modeling.

Intersections of Parametric Surfaces. Spline representations are used extensively in
computer graphics and in modeling “sculptured surfaces” found in automobile bodies, airplane
airframes, and ship hulls. Several classical methods have been developed; for instance, Coons
Patches, Bézier Surfaces, B-splines. The object has been to allow designers (particularly ones
using CAD workstations) to produce the desired surfaces with minimal effort and maximum
of control of the surface shape. Algorithms for rendering curves and surfaces on graphics
screens are well understood. However, computing intersections of lines, curves, or planes with
these surfaces can be rather complex and inefficient. Intersecting two such surfaces is usually
very messy. Usually the parametric mapping cannot be analytically inverted, so even the
“inverse point solution” of finding the parametric coordinates for a point in 3-space that lies
on the surface requires an iterative procedure, and intersections must be approximated by
using numerical methods.

Repeated computations of intersections with parametric surfaces tend to be very slow and
error-prone. If one wishes to intersect many rays with a parametric surface, or to find if a tool
envelope penetrates a parametric surface, it may be desirable to approximate the parametric
surface by a polygonal surface. The operations can then be done on this approximated surface.
The question naturally arises, “What is a good approximation for this particular application?”
Much work has been done in the area of approximating surfaces by triangles, particularly with
respect to finite element methods. However, for machining applications the question is not
finding the fat triangles that are good for finite-element methods or triangles that render nicely
on a graphics screen, but how to get a polygonal surface with a small number of triangles that
is at all points within a fixed tolerance of the given surface. A number of heuristics have been
used, but it is still an area of active research.

Intelligent CAD/CAM: Manufacturing Processes. The manufacturing industry has
at its disposal a wide variety of processes for constructing objects, including gravity casting,

29

injection molding, layered manufacturing, material removal via conventional (or chemical or
electrical) machining, deformation (forging, rolling, extrusion, bending), composition (as in
composite materials, sintered ceramics, and the like), spray deposition, etc.

Each manufacturing process imposes certain restrictions on the types of objects that can
be built and the manner in which they are built. For example, a sphere is difficult to build
using layered manufacturing (e.g., stereolithography) but not using injection molding. Also, a
cube can be manufactured using stereolithography without the use of supporting pillars only
when placed on one of its facets.

In all of these manufacturing contexts, CAD/CAM systems of growing sophistication are
presently being introduced. Geometric computation has become ubiquitous in the manu-
facturing industry, as more and more real-world objects begin their design life as geometric
objects modeled within a computer.

Given an object to be manufactured, two fundamental questions arise, having to do with
the feasibility of a process and its optimization:

e Can it be manufactured using a particular process?

o For a given process, what is the best way to manufacture the object?

The latter question gives rise to many different problems depending on the meaning of
“best.” The geometry of the object, coupled with the restrictions imposed by the particular
manufacturing process under consideration, play a vital role in determining the answer to
these questions. Their importance is quite evident. For example, when designing an object
to be built by a certain type of manufacturing process, an engineer must always keep in mind
the process that is to be used to manufacture the object. This limits the creativity of the
engineer, as the question of design feasibility is ever-present. In fact, the engineer is rarely sure
whether the object can be built in the first place, since no formal methods exist to determine
the feasibility of an object for most manufacturing processes.

At present, many aspects of the manufacturing processes and their ensuing geometric
problems are tackled by relying on heuristics in trial-and-error fashion, which necessitates a
great deal of human intervention. To quote from an injection molding book [121].

“During injection, the mold is tilted into a favorable position that will eliminate
surface defects such as bubbles and insure a complete fill. Mold orientation during
fill is a cut-and-try process to find the most favorable position.”

It is an open problem to decide whether a given object can be built by a particular
process: This is a question into which computational geometry should be able to make inroads.
Practical solutions especially are highly sought. This form of “automatic design verification”
would liberate the designer by informing him or her of the full range of possible processes that
can build an object. To make these ideas more concrete, we consider two examples: gravity
casting and stereolithography.

o GRAVITY CASTING: In the case of gravity casting, the main motivation for focusing on
the geometry of the object to be molded is to remove the “cut-and-try” phase from the
process of finding a favorable mold position*

*A mold refers to the whole assembly of parts that make up a cavity into which liquid (e.g., molten metal)
is poured to give the shape of the required component when the liquid hardens.

30

Given a mold, establishing whether there exists an orientation that allows the filling of
the mold using only one pin gate® as well as determining an orientation that allows the
most complete fill are two major problems in the field of injection molding.

These problems are particularly difficult when one takes into account the fluid dynamics
and physics of the molding process; typically, this is handled by costly simulations.
To date, only heuristics have been proposed to solve the two problems (feasibility and
optimization) above. Efficient solutions from computational geometry might provide a
handle on the geometric component of the problem.

¢ STEREOLITHOGRAPHY: Stereolithography, a form of “layered manufacturing”, is one
of a growing set of processes used in rapid prototyping; for recent surveys of this and
related technologies, see [136, 147].

The components of the stereolithography manufacturing process (e.g., in the system
patented by 3D Systems of Sylmar, CA) consist of a vat of liquid photocurable monomer,
a computer-controlled table on a stand that can be moved up and down in the vat and
a laser above the vat that can shine on the surface of the liquid and can move in a
horizontal plane. The system works as follows:

In the first stage the table is positioned right below the surface of the plastic and the
laser is controlled to move about so that the light shines on the plastic surface and draws
the bottom-most cross-section of the object being built. Upon contact the laser light
solidifies the plastic, and the first cross-section of the object is formed and rests on the
table. In the second stage, the table is lowered by a small amount to allow liquid to
cover the hardened layer and the laser then draws the next cross-section of the object.
The light from the laser penetrates the liquid just deep enough so that the cross-section
is welded to the lower cross-section produced in the previous stage. This process is
repeated until the entire object is formed.

The direction given by a normal to the table pointing to the laser is called the direction
of formation for the object. There are objects that can be formed only if the direction
of formation is chosen correctly. In practice, supporting structures have to be built as
part of the model and be removed in a postprocessing step. Naturally, there are also
shapes (say, a sphere) that cannot be formed using stereolithography regardless of the
direction of formation chosen.

Computational geometry has recently made valuable contributions by designing algo-
rithms for determining whether a given polyhedron can be built using various geometric
models of the stereolithography process. However, more work is needed to make these
models conform to manufacturing reality.

It is unlikely that computational geometry alone will ever supplant the complicated fluid-
dynamics simulations performed today by engineers. But to reject or ignore the physics of
these problems is also to ignore their very essence. Computational geometers should make
the effort of addressing some of these physical problems because they hold rich opportunities
for CG. Meanwhile, the hope is that CG can help to reduce the number of costly simulations
required. The ultimate usefulness of such algorithms must be determined by collaborative
efforts between computational geometers and manufacturing engineers.

®A pin gate is the point at which the liquid is injected into the mold.

31

Verification of Numerical Control Machine Tool Programs. A manufacturing process
of particular prominence, with a long history, is milling. A Numerical Control (NC) milling
machine cuts a part out of a block of metal or other material (the “stock”) by moving a
cutting tool through space. For 3-axis machining, a rotating cutting tool, with a vertical
axis of rotation, does the cutting. An “NC program” specifies the movement. Typically, the
program consists of a “cutter location file,” which is a long list of (z,y, z) coordinates for
successive tool locations. The tool is moved to the first spatial location, then moves along a
straight line (or, say, a circular arc) to the next, then along a straight line from the second
location to the third, and so on, until the list of locations is completed. (Actually, the file
also contains other information, such as tool sizes, and instructions for when tools must be
changed.) For 5-axis machines, two additional coordinates giving the angular orientation of
the tool axis are also specified and the tool linearly interpolates both spatial and angular
coordinates.

Typically these NC programs are created by tool programmers. The programmers begin
with a geometric representation of the part expressed in Constructive Solid Geometry (CSG),
or some sort of boundary representation using splines, and generate series of tool movements
that are supposed to mill the part from the stock.

As with computer programs, NC programs are error-prone. Bugs can produce cuts that
are too deep or leave too much material. Thus, an important practical problem is: “Given a
surface of known equation and a file of NC tool movements, does the shape that the tool cuts
match the mathematical shape to within a given tolerance?” It has been claimed [53] that
“current methods of verifying NC part programs result in one of the highest non-recurring cost
factors in producing NC machined parts within the aerospace industry.” It is also a significant
cost within the aircraft and automotive industries, among others.

The early approach to finding bugs was to use “proofing runs” on wood or foam; this is
still a popular technique. Later systems would move a graphical display of a cutter over a
display of the part. The user could visually check for errors as the tool moved on the graphics
display. Only gross errors could be detected in this way, however. In the 70’s, work began on
programs that actually detected errors in NC programs or verified that none existed. A good
overview of this problem, including a precise mathematical formulation, history, and summary
of its current state is found in [100].

Some of these methods use “complete” representations of the current state of the partially
cut workpiece. Researchers investigated the feasibility of using CSG systems or solid modelers
for the simulation of NC programs [76]. Others developed systems based on octree [111]
or boundary representation [135] of the workpiece. For each method, every tool movement
would update the workpiece, and at the end the workpiece was compared to the desired piece.
Unfortunately, all of these approaches were slow. Each tool movement subtracts a fairly
complex shape from the current workpiece representation and requires significant updating.
For example, for a simple 3-axis movement with a ball-end cutter the swept volume is bounded
by parts of two spheres, three cylinders, and two planes; the number of movements is typically
on the order of 10,000.

To avoid this problem, a number of people took advantage of the fact that it is not necessary
to represent the entire state of the workpiece to verify the correctness of an NC program. The
desired shape is known in advance, and this information can be used to simplify the process.
Several researchers used an image-space approach, where an extended Z-buffer is provided
for each pixel in a given graphical view of the part, and each tool movement updates the
pixel information for each pixel that it passes over [11, 138, 143]. CGTech’s Vericut simulator

32

uses such an approach. These methods are faster than the complete methods but they are
view-dependent. Because of this, errors might not be visible from a certain view direction and
would therefore be missed. (Consider a nearly flat surface viewed edge-on. A large surface
would be mapped into a thin line represented by only a few pixels, and errors that occurred
where there were no pixels would be missed.)

Another approach is to grow vectors normal to the surface of the part [30]. These vectors
are “mowed down” by the passage of the cutting tool, and their lengths are checked at the
end of the run. Vectors that stick out above the surface indicate excess material and vectors
cut below the surface point to gouges. One might use pixels to select these vectors (one vector
for each pixel) [113]. Or one might use properties of the tool size and the surface curvature to
pick fewer vectors while still guaranteeing that they will find all errors greater than a user-set
tolerance [43].

A recent modification of the extended Z-buffer, called ray representations (ray-reps), has
been proposed [99]. A ray-rep is the intersection of a grid of parallel rays in some direction with
the part. (Note that the intersection of a ray and a part consists of zero, one, or several line
segments.) Given such a representation, all of the operations of CSG can be computed quickly
by using a specialized parallel computer for processing ray-reps, called a raycasting engine. All
of the approaches using modified Z-buffers or vectors introduce error. Even if the intersection
with the tool path movement is calculated exactly (more on this below), in effect the part
surface is being replaced by a set of discrete points. What can we say about the correctness of
the surface at points where there are no vectors? All of these approaches use enough vectors
to be fairly accurate in practice, but with a few exceptions none of them attempt to analyze
errors introduced by the approach to check whether they fall within tolerance.

The ray-rep representation seems an ideal candidate for such analysis. Even with the
special-purpose parallel computer one wishes not to use more rays that are needed. But how
to analyze the errors introduced remains an open question, as is the determination of the
optimal number of rays to use. It is also interesting to look at other possible applications of
this representation and to analyze the relationship between the spacing of the rays and the
error introduced.

A second area that needs more study is the one of intersecting rays with surfaces. Inter-
secting rays with part surfaces is reasonably well understood. However, when the surfaces
are represented parametrically using B-splines or similar methods, computing intersections
generally requires a slow interactive technique. One must also compute the intersection of
rays with the envelopes swept out by tool movements. This is not too difficult for 3-axis
movements of ball-end cutters. But the same cannot be said of the intersection of a ray with
a 3-axis toroidal-end cutter movement. Most existing codes use a polygonal approximation to
the envelope or a large number of discrete tool locations. Unfortunately, no error analysis is
available.

For 5-axis cutter movement, an efficient method has been given for computing the inter-
section within a given error bound by using 3-axis tool movement as an approximation and
relying on tree-based localization technique to quickly decide which of the 3-axis movements
is the one intersected first [122]. See also [92]. What remains open is to find a method for
generating a polygonal approximation for the 5-axis envelope with a provable error bound
that generates a reasonable number of triangles. Finding such a provably good approximation
technique is an interesting and important open problem.

33

Generation of Numerical Control Machine Tool Programs. An ultimate goal, of
course, is to automatically produce NC programs that are error-free and perform the machin-
ing quickly. The generation of error-free NC programs directly from computer-based geomet-
ric models would significantly shorten the product development cycle. While some limited
attempts at automatic NC program generation have been reported in the literature [7], a
practical system has yet to be achieved. Producing such a system would be a very valuable
step, and is quite likely to use a mix of computational geometry and classical optimization.

The special case of pocket machining has received recent attention and has had some suc-
cess both in the algorithmic understanding of the problem, and in the automatic generation
of NC programs. Held’s thesis [69] brought to the forefront some of the issues of interest
to computational geometers. Offshoots from Held’s thesis, including software for offsetting
polygonal boundaries, have made it into commercial products, such as LARK (available from
MTA SZTAKI, a subdivision of the Hungarian Academy of Sciences, and the spin-off com-
pany, CADMUS). Provably good approximation algorithms for specific (simplified) classes of
problems have been devised by CG’ers for minimizing the total tool motion [5] and the number
of retractions necessary in “zigzag” pocket machining [6]. But many more problems must be
addressed, particularly those that deal with realistic models of machining.

So far, the discussion has been limited to “nominal spatial effects.” It has been assumed
that the tool moves exactly as specified and removes all material within its swept volume. In
real systems, other considerations for verification or generation must be taken into account.
One concern is variations from nominal geometry in terms of allowed tolerances and positioning
uncertainties. Other considerations are dynamic effects, such as dealing with deformation of
the part and tool due to pressure in cutting, tool breakage if the pressure is too great, and
tool chatter and wear.

Layout: Optimal Use of Material. Various layout and cutting problems are of immediate
relevance to manufacturing, as they involve the optimal use of valuable raw materials. For
example, in the parts nesting problem, we must place a given set of polygonal shapes (markers,
templates, or patterns) on a sheet of material (sheet metal, cloth, cardboard, etc.), without
allowing overlaps, in order to minimize the waste when the shapes are cut out from the
material. Motivated by applications in the apparel industry, CG’ers have been investigating
these layout problems, with some recent successes [103, 41, 101, 105].

In an application at Boeing, where very expensive sheet metal stock can be wasted in
inefficient layouts, a software package (“2NA: 2-Stage Nesting Algorithm”) is in current use
on the factory floor, built on principles of optimization and basic computational geometry
primitives. However, much more work is necessary before automated nesting algorithms will
be able to replace human experts in many aspects of the material usage problem.

10 Robustness

Geometric computation must preserve numerical accuracy and topological consistency: on
digital computers this is often akin to squaring the circle. Geometric algorithms are usually
described assuming that input data is in general position and that exact real arithmetic pro-
vides reliable geometric primitives. Often an implementer substitutes floating-point arithmetic
for real arithmetic and uses real-world data, which might be degenerate by accident or design.
Hence, the correctness proof of the mathematical algorithm does not extend to the program,

34

and the program can fail on seemingly appropriate input data. This is the well-known problem
of “nonrobustness” in geometric computing [71].

The failure rate of a floating-point implementation can be reduced with various ad-hoc
methods, such as tolerancing (taking a nearly-zero expression value as exactly zero has the
effect of treating a nearly-degenerate configuration as exactly degenerate) or input perturba-
tion. With such methods a usable, though not completely reliable, implementation can often
be obtained. This hardly qualifies as a rigorous approach, however: the effort involved is
unpredictable, the required expertise is hard to codify, and there is no guarantee that the
implementation will succeed on the next problem instance.

In the past few years some research has addressed robustness issues. Proposed approaches
include error analysis, sophisticated tolerancing, symbolic reasoning, or software that provides
exact arithmetic on integers, rationals, or even algebraic numbers. There is yet no agreement
on the best approach. Indeed, all proposed methods have shortcomings, typically limited
applicability or inefliciency. A sophisticated programmer implementing a standard algorithm
may well find some of these methods useful and relevant; the situation is more problematic
for an unsophisticated programmer with a variant problem.

When addressing these issues, it is important to distinguish between degeneracies and
numerical precision.

10.1 Degeneracies

Degeneracies arise from the special position of two geometric objects. For example, two
segments in general position either do not intersect or intersect at a point interior to both
segments. Two intersecting segments in special position may overlap, may share a common
endpoint with or without being collinear, may have one segment endpoint interior to the other
segment, etc. Real-world data is likely to be degenerate. For example segment endpoints may
be explicitly chosen from a coarse grid, to facilitate interactive design.

The effect of degeneracy is to vastly increase the number of special cases. While a sorting
algorithm must deal only with the possibility of two keys being equal, a typical geometric
algorithm faces the possibility of dozens or hundreds of different special cases [47, 49, 71, 148].
The presence of numerical data, added to the inherent complexity of geometric data types,
makes geometric algorithms much harder to implement correctly than combinatorial (say,
graph-theoretical) ones. They are also much harder than just purely numerical algorithms
(such as those addressed by numerical analysis) many of which consist of large chunks of
straight-line code. Since the overall utility of an implementation may depend upon the correct
treatment of special cases, the handling of special cases can permeate the implementation.
This raises the obvious reliability concern that all cases have been considered and correctly
handled.

Symbolic perturbation schemes allow degeneracies to be resolved automatically. Con-
ceptually, each geometric coordinate ¢; is replaced with a symbolically perturbed coordinate
¢; + fi(e), where € > 0 is unknown but very small and the perturbation function f; is sim-
ple, say a polynomial. Substitution of the symbolically perturbed coordinates in a predicate
expression results in a polynomial in € with coeflicients determined by the original geometric
coordinates. The sign of the expression is given by the sign of the first nonzero coefficient,
with coeflicients taken in order of increasing powers of €. For many classes of predicates, the
Ji can be chosen to resolve all degeneracies.

While symbolic perturbation is certainly a useful tool in the implementation of geometric

35

algorithms, existing schemes are not as applicable as might be desired. First, symbolic pertur-
bation requires exact arithmetic, since the correctness of the perturbation depends upon exact
evaluation of arithmetic expressions. Second, symbolic perturbation has been worked out in
detail for only a small class of predicates. For example, constructed objects are often disal-
lowed, since the perturbation function for a constructed object depends upon how the object
was constructed and is much more complicated than the perturbation function for a primitive
object. Perhaps most fundamentally, in a degenerate situation an algorithm implemented
using symbolic perturbation does not solve the problem instance, but an arbitrarily-chosen
nearby problem instance. This might be inappropriate in some applications. For example, a
highly degenerate polytope may see its combinatorial complexity blow up exponentially as a
result of a small perturbation.

Although much work remains to make symbolic perturbation generally useful, no other
approach to the issue of degeneracy has as much promise.

10.2 Numerical precision

A geometric predicate is determined by the sign of an arithmetic expression. Sign-evaluation
is exact in the conceptual model of the real numbers. However, a computer implementation
cannot use real numbers. There are two scientifically plausible substitutions for exact real
arithmetic. One is to use floating-point arithmetic, and somehow deal with the resulting
rounding error. The other is to substitute exact arithmetic on a subset of the reals, such as
the integers or the rationals. There is now a growing community of researchers who have
interest in “real arithmetic computation”, and some of these issues are relevant to the exact
computation paradigm in CG. One such conference, “Real Numbers and Computers”, will be
held for the second time in April 1996.

Floating-point arithmetic. Floating-point arithmetic is widely used because it has many
practical advantages. It provides a familiar approximation to the real numbers, with useful
properties like automatic scaling. It is widely available on different computers and is well
supported by programming languages. Current workstations have highly optimized native
floating-point arithmetic, sometimes faster than native integer arithmetic. Floating-point
arithmetic is sufficiently widespread in scientific computing that programmers rarely consider
other options.

However, some geometric predicates cannot be resolved using floating-point arithmetic. If
an instance of a predicate is nearly degenerate, then the value of the corresponding expression
can be very small, less than the rounding error in the floating-point evaluation of the expres-
sion. Hence the sign of the computed expression may well be erroneous. Usually it is possible
to argue that the computed expression value is the true value for slightly perturbed coordinate
data. Since coordinate data may well be imprecise originally, the erroneous sign may appear to
be innocuous. The difficulty arises with multiple predicate evaluations; there is no guarantee
that any single global perturbation produces all the computed predicate values. Indeed, the
computed predicate values may be geometrically inconsistent. Catastrophic implementation
failure can easily result.

There are two broad categories of methods to deal consistently with floating-point round-
ing error. One category formalizes the notion of tolerances. A typical strategy might associate
inner and outer tolerances with an object, say a point. If the inner tolerances of two points
intersect, they are deemed coincident and merged; if the outer tolerances are disjoint, they are

36

deemed separate; if neither case holds, the situation is ambiguous. As long as no ambiguity
results during a computation, the result is correct. The hope is that ambiguities arise infre-
quently; an obvious drawback of this strategy is that is not clear what to do if an ambiguity
does arise. Another drawback is that the generalization to complex geometric objects is not
straightforward.

Since arithmetic operations have non-constant costs, it makes sense to judge the perfor-
mance of an algorithm in terms of the precision K needed in the output of the algorithm.
This gives rise to the notion of “precision-sensitive algorithms” where the running time is a
function of K as well as a function of the input size. Since K can be exponential in the input
size, exploiting this new parameter can be quite significant. Notice that precision-sensitivity
is the bit-complexity analogue of the very fruitful idea of “output-sensitivity” invented by CG.
The paper [35] first applied this concept to the NP-hard problem of Euclidean shortest paths.

A second floating-point approach is error analysis. This approach is modeled on the error
analysis of numerical methods, particularly linear algebra. The goal is to show that a suitably
implemented algorithm provides an answer that is in some precise sense near the mathemat-
ically correct answer. Error analysis of geometric algorithms requires consideration of both
combinatorial and numeric structure. Often it is easy to argue that an algorithm produces
combinatorially valid output, at least with suitably relaxed requirements. It has turned out to
be much more difficult to argue that the numeric error associated with combinatorial structure
is small. Full error analysis has been carried only for a few simple algorithms.

Exact computation Exact geometric computation [152] requires that every predicate eval-
uation be correct. This can be achieved either by computing every numeric value exactly, or
by some symbolic or implicit numeric representation that allows predicate values to be com-
puted exactly. Exact computation is theoretically possible whenever all the numeric values
are algebraic, which is the case for most current problems in computational geometry.

With exact geometric computation, it is no longer reasonable to assume that each arith-
metic operation takes constant time, as is the case with floating-point arithmetic. Rather, the
cost of an arithmetic operation depends upon its context. Simple geometric predicates can be
expressed as the sign-evaluation of an integer polynomial. The required arithmetic bit-length
can be estimated from the degree of the polynomial and the bit-length of coordinates. For
many predicates involving linear objects (such as orientation predicates) the degree is small,
and the required bit-length is relatively minimal. However, even in simple cases software arith-
metic is required, say over the integers or rationals, with a resulting increase in performance
cost.

The cost of arithmetic also increases because of geometric constructions. A geometric
constructor produces a new geometric object from old objects. Typically the coordinates of
the new object can be expressed as polynomials in the coordinates of the old objects, and
hence bit-length can be estimated from polynomial degree. For example, the coordinates of
the intersection point of three planes have bit-length about three times the plane coeflicient
bit-length; the coefficients of a plane through three such points have bit-length about nine
times the original plane coefficient bit-lengths. Hence an algorithm that uses geometric objects
constructed to arbitrary depth can require arithmetic with prodigious bit-length, even if the
algorithmic predicates are relatively simple.

Complex primitives on linear objects, or simple primitives on curved objects, apparently
require that arithmetic be augmented with square roots, and, more generally, arbitrary poly-
nomial roots. Such arithmetic operations can be implemented symbolically using general al-

37

gebraic techniques such as resultants, Sturm sequences, and root separation bounds. Whether
such techniques can be implemented with adequate efficiency is a question of considerable
interest.

Because of the potential expense of exact computation, it is often appropriate to avoid it
if possible. Any significant application may well have a core requiring exact computation and
outer layers that are less demanding. For example, the boolean operations of a solid modeler
might require exact computation to guarantee topological consistency, while the computer-
graphics rendering of a resulting solid could tolerate some imprecision. Other applications,
for example, a geometric theorem-prover, might require exact computation throughout.

To Summarize. For algorithms with modest arithmetic bit-length requirements, exact
arithmetic is appealing. Exact arithmetic appears not to be used widely, perhaps because
of the performance cost of the required software arithmetic. However, computer hardware
continues to increase in speed, which may mean that the performance cost becomes less sig-
nificant. Furthermore, there is evidence that software exact arithmetic can be better designed
for computational geometry applications, decreasing its effective cost.

Exact-arithmetic implementation of geometric algorithms would be much more attrac-
tive with the development of software arithmetic packages appropriate for computational
geometry[52, 110]. There are many issues to be explored: for example, the use of adaptive-
precision arithmetic, the granularity of evaluation, algorithms for primitive evaluation, re-
quired arithmetic operations. For example, beyond speeding up basic arithmetic operations,
more effective optimization techniques could be used at the expression level. Geometric com-
putations invariably involves larger units of numerical computation, such as expressions like
determinants or Fuclidean lengths. This opens up an exciting new area of software construc-
tion in which many designs are possible.

The utility of exact arithmetic would be increased with the development of exact-arithmetic
rounding algorithms. Geometric algorithms often produce objects that have both combinato-
rial and numeric data. For example, the vertices, edges, and faces of a polyhedron in three
dimensions have both numeric coordinates and combinatorial incidence structure. The result
of an exact computation may specify the numeric coordinates exactly, with coordinates of
large bit-length. However, arithmetic on large coordinates is expensive, and an application
may be satisfied with a short bit-length approximation to the numeric coordinates, as long as
the combinatorial and numeric data are consistent. Rounding the coordinates of a complicated
object such as a polyhedron is not straightforward, since its combinatorial structure may be
invalidated by small perturbations of its faces or vertices. However, many applications are
insensitive to changes in the combinatorial structure. If the structure is permitted to change,
there are methods to round polygons or other planar objects made up of line segments to
the integer grid [70, 66] or any nonuniform grid [102, 104]. In general, rounding algorithms,
particularly for curved or higher dimensional structures, are as yet inadequately developed.

There are important applications, such as operations on algebraic curves and surfaces,
where bit-length estimates appear to rule out the use of exact arithmetic. It is possible that
such bit-length estimates are too pessimistic, either in theory because the underlying algebraic
machinery is not developed enough to give sharp estimates, or in practice because instances
requiring long bit-length are infrequent. Many predicates that are well-understood in the
linear domain (incircle, orientation) become much more complex in the curved domain, and
their best evaluation using exact arithmetic is not well understood.

38

A Case-Study: Dimensional Tolerancing and Metrology. We close this section by
discussing one application area that seems ideally suited to the techniques of computational
geometry and the requirements of exact computation [149, 150]. Dimensional tolerancing the-
ory and practice form a key cornerstone of modern precision engineering, allowing designers
to specify tolerances in a specific way that also, in principle, allows machinists to verify them.
It has been observed that the precision requirement on manufacturing is essentially increasing
linearly with time. Increased precision in manufacturing has strong positive economic impli-
cations, from more efficient use of material to greater reliability in parts. But such benefits are
partly wasted if the metrological theory and practice do not keep up with increasing manufac-
turing standards. This gap is partially responsible for the so-called “CMM crisis” identified
by Walker in 1988.

Briefly, the crisis concerns the inability of current Coordinate Measuring Machine (CMM)
software to reliably compute mathematically-precise outputs, even assuming the input data
are reliable. In fact, the reliability of the input data in existing systems are orders of magnitude
better than the reliability of the computed values. The goal, then, is to completely remove the
unreliability introduced by software. The computational geometry attack on this problem is
two-pronged: first, we base algorithms on mathematically correct methods (this is sometimes
called “CG methods” in the literature). Second, we implement these algorithms using exact
computation in a way that characterizes the input imprecision.

Beyond the basic algorithms in computational metrology, there are some larger system is-
sues. One is the “reference software” project that several national standards agencies (say, in
Germany, UK, USA) are attempting to construct. The idea is that CMM vendor software will
continue to be proprietary (black boxes) and for contractual purposes, standards will be guar-
anteed for such software. The National Institute for Standards and Technology has instituted
an Algorithms Testing and Evaluation Program for certifying vendor software. The heart of
this program is the so-called “reference software.” It is clear that the exact computation tech-
nology is ideally suited for this work. Note that algorithms in the reference software need not
achieve “real-time speeds” to be useful. Another example concerns packages for tolerancing
analysis that allow a designer to check the effects of tolerance specifications. Such packages
are commercially available but again they lack reliability. An exact-computation version of
such a system would be a major advancement.

11 Molecular Biology

With the human genome project underway and the promise of a revolutionary approach to
understanding diseases, molecular biology is emerging as one of the most critical scientific
disciplines today. It is an area likely to be heavily funded for many years, and its connections to
computer science are widely recognized. Besides applied and numerical mathematics, the three
major areas of computer science most likely to have an impact on research and development in
molecular biology are information retrieval, string and pattern matching, and computational
geometry. Several basic problems in molecular biology have a strong geometric flavor. These
include problems dealing with the spatial structure of proteins and other macromolecules.
Three such problems are briefly described below.

Spatial structure of a protein. The difficulty and reliability in determining the geometry

or spatial structure of a molecule depends greatly on the type of available data. X-ray crystal-
lography is currently the primary source of structural information, followed next by magnetic

39

resonance imaging (MRI). To derive molecular structure from MRI data, one must resolve
atomic positions given a set of approximate pairwise distances. The traditional tools for this
problem come from distance geometry [40].

Lacking X-ray and MRI data, one can only resort to structural analysis of unknown pro-
teins by looking for patterns in the amino acid residue sequence that match those of known
proteins. For evolutionary reasons, the many proteins occurring in nature share a limited
number of common internal structures and folds. Recognizing such patterns and threading
the unknown protein onto it greatly simplifies structure determination when X-ray or MRI
data are available. Modeling based on such analysis may also be valuable.

The most difficult version of the problem is also the one with the largest potential benefit.
It is the ab initio determination of structure from the amino acid residue sequence [127]. While
one can in principle use Newtonian mechanics to simulate the natural folding of the molecule,
the sheer scale of the calculation is daunting. A modest-size protein folding simulation with
current algorithms would require in the neighborhood of 10'° floating-point operations. A
variety of heuristic methods are used to find the minimum energy configuration, including
simulated annealing, Monte Carlo, and search with reduced degrees of freedom. As yet, none
of these methods have come close to a general solution. Practical methods fail in most cases
because the target function (say, the sum of energy potentials) has a large number of local
maxima at any level of detail.

Ligand-protein docking. Consider an active site on a usually large receptor molecule, and
a ligand molecule, which could be small or large. The general question is how snugly the
ligand fits into the active site. This recognition mechanism is ubiquitous in biology and is
basic to communication, immune response, and control of metabolism. The quality of fit has
a geometric and a chemical component. The geometric component measures how well the
surface shapes complement each other as a hand in glove. The chemical component measures
how well the secondary forces between ligand and receptor atoms hold the two together. In the
simplest version of the problem, both ligand and receptor are assumed to be rigid bodies, and
the objective is to find a best alignment of the surfaces describing their boundaries. Very often
the rigidity assumption is not realistic and flexible models need to be considered. Abstractly,
the docking problem is related to the computer vision problem of matching a 3-dimensional
geometric model to range data. The widely used schemes for representing the molecular surface
and receptor sites in docking algorithms may not be the best choices. Other descriptions, such
as alpha-shapes [48], and other matching criteria, such as Hausdorff distance rather than least
squares, may be more appropriate.

A problem related to docking is the recognition of motifs in proteins, which are substruc-
tures of the proteins with similar geometry. Matching motifs may indicate genetic links or
active sites with similar properties.

Drug design. Given a specific receptor, the problem is to find or design a binding small
ligand molecule. If the receptor site geometry is known, the problem is to find a molecule that
satisfies some geometric constraints and is also a good chemical match. After finding good
candidates according to those criteria, a docking step with energy minimization can be used
to predict binding strength.

If the site geometry is not known, as is often the case, the designer must base the design
on other ligand molecules that bind well to the site. If those other molecules are rigid, the
problem becomes one of identifying the substructures or active groups that contribute to the

40

fit. By joining the groups with alternative molecular scaffolding, one can build molecules with
good or better affinity for the site. The joining process requires solutions of kinematics and
distance geometry problems. If the receptor site geometry is unknown and the ligands are
flexible, then the designer must first posit the configurations of the ligands in their bound
state by assuming that their active groups are in similar places. New drugs are enumerated
which can be folded into a similar appearance.

The Role of Computational Geometry. One of the greatest challenges for computational
geometry is to contribute to the understanding of nature in terms of geometry and algorithms
through the connection offered by molecular biology. The most difficult of the specific problems
mentioned above is the simulation of the folding process that would allow the determination
of protein structure from the amino acid residue sequence, and a solution may be out of reach
at the moment. The other problems seem tractable, and solutions already exist for easy cases
and also for some of the hard ones. The only certainty is that a considerable amount of
research is still called for.

Computational geometry can help in several ways. The first is to participate in the design
of geometric models. The sphere model for atoms is the fundamental idea connecting particle
physics with geometry. There are still open questions as to what extent this simplification
is sufficiently accurate and how physical questions can be approached through studying large
conglomerates of spheres. Based on various extensions of the spherical model [91, 126], the
biology community has developed its own geometric software [38]. The geometry is enhanced
by graphics and numerical software visualizing and utilizing the geometric information. New
software will have to compete with the available packages, which are already widely used, and
it will need to follow data and calling standards so components can be plugged together to
solve large problems.

12 Astrophysics

Large ongoing projects, such as the Sloan Digital Sky Survey (SDSS) [83, 22, 123], aim at
creating a comprehensive digital map of the northern sky. The project SDSS will result in
a complex archive of about 20 terabytes containing exquisitely calibrated digital images of
the accessible half of the northern sky, in 5 wavelength bands, from the ultraviolet to the
infrared. A processing pipeline will identify and derive parameters (fluxes, sizes, colors) of
over 100 million objects, classify them by type (star, galaxy, quasar) and obtain high resolution
spectral information for the brightest one million galaxies and 100,000 quasars in the survey
area. All this information will be placed into the archive for subsequent access and analysis.

The huge amount of information involved makes storage and access a formidable compu-
tational challenge. The data is organized as points in R?. Typically the dimension d is fairly
low, e.g., 8: right ascension, declination, five colors, redshift.

Astrophysical Database. The information should be stored in a database that can support
geometric queries of the kind:

e RANGE QUERY [31, 97]: Given a d-dimensional rectangular box defined by intervals
{(a;,b;) : 1 < ¢ < d}, where a;,b; € R; (R; is the range of the attribute 7), find all the
objects which lie within the specified box. For example, one may be asked to find all
objects within a given right ascension and declination.

41

o LINEAR COMBINATION QUERY: Given a d-dimensional slab of the form [< 3" a;, i, < u,
where ¢; € J (with J the index set defined on all attributes), find all the objects that
lie in the specified range. This query involves searching whether linear combinations of
given attributes have a value within the range given by [and u. For example, we may
have a query of the form: find all objects over the whole sky with a given color, ie,
objects which satisfy u — ¢ < 1, where u and ¢ are color bands.

o CONVEX POLYHEDRON QUERY: Given a d-dimensional convex polyhedron, specified as
intersections of halfspaces (linear combinations of attributes), find all the objects which
lie inside the polyhedron.

e NEAREST NEIGHBOR QUERY: Given a query object ¢, find the closest (in the Euclidean
sense) object in the database. This is a difficult problem to solve efficiently (see [8] for
a good history of the problem). In practice, one can implement a simpler version of the
problem called approxzimate nearest neighbor [8] which takes a parameter ¢, and finds an
object in the database whose distance to ¢ is at most (1 4+ ¢) times the distance to the
actual nearest neighbor.

e k-NEAREST NEIGHBORS QUERY [8]: Given a query object ¢, find k-nearest objects
(approximate) to ¢ in the database.

o PROXIMITY QUERY: Given two regions in d-space and a parameter 4, find all pairs of
objects, one in each region, that lie within a distance § of each other. For example, one
may have a query of the form: find all blue galaxies within 2 arcmin of quasars.

One would also be able to compute topological information (genus, fractal dimension) of cell
complexes formed by subsets of the stored objects. Traditionally, the relational format has
been the favored model for astronomical databases. Such models tend to be slow and unable
to accommodate sophisticated geometric query retrieval. In that regard, space partitioning
schemes, such as k-D trees, appear much more promising. The appropriate choice of splitting
hyperplanes is also a matter of debate. Statistic-based strategies, such as splitting normally
to the direction with maximum variance (covariance matrix method), are potential candi-
dates, but many other choices look promising, too. Actually, the current advances in space
partitioning raises the hope for yet more efficient algorithms.

For the nearest neighbor problem, Voronoi diagram-based methods are doomed because
of the exponential blow in the dimension. Approximation methods have considered [8]. A
full taxonomy should be developed so that the best algorithm for any given dimension can
be identified. When the dimension is very large, projection methods might work well: pick
a random k-flat for small k, and project the points normally to it. Solve the problem in the
projection flat. The hope is that a random flat will more or less preserve distance relation-
ships. Current knowledge does not allow us to assess how good such methods are. More
sophisticated strategies should also be sought. The size of the answer to the queries could be
huge, and so one would like to develop faster (yet accurate) estimation strategies to help the
user determine what he is up against. This information can be very useful in practice. To
perform accurate estimations, statistical analysis of the distribution of the data in each di-
mension is required for performing good partitioning. The resulting geometric data structures
from the partitioning typically satisfy some nice properties which can be used for performing
the estimation efficiently.

42

The massive amount of data necessitates the use of hierarchical memory organization.
External memory models have been proposed which let researchers design 1/0 efficient algo-
rithms. Recently several I/O efficient algorithms for specifically geometric problems have been
proposed which make use of novel techniques [4, 24]. Chiang [34] gives experimental evidence
of the importance of redesigning geometric algorithms to minimize page faults and to optimize
the number of I/O accesses.

Computational Topology. An important feature of a galaxy is its topology. Does the
galaxy distribution consist of isolated high-density clumps (meatball topology), does it have
isolated voids surrounded by walls (bubble topology), or does it resemble a sponge, with
interlocked high- and low-density regions?

The standard first step is to turn galaxies, which are represented by finite set of points,
into smooth surfaces in 3-space. To do so choose a weighting function (a Gaussian) convolving
with each point. This induces a continuous density function throughout the sky. Isodensity
contours form the surfaces whose topology we wish to compute. The Gauss-Bonnet formula
allows us to express the genus of the surface in terms of the integral of the Gaussian curvature.
The integral is computed by sampling the surface by a fine enough grid. These techniques
work fairly well and have been used to determine the topology of many galaxies from satellite
observations [106].

Alternatively, the points can be connected to form a simplicial complex. Instead of a
weighting function we choose a spherical ball around each point and consider the boundary
of the union of balls. To compute the components of this surface and the genus of each
component, we convert the union of balls into a complex as follows. First, clip the balls to
within their Voronoi cells. The resulting cells overlap along their boundaries. The alpha
complex represents pairwise, triplewise, and quadruplewise overlap by edges, triangles, and
tetrahedra. The complex is homotopy equivalent to the union of balls [46], and there is a fast
linear space algorithm that computes the three betti numbers. The number of surfaces, their
genuses, and how they are nested is readily derived from this information.

If other parameters are taken into account, the dimension of the ambient space shoots up
and to reveal the full topology is more difficult. Of all the topological invariants, the homol-
ogy groups are the most popular, mostly because of their computational tractability. The
homology groups describe the cycle structure of a topological space. It would be extremely
useful to be able to compute homology groups efficiently for low-dimensional geometric com-
plexes. Outside astrophysics, there are many important applications in pattern recognition
and classification in biology and chemistry as well as in robotics and scene analysis. Compar-
ing homologies is a good (if not foolproof) test to rule out topological equivalence: two spaces
with different homologies cannot be homeomorphic; of course, the converse is not true.

There are also applications to the classification of time series and the analysis of dynamical
systems. Spectral analysis has long been the standard tool for classifying time series. In the
absence of sharp harmonics, the signal is dismissed as noise. This might be a mistake. Analysis
for nonlinear dynamics can be done by computing topological invariants of the attractor set for
the system being measured. To do so one can map the time series into R? (d ~ 10) by scanning
a “comb” of length d across the series and thinking of each d-tuple of entries at the teeth as
a point in R%. By grouping all (k + 1)-tuples of points at a distance less than ¢ from one
another, one can define k-simplices. Finally, by introducing the obvious boundary operators,
this yields a complex whose (Cech) homology is called the e-homology of the set. Because
Cech homology commutes with inverse limits, this is an appropriate method for computing

43

the homology of the attractor. Moreover the use of e-homology (where simplices are defined
only in terms of pairwise distances) should have computational advantages. This is similar to
the idea of alpha complex alluded to in the earlier paragraph.

Computing homology groups, or their ranks referred to as betti numbers, can be done by
algebraic methods, but it is often inefficient. Exploiting the specific geometry of the mani-
folds can lead to much faster algorithms. There is a compelling analogy with graph algorithms.
Many problems on graphs can be phrased algebraically and solved by inverting linear systems.
That is not the way it is done, however. Graph algorithms seek to exploit the inner combi-
natorial structure of graphs to avoid generic algebraic treatments. Similarly, computational
geometry can be used to bypass linear algebra in the computation of homologies. An example
is the algorithm for simplicial complexes embedded in R? described in [42]. In particular,
the use of Mayer-Vietoris sequences should be useful in designing efficient divide-and-conquer
schemes for computing the homology of higher-dimensional complexes by computational geo-
metric means.

N-Body Problem. One of the most central computational problems in physics is the simu-
lation of a particle system with gravitational or Coulombic forces. The first task is to compute
the potential field of the system. The potential at each point is the sum of the various poten-
tials determined by the particles. The potential at z contributed by a particle at p is often of
the form ¢, /||z — p||2, where ¢, depends on the strength of the charge (or mass) of the particle
at p.

Assuming infinite arithmetic, it is easy to compute the potential in O(n?) time, where n
is the number of particles. A method, called the fast multipole method, based on multipole
expansion was developed in [65] and refined by introducing computational-geometric ideas in
distance geometry [25].

To apply the fast multipole method, one must first construct a tree decomposition of the
set of particles, along with a set of pairs of nodes in the tree. This step can be shown to require
O(nlogn) time in the algebraic model. Given such a decomposition, the fast multipole method
requires only linear time. However, the constants involved in the fast multipole method are
so large that for realistic numbers of particles, this turns out to be the most time-consuming
part of the computation.

The large constant in the fast multipole method arises both from geometry and from the
need to manipulate series expansions, the size of which grows with the desired output precision.
Despite the large constant, the method has proven useful for simulations involving millions of
particles, for which the direct approach is not even feasible. Reduction of this constant would
have significant practical implications for particle simulation, both by speeding up existing
applications, and extending the useful range of the fast multipole method to smaller sets of
particles.

There is a great deal of flexibility in the geometrical decomposition needed for the fast
multipole method, and some gains could result from investing more effort in this part of
the algorithm. Currently, the tree computed is a fairly standard box decomposition that
guarantees a small number of pairs of nodes for which the fast multipole method must be
applied. However, for any given point set, there may be another tree that results in a somewhat
smaller number of pairs, in which case it may be worthwhile to expend the effort needed to
find such a tree.

The efficient implementation of the fast multipole method poses non-trivial technical chal-
lenges. For example, in current implementations, one typically constructs a tree in which

44

the leaves are subsets of particles rather than single particles, and computes the potential
between these subsets directly. The size of these subsets has a strong effect on the efficiency of
an implementation, and must be chosen carefully in order for the method to be of any benefit.

Efficient parallel implementations would be particularly useful, because a particle simula-
tion can require many potential computations, each of which carries the simulation through
one small time step. The more steps that can be performed, the more can be learned about
the dynamics of large particle systems, so any speed increases will have a direct impact on
computational physics.

13 Resources for Computational Geometers

13.1 Journals

Three journals are devoted to the subject of computational geometry: Discrete and Compu-
tational Geomelry, International J. Computational Geometry and Applications, and Compu-
tational Geometry: Theory and Applications.

Computational geometry papers also often appear in algorithm journals such as Algo-
rithmica and J. Algorithms, and occasionally are published in general theoretical computer
science and discrete mathematics journals including Discrete Mathemalics, Information Pro-
cessing Letters, J. ACM, J. Combinatorial Theory, Ser. A, J. Computer and System Sciences,
SIAM Journal on Computing, and Theoretical Computer Science.

In addition, geometric papers with a strong applications content may be published in
specialized journals aimed at the particular application of the paper. ACM Trans. on Graphics
publishes papers in computer graphics. Computer Aided Geomelric Designis largely concerned
with topics related to splines and surface approximation, but has also published several papers
on triangulation. Annals of Mathematics and Artificial Intelligence published in 1991 a special
issue on algorithmic robot motion planning; the same subject is also covered by J. Intelligent
and Robotic Systems. Some areas of geometry (especially robotics) have close connections
with computational algebra and can be found in J. Symbolic Computation.

13.2 Conferences

There are several annual conferences and workshops devoted entirely to computational geome-
try. The oldest of these is the highly selective ACM Symposium on Computational Geometry.
Others include the Canadian Conference on Computational Geometry, the ARO-MSI Work-
shops on Computational Geometry, and the Furopean Workshop on Computational Geometry.

There is usually a large amount of geometry at the major algorithms conferences, including
the ACM-SIAM Symposium on Discrete Algorithms (SODA), the Int. Symp. Algorithms and
Computation (ISAAC), the European Symp. on Algorithms (ESA), the Workshop on Algo-
rithms and Data Structures (WADS), and the Scandinavian Workshop on Algorithm Theory
(SWAT). The three major annual theory conferences, ie, the ACM Symposium on Theory
of Computing (STOC), the IEEE Symposium on Foundations of Computer Science (FOCS),
and the International Colloquium on Automata, Languages and Programming (ICALP) also
usually contain some amount of computational geometry.

The 2nd Federated Computing Conference to be held in Philadelphia, May 1996, is to
include not only the ACM Symp. Comp. Geom., but also a new ACM Workshop on Ap-
plied Computational Geometry. DIMACS, Schloss Dagstuhl, INRIA, and Tel Aviv University

45

regularly organize workshops in computational geometry. DREI, an NSF-sponsored program
for high school teachers is having a special year in computational geometry, which includes a
research component (3 workshops).

Pointers to calls for papers, programs, contents, and proceedings for many of these con-
ferences as well as for conferences relating to various applications of computational geometry
can be found online at

http://www.ics.uci.edu/~eppstein/junkyard/jconf.html

13.3 Web Sites

Directly related to the theme of this task force, David Eppstein’s web page “Geometry in
Action”

http://www.ics.uci.edu/~eppstein/geom.html

is devoted to applications and potential applications of computational geometry, and includes
pointers to over 100 individual projects and applications in areas such as astronomy, geographic
information systems, CAD/CAM, data mining, graph drawing, graphics, medical imaging,
metrology, molecular modeling, robotics, signal processing, textile layout, typography, video
games, vision, VLSI, and windowing systems. This page also includes pointers to other web
sites including the ones discussed here. Eppstein maintains some open problems at

http://www.ics.uci.edu/~eppstein/junkyard/open.html

A large bibliography of computational geometry papers, maintained by Bill Jones and Otfried
Schwarzkopf, is available at

http://www.cs.ruu.nl/people/otfried /html/geombib.html

Schwarzkopf also maintains some other web resources including a dictionary of French com-
putational geometry terminology:

http://www.cs.ruu.nl/people/otfried /html/francais.html
Other lists of computational geometry resources are maintained at Carleton Univ.
http://www.scs.carleton.ca/~csgs/resources/cg.html
and by Jeff Erickson at Berkeley
http://www.cs.berkeley.edu/~jeffe /compgeom.html

Various items concerning conferences, seminars, software, bibliography and a list of researchers
with web pages can be found in

http://wwwdim.uqac.uquebec.ca/~jmrobert/CG.html

which is maintained by Jean-Marc Robert.

46

13.4 Mailing Lists

Several computational geometry mailing lists are distributed at AT&T Bell Laboratories:
compgeom-announce for announcements about professional activities, compgeom-discuss for
discussion or questions, and compgeom-tribune, a newsletter sent out aperiodically by Hervé
Bréonnimann. Mail to compgeom-xxxx@research.att.com will be forwarded to subscribers to
those lists. (Mail sent to compgeom-tribune will be forwarded to its editor.) For more in-
formation, send mail to compgeom-request@research.att.com with the message body “send
readme” or see an HI ML version of the readme file provided at

http://pine.fernuni-hagen.de/GI/compgeom /compgeom.html

The compgeom-request server is also capable of some other services including email searches
of the computational geometry bibliography.

The Geometry Forum at Swarthmore College maintains several related newsgroups: ge-
ometry.announcements for announcements of programs and resources for geometers; geom-
etry.college for topics relevant to the study and teaching of college-level geometry; geome-
try.forum for news and discussion of the Forum news service; geometry.institutes for proceed-
ings of geometry conferences and institutes; geometry.pre-college for K-12 math discussions
and online projects; geometry.puzzles, for your spare time; geometry.research, for advanced
geometry investigations and research topics; and geometry.software.dynamic, for discussions
of work using the Geometer’s Sketchpad and/or Cabri Geometre. The contents are also avail-
able via mailing lists; to subscribe, send email to majordomo@forum.swarthmore.edu with
message body “subscribe geometry-xxxx”. For more information, see

http://forum.swarthmore.edu/~sarah/topics/about.newsgroups.html

Messages from all these groups are archived and can be searched at

http://forum.swarthmore.edu/~sarah/HTMLthreads/index.html

13.5 Software

Many people have implemented the basic geometric algorithms such as convex hulls and
Voronoi diagrams; a few more complicated geometric algorithms are also implemented and
available.

Nina Amenta has collected a large number of free computational geometry programs at

http://www.geom.umn.edu:80/software/cglist /

The programs are arranged by subject and include convex hulls, Voronoi diagrams, Delau-
nay triangulation, low dimensional linear programming, triangulation, point location, shape
reconstruction, collision detection, constraint solving, and visualization.

Seth Teller has a collection of C code and SGI executables for linear programming, voronoi
diagrams, and manipulation of NURBS surfaces at

http://graphics.lcs.mit.edu/~seth/geomlib/geomlib.html

Joe O’Rourke has made C code corresponding to the material in his textbook, “Compu-
tational Geometry in C”, available at

ftp://grendel.csc.smith.edu/pub/compgeom /

47

The code itself is in file “sharfile”, and a description of the other files in this directory is in
“README”.

Various people have provided computational geometry packages for the Mathematica sym-
bolic computation package; these routines are available from MathSource at

http://www.wri.com/mathsource/

A keyword search on MathSource for “geometry” turned up roughly 40 packages (not all
related to computational geometry); of particular interest are “Computational Geometry” by
E. C. Martin, “CirclePack” by O. Goodman, and “Vertex Enumeration”, by K. Fukuda and
1. Mizukoshi.

LEDA, a Library of Efficient Data Types and Algorithms, is a project at the Max Planck
Inst. fir Informatik, run by Kurt Mehlhorn, that provides a large collection of data types and
algorithms in a form that can be used by non-experts. Along with basic non-geometric data
structures such as binary search trees, LEDA includes implementations of several geometric
algorithms including convex hulls and line segment intersection. For more information see

http://www.mpi-sb.mpg.de/LEDA /leda.html

14 Conclusions

Computational geometry enjoys two unique assets: (1) its diversity and potential to affect
most forms of computing; (2) its mature algorithmic foundations. The challenge is now to
make this potential come true, and build an effective pipeline connecting theory to practice.
We believe that this will revitalize the field and open new vistas for geometric research, both
of a practical and a theoretical nature. The solutions of the most exciting open problems
might be unknown. But the most exciting open problems themselves might be unknown, too.
We are confident that creating the pipeline will unveil many of these problems.

15 Acknowledgments

In June of 1994, I assembled a task force to reflect on the needs to reform computational geom-
etry and initiate a community-wide debate. Its members were: Nina Amenta (Xerox PARC),
Tetsuo Asano (Osaka Electro-Comm. U.), Gill Barequet (Tel Aviv U.), Marshall Bern (Xe-
rox PARC), Jean-Daniel Boissonnat (INRIA), John Canny (U.C. Berkeley), Bernard Chazelle
(Chair, Princeton U.), Ken Clarkson (AT&T Bell Laboratories), David Dobkin (Princeton
U.), Bruce Donald (Cornell U.), Scot Drysdale (Dartmouth U.), Herbert Edelsbrunner (U. Illi-
nois at Urbana-Champaign), David Eppstein (U.C. Irvine), A. Robin Forrest (U. East Anglia),
Steve Fortune (AT&T Bell Laboratories), Ken Goldberg (U.C. Berkeley), Michael Goodrich
(Johns Hopkins U.), Leonidas J. Guibas (Stanford U.), Pat Hanrahan (Stanford U.), Chris
M. Hoffmann (Purdue U.), Dan Huttenlocher (Cornell U.), Hiroshi Imai (U. Tokyo), David
Kirkpatrick (UBC), D.T. Lee (Northwestern U.), Kurt Mehlhorn (Max Planck Inst.), Victor
Milenkovic (U. Miami), Joe Mitchell (SUNY at Stony Brook), Mark Overmars (U. Utrecht),
Richard Pollack (Courant Institute, NYU), Raimund Seidel (U. Saarbriicken), Micha Sharir
(Tel Aviv U. and NYU), Jack Snoeyink (UBC), Godfried Toussaint (McGill U.), Seth Teller
(MIT), Herb Voelcker (Cornell), Emo Welzl (ETH Ziirich), and Chee Yap (Courant Institute,
NYU).

48

Although the Task Force never met physically as a whole, a considerable amount of ex-
changes and discussions ensued. People outside the Task Force also contributed copiously
to its deliberations. The present document summarizes some of these reflections. It evolved
from bits and pieces submitted by individual members. The final assembly and editing of the
document (ie, the final typos) are mine.

I thank the Task Force members for their enthusiastic response and the tremendous amount
of work they put into it. I also wish to acknowledge the helpful comments of Alok Aggarwal,
Timothy Baker, Paul Callahan, Martin Held, Robert Lupton, Prabhakar Raghavan, Kumar
Ramaiyer, Subhash Suri, Roberto Tamassia, and Jovan Zagajac. Thanks to all.

Bernard Chazelle
Princeton, April 1996

References

[1] Agarwal, P.K., Sharir, M., Toledo, S. Applications of parametric searching in geometric opti-
mization, Proc. 3rd ACM-SIAM Symp. Disc. Alg. (1992), 72-82.

[2] Airey, J.M., Rohlf, J.H., Brooks, F.P. Towards image realism with interactive update rates in
complex virtual building environments, ACM Siggraph, Special Issue on 1990 Symp. Interactive
3D Graphics 24 (1990), 41-50.

[3] Alt, H., Behrends, B., Blomer, J. Measuring the resemblance of polygonal shapes, Proc. Tth Ann.
ACM Symp. Comp. Geom. (1991), 186-193.

[4] Arge, L. The buffer tree: a new technique for optimal 1/0O-algorithms, in Workshop on Dala
Structures and Algorithms, 1995.

[5] Arkin, E.M., Fekete, S., Mitchell, J.S.B. Optimal tours for lawnmowing and milling, SUNY
Stony Brook, 1995. An earlier paper appears in the 5th Canad. Conf. on Comp. Geom., 1993,
461-466.

[6] Arkin, E.M., Held, M., Smith, C.L. Optimization problems related to zigzag pockel machining,
Proc. 6th ACM-STAM Symp. Disc. Alg. (1996), 419-428.

[7] Armstrong, G.T., Carey, G.C., dePennington, A. Numerical Code Generation From a Geomelric
Modeling System, Solid Modeling by Computers: From Theory to Applications, ed. M.S. Pickett
and J.W. Boyse, Plenum Press, New York, 1984.

[8] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A. An optimal algorithm for
approzimate nearest neighbor, Sympos. Disc. Alg., 1994.

[9] Asano, T., Kimura, S. Contour representation of an image with applications, Proc. SPIE’s In-
ternational Symposium on Vision Geometry IV, San Diego (July 1995), 14-22.

[10] Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T. Polynomial-time solutions to image segmenta-
tion, Proc. of the 7th Ann. STAM-ACM Conference on Discrete Algorithms (Jan. 1996), 104-113.

[11] Atherton, P., Earl, C., Fred, C. A graphical simulation system for dynamic five-azis NC ver-
ification, Autofact Show of the Society of Manufacturing Engineers, Detroit, Nov. 1987, 2-1 -
2-12.

[12] Baird, H.S. Mode-Based Image Matching Using Location, MIT Press, 1985.

49

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

31]

Baker, T.J. Developments and trends in three-dimensional mesh generation, Appl. Numerical

Mathematics 5 (1989) 275-304.

Barequet, G., Sharir, M. Piecewise-linear interpolation between polygonal slices;, CVGIP: Image
Understanding, to appear.

Bern, M., Eppstein, D. Mesh generation and optimal triangulation, In “Computing in Euclidean
Geometry” (2nd Edition). Eds. D.-Z. Du and F.K. Hwang, World Scientific Press (1995), 47-123.

Boissonnat, J.-D. Shape reconstruction from planar cross sections, Computer Vision, Graphics
and Image Processing 44 (1988), 1-29.

Boissonnat, J.-D., Faugeras, O.D. Triangulation of 3-D objects, Proc. Tth Int. Joint Conf. on
Artificial Intelligence (1981), 658-660.

Boissonnat, J.-D., Geiger, B. Three-dimensional reconstruction of complex shapes based on the
Delaunay triangulation, eds., Acharya, R.S. and Goldgof, D.B. In “Biomedical Image Processing
and Biomedical Visualization”, 1905 (1993), SPIE, 964-975.

Boissonnat, J.-D., Teillaud, M. On the randomized construction of the Delaunay tree, Theoret.

Comput. Sci. 112 (1993), 339-354.

Bouma, W., Fudos, 1., Hoffmann, C.M., Cai, J., Paige, R. A geometric constraint solver, Com-
puter Aided Design 27 (1995), 487-501.

Brost, R., Goldberg, K. A complete algorithm for synthesizing modular fiztures for polygonal
parts. IEEE Transactions on Robotics and Automation, 1996. To appear.

Brunner, R., Ramaiyer, K., Szalay, A., Connolly, A., Lupton, R. An object-oriented approach to
astronomical databases, Proc. 4th Ann. Conf. Astronomical Data Analysis Software and Systems,
Baltimore, 1994.

Buttenfield, B., McMaster, R., eds. Map Generalization: Making Rules for Knowledge Repre-
sentation, John Wiley & Sons, 1991.

Callahan, P., Goodrich, M., Ramaiyer, K. Topology B-trees and their applications, Workshop on
Data Structures and Algorithms, 1995.

Callahan, P., Kosaraju, S.R. A decomposition of multi-dimensional point-sets with applications to
k-nearest-neighbors and n-body potential fields, Proc. 24th Ann. ACM Sympos. Theory Comput.
(1992), 546-556.

Canny, J. The Complezity of Robot Motion Planning, M.I'T. Press, Cambridge, 1988.

Canny, J., Goldberg, K. A RISC approach to sensing and manipulation, Journal of Robotic
Systems, 12(6):351-362, June 1995.

Cass, T.A. Feature matching for object localization in the presence of uncertainty, Proc. IEEE
Conf. Computer Vision and Pattern Recognition (1990), 360-364.

Chalasani, P., Motwani, R., Rao, A. Approzimating tsp variants for robot grasp and delivery, in
preparation, July 1994.

Chappel, I.'T. A new approach to automatic tool path generation for numerically controlled
milling machines, Proc. 4" Int. Conf. on Manufacturing Engineering, Brisbane, Australia, May

1988, 29-32.

Chazelle, B. Computational geometry: a retrospective, In “Computing in Euclidean Geometry”

(2nd Edition), Eds. D.-Z. Du and F. Hwang, World Scientific Press (1995), 22-46.

50

Chazelle, B., Dobkin, D.P.; Shouraboura, N., Tal, A. Strategies for polyhedral surface decom-
position: an experimental study, Computational Geometry: Theory and Applications, 1995, to
appear.

Chazelle, B., Palios, L. Decomposition algorithms in geometry, Algebraic Geometry and its

Applications, C. Bajaj, Ed., Chap.27, Springer-Verlag (1994), 419-447.

Chiang, Y.J. Ezperiments on the practical 1/0 efficiency of geometric algorithms: distribution
sweep vs. plane sweep, Workshop on Data Structures and Algorithms, 1995.

Choi, J., Sellen, J., Yap, C. Precision-sensitive Fuclidean shortest path in 3-space, Proc. 11th
Ann. ACM Symp. Comput. Geom. (1995), 350-359.

Clarkson, K.L. Randomized geometric algorithms, In “Computing in Euclidean Geometry”, Eds.

D.-Z. Du and F. Hwang, World Scientific Press (1992), 117-162.

Cohen, M.F., Wallace, J.R. Radiosity and Realistic Image Synthesis, Academic Press Profes-
sional, San Diego, CA (1993).

Connolly, T.H. Analytical molecular surface calculation, J. Appl. Cryst. 16 (1983), 548-558.

Cook, L.T., Cook, P.N.,| Lee, K.R., Batnitzky, S., Wong, B.Y.S., Fritz, S.L. Ophir, J., Dwyer III,
S.J., Bigongiari, L.R., Tempelton, A.-W. An algorithm for volume estimation based on polyhedral
approzimation, IEEE Trans. Biomedical Engineering 27 (1980), 493-500.

Crippen, G.M., Havel, T.F. Distance Geometry and Molecular Conformation, Wiley, New York,
1988.

Daniels, K., Milenkovic, V.J. Multiple translational containment. Part I: An approzimation al-
gorithm, Algorithmica, special issue on CG in manufacturing, to appear.

Delfinado, C. J. A. and Edelsbrunner, H. An incremental algorithm for betti numbers of simplicial
complezes, Proc. 9th Ann. Symp. Comput. Geom., 1993, 232-239.

Drysdale, R.L., Jerard, R.B., Schaudt, B., Hauck, K. Discrete simulation of NC machining,
Algorithmica 4 (1989), 33-60.

Dobkin, D., and Teller, S. Computer Graphics, To appear in “CRC Handbook of Discrete and
Computational Geometry” XXX publisher, YYY city (1996).

Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.
Edelsbrunner, H. The union of balls and its dual shape, Disc. Comput. Geom. 13 (1995), 415-440.

Edelsbrunner, H., Mucke, E.P. Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), 66-104.

Edelsbrunner, H., Miicke, E.P. Three-dimensional alpha shapes, ACM Trans. Graphics 13 (1994),
43-72.

Emiris, I., Canny, J. A general approach to removing degeneracies, SIAM J. Comput. 24 (1995),
650-664.

ESRI White Paper Series. Environmental Systems Research Institute, Inc. ARC/INFO: GIS
Today and Tomorrow, Mar. 1992.

Federal Geomatics Bulletin, 4(1), 1992. GIS Division, Energy, Mines and Resources. Ottawa,
Canada.

51

[52]

[53]

[54]

Fortune, S., Van Wyk, C. Efficient ezact arithmetic for computational geometry, Proc. 9th ACM
Symp. Comp. Geometry (1993), 163-172.

Fridshal, R., Cheng, K.P., Duncan, D., Zucker, W. Numerical control part program verification
system, Proc. Conf. CAD/CAM Technology in Mechanical Engineering, MIT (March 1982),
MIT Press, 236-254.

Funkhouser, T., Séquin, C., and Teller, S., Management of Large Amounts of Data in Interactive
Building Walkthroughs, Proc. 1992 Workshop on Interactive 3D Graphics, 11-20.

Funkhouser, T., Séquin, C. Adaptive display algorithm for interactive frame rates during visual-
ization of complex virtual environments, Computer Graphics 27, Proc. Siggraph (1993), 247-254.

Gigus, Z., Canny, J.F., Seidel, R. Efficiently computing and representing aspect graphs of poly-
hedral objects, IEEE Trans. Pat. Anal. Mach. Intel. 13 (1991), 542-551.

Gold, C. M. Problems with handling spatial data—the Voronoit approach, CISM Journal 45
(1991), 65-80.

Gold, C. M. An object-based dynamic spatial model, and its application in the development of a
user-friendly digitizing system, Proc. 5th Intl. Symp. Spatial Data Handling, IGU Commission
on GIS (1992), 495-504.

Goldberg, K., Latombe, J.-C., Halperin, D., Wilson, R. editors. The Algorithmic Foundations
of Robotics: First Workshop. A. K. Peters, Boston, MA, 1995.

Goodchild, M. F. A spatial analytical perspective on geographical information systems, Int. J.
GIS 1 (1987), 327-334.

Goodchild, M. F. Geographic information systems and cartography, Cartography 19 (1990), 1-13.

Goodchild, M. F. Issues of quality and uncertainty, J. C. Muller, editor, Advances in Cartogra-
phy, Elsevier Applied Science, London (1991), 113-139.

Goodchild, M. F., Kemp, K. K., Poiker, T. K. NCGIA Core Curriculum, National Center for
Geographic Information Analysis, University of California, Santa Barbara CA 93106-4060, USA,
1989. On WWW at http://www.env.gov.bc.ca/ "tclover/giscourse/ToC.html.

Goodman, J.E., O'Rourke, J. (eds), CRC Handbook of Discrete and Computational Geometry,
CRC Press, Boca Raton, to appear.

Greengard, L.F. The Rapid Evolution of Potential Fields in Particle Systems, The MIT Press,
1988.

Guibas, L.J., Marimont, D. H. Rounding arrangements dynamically, Proc. 11th Ann. Symp.
Comput. Geom., 1995 (190-199).

Hamann, B. and Moorhead, R.J. A survey of grid generation methodologies, the National Grid
Project, and scientific visualization efforts at the NSF Engineering Research Center for Com-
putational Field Stmulation, to appear in: Nielson, G. M. et al., eds., IEEE Computer Society
Press, Los Alamitos, California.

Heckbert, P.S., Garland, M. Fast polygonal approzimation of terrains and height fields, Technical
Report CMU-CS-95-181, Carnegie Mellon University, 1995.

Held, M. On the computational geometry of pocket machining, Vol. 500 of Lecture Notes in
Computer Science. Springer-Verlag, June 1991.

52

[70]

[71]

[72]
[73]

[86]

[87]

[88]

Hobby, J. Practical segment intersection with finite precision arithmetic, Manuscript, AT&T
Bell Labs, October 1993.

Hoffmann, C.M. The problems of accuracy and robustness in geometric computation, IEEE Com-

puter 22 (1989), 31-42.
Hoffmann, C.M. Geometric and Solid Modeling, Morgan Kaufmann, 1989.

Hoffmann, C.M. Geometric approaches to mesh generation, in “Modeling, Mesh Generation, and
Adaptive Numerical Methods for Partial Differential Equations”, eds. 1. Babuska, J. Flaherty,
W. Henshaw, J. Hopcroft, J. Oliger, T. Tezduyar, Springer Verlag, IMA Volumes in Mathematics
and its Applications 75 (1995).

Hoffmann, C.M., Vermeer, P.J. Geometric constraint solving in R? and R3, Computing in Eu-
clidean Geometry, eds. D. Z. Du and F. Hwang, World Scientific Publishing, 2nd ed., 1994.

Ho-Le, K. Finite element mesh generation methods: a review and classification, Computer-Aided

Design 20 (1988) 27-38.

Hunt, W.A., Voelcker, H.B. An ezploratory study of Automatic verification of programs for
numerically controlled machine tools, Production Automation Project Tech Memo No. 34, Uni-
versity of Rochester, Jan. 1982.

Hutchinson, S. Ezploiting visual constraints in robot motion planning, IEEE Conference on

Robotics and Automation (1991), 1722-1727.

Huttenlocher, D.P., Kedem, K., Sharir, M., The upper envelope of Voronoi surfaces and its
applications, Disc. Comp. Geom. 9 (1993), 267-291.

Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J. Comparing images using the Hausdorff
distance, IEEE Trans. Pat. Anal. Mach. Intel. 15 (1993), 850-863.

Huttenlocher, D.P.; Ullman, S. Recognizing solid objects by alignment with an image, Int. J.
Computer Vision, 5 (1990), 195-212.

lles, K. Data considerations — Some principles for accuracy and reliability of data in a GIS
system, GIS’89 Symposium (1989), Vancouver, Canada, 103.

Information Technology for Manufacturing: A Research Agenda, National Academy Press, 1995.

Kent, S.M., Stoughton, C., Newberg, H., Loveday, J. Petravick, D., Gurbani, V., Berman, E.,
Sergey, G. Sloan digital sky survey, Proc. 3rd Ann. Conf. Astronomical Data Analysis Software
and systems, Victoria, British Colombia, 1993.

Kirkpatrick, D., Mishra, B., Yap, C.K. Quantitative Steinitz’s theorems with applications to
multifingered grasping, Disc. Comput. Geom. 7 (1992).

Klein, H.M, Schneider, W., Alzen, G., Voy, E.D., Gunter, R.W. Pediatric craniofacial surgery:
Comparison of milling and stereolithography for 3D model manufacturing, Pediatric Radiology
22 (1992), 458-460.

Kumler, M. P. Intensive comparison of triangulated irregular networks (TINS) and digital ele-
vation models (DEMS), Cartographica 31 (1994), monograph 45.

Lamdan, Y., Wolfson, H.J. Geometric hashing: A general and efficient model-based recognition
scheme, International Conference on Computer Vision (1988), 238-249.

Latombe, J.-C. Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.

53

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Laurini, R., Thompson, D. Fundamentals of spatial information systems. Academic Press, Lon-

don, 1992.

Lazanas, A., Latombe, J.-C. Landmark-based robot navigation, American Association for Artifi-
cial Intelligence Conference (1992), 816-822.

Lee, B., Richards, F.M. The interpretation of protein structures: estimation of static accessibility,

J. Mol. Biol. 55 (1971), 379-400.

Li, S.X., Jerard, R.B. 5-Azis Machining of Sculptured Surfaces with a Flat-End Cutter, CAD,
26 (1994), 165-178.

Lohner, R. Finite elements in CFD: what lies ahead, Int. J. Numer. Meth. Eng. 24 (1987),
1741-1756.

Lorensen, W.E., Cline, H.E. Marching cubes: A high resolution 3D surface construction algo-
rithm, Computer Graphics 21 (1987), 163-169.

Lumelsky, V. Algorithmic and complexity issues of robot motion in an uncertain environment,

Journal of Complexity 3 (1987), 146-182.
Markenscoff, X., Ni, L., Papadimitriou, C.H. The geometry of grasping, IJRR 9 (1990).
Matousek, J. Geometric range searching, ACM Comput. Surveys 26 (1995), 421-461.

Mehlhorn, K. Data Structures and Algorithms 3: Multidimensional Searching and Computational
Geometry, Springer-Verlag, Heidelberg, Germany, 1984.

Menon, J.P., Robinson, D.M. Advanced verification via massively parallel raycasting, Manufac-

turing Review 6 (1993), 141-154.

Menon, J.P., Voelcker, H.B., Towards a comprehensive formulation of NC verification as a
mathematical and computational problem, J. Design and Manufacturing 3 (1993), 263-277.

Milenkovic, V.J. Multiple translational containment. Part II: Ezact algorithms, Algorithmica,
special issue on CG in manufacturing, to appear.

Milenkovic, V.J. Robust polygon modeling, Special issue of Computer-Aided Design on Uncer-
tainties in Geometric Computations, 25 (1993), 546-566.

Milenkovic, V.J., Li, Z. A compaction algorithm for nonconvexr polygons and its application,

European J. Operations Research, 84 (1995), 539-560,

Milenkovic, V.J. Practical methods for set operations on polygons using exact arithmetic, Proc.

7th Canad. Conf. Comput. Geom., 1995 (55-60).

Milenkovic, V.J. Translational polygon containment and minimal enclosure using linear program-
ming based restriction, Proc. 28th Ann. ACM Symp. Theory Comput. (to appear) 1996.

Moore, B., Frenk, C.S., Weinberg, D.H., Saunders, W., Lawrence, A., Ellis, R.S., Kaiser, N.,
Efstathiou, G., Rowan-Robinson, M. The topology of the QDOT IRAS redshift survey, Monthly
Notices Royal Astronomical Society, 256 (1992), 477-499.

Muller, H., Klingert, A. Surface interpolation from cross sections, in: Focus on Scientific Visu-
alization (H. Hagen, H. Miiller, and G.M. Nielson, eds.), Springer Verlag, Berlin, 1993, 139-189.

Mulmuley, K. Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice-Hall, 1994.

54

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Murray, R., Li, Z., Sastry, S. A Mathematical Introduction to Robotics Manipulation. CRC Press,
1994.

Naher, S. The LEDA user manual, Version 3.1 (Jan. 16, 1995). Available by anonymous ftp from
ftp.mpi-sb.mpg.de in directory /pub/LEDA.

Navazo, I., Ayala, A.D., Brunet, P. A geometric modeler based on the exact octree representation
of polyhedra, Computer Graphics Forum, 5, 91-104.

Okabe, A., Boots, B., Sugihara, K. Nearest neighbourhood operations with generalized Vorono:
diagrams: A review. Int. J. GIS 8 (1994), 43-71.

Oliver, J.H., Goodman, E.D., Color graphic verification of NC milling programs for sculptured
surfaces, 10th Ann. Automotive Computer Graphics Conference and Exposition, Engineering
Society of Detroit, Dec. 1985.

O’Rourke, J. Computational Geometry in C, Cambridge Univ. Press, 1994.

Overmars, M., Rao, A., Schwarzkopf, O., Wentink, C. Immobilizing polygons against a wall,
ACM Symp. Comput. Geom. (1995), Vancouver, BC.

Papadimitriou, C.H., Yannakakis, M. Shortest paths without a map, Theoretical Computer Sci-
ence 84 (1991), 127-150.

Pellegrini, M. Monte Carlo approzimation of form factors with error bounded a priori, Proc.

11th Ann. ACM Symp. Comput. Geom. (1995), 287-296.

Perkal, J. On the length of empirical curves, Discussion Paper 10, Michigan Inter-University
Community of Mathematical Geographers, University of Michigan, Ann Arbor, 1966.

Peucker, T. K., Fowler, R. J., Little, J. J., Mark, D. M. The triangulated irregular network,
Amer. Soc. Photogrammetry Proc. Digital Terrain Models Symposium (1978), 516-532.

Preparata, F.P, Shamos, M.I. Computational Geometry: an Introduction, Springer-Verlag, New
York, 1988.

Pribble, W.I. Molds for reaction injection, structural foam and expandable styrene molding,
in: Plastics mold engineering handbook, J.H. DuBois and W.I. Pribble (Eds.), Van Nostrand
Reinhold Company Inc., New York, 1987.

Quinn, J., Accurate Verification of Five-Azis Numerically Controlled Machining, Ph.D. Thesis,
Dartmouth College, May 1993.

Ramaiyer, K., Brunner, R., Szalay, A., Connolly, A., Lupton, R. Prototype astronomical
database, Proc. 2nd ACM Workshop on Advances in Geographic Information Systems, Gaithers-
burg, Maryland, 1994.

Rao, A., Goldberg, K. Manipulating algebraic parts in the plane, IEEE Transactions on Robotics
and Automation 11 (1995).

Raper, J., ed. Three Dimensional Applications in Geographic Information Systems, Taylor &
Francis, 1989.

Richards, F.M. Areas, volumes, packing, and protein structures, Ann. Rev. Biophys. Bioeng. 6
(1977), 151-176.

Richards, F.M. The protein folding problem, Scientific American 264 (1991), 54-63.

55

[128]

[129]

[130]

[131]

[132]

[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Rucklidge, W.J. Locating objects using the Hausdorff distance, Proc. 5th Int. Conf. on Computer
Vision (1995), 457-464.

Sack, J.-R., Urrutia, J. (eds), Handbook of Computational Geometry, Elsevier Science Publishers,
in preparation.

Sapidis, N. and Perucchio, R. Advanced techniques for automatic finite element meshing from

solid models, Computer-Aided Design 21 (1989) 248-253.

Schumaker, L.L. Reconstructing 3D objects from cross-sections, in: Computation of Curves and
Surfaces (W. Dahmen, M. Gasca, and C.A. Micchelli, eds.), Kluwer Academic Publishers, 1989,
275-309.

Schwartz, J.T., Sharir, M. On the piano movers’ problem: 2. general techniques for computing
topological properties of real algebraic manifolds, Advances in Applied Mathematics 4 (1983),
298-351.

Sharir, M. Almost tight upper bounds for lower envelopes in higher dimensions, Disc. Comput.

Geom. 12 (1994), 327-345.
Skiena, S.S. Problems in geometric probing, Algorithmica 4 (1989), 599-605.

Speen, R.B. A dynamic approach to modeling for numerically controlled verification, Masters
Thesis, Purdue University, 1985.

Stucki, P., Bresenham, J., Earnshaw, R., Guest Editors. Rapid prototyping technology, Special
issue of IEEE Comp. Graphics and Applications 15 (1995), 17-55.

Teller, S. Visibility Computations in Densely Occluded Polyhedral Environments, CS Dept., UC
Berkeley (1992), TR UCB/CSD 92/708 or http://cs-tr.cs.berkeley.edu:80/TR/UCB:CSD-92-
708.

Van Hook, T. Real-time shaded NC milling display, ACM SIGGRAPH, 20, 4, (1986), 15-20.

van Qosterom, P. Reactive Data Structures For Geographic Information Systems, Oxford Uni-
versity Press, 1993.

Voelcker, H.B., Requicha, A.A.G., Conway, R.W. Computer applications in manufacturing, in
“Annual Review of Computer Science”, Ed. J. F. Traub, Vol. 3. Palo Alto, CA: Annual Reviews
Inc. (1988), 349-387.

Voelcker, H.B., Requicha, A.A.G. Research in solid modeling at the University of Rochester:
1972-1987, in “Fundamental Developments of Computer-Aided Geometric Modeling”, Ed. L.
Piegl, Academic Press Ltd., London, England (1993), 203-254.

Wallack, A., Canny, J. Planning for modular and hybrid fiztures, IEEE International Conference
on Robotics and Automation, May 1994.

Wang, W.P., Wang, K.K. Real-time verification of multiazis NC programs with raster graphics,
IEEE Proc. 1986 Int. Conf. Robotics and Automation, San Francisco (April 1986), 166-171.

Wilson, R.H., Kavraki, L., Lozano-Perez, T., Latombe, J.-C. Two-handed assembly sequencing,
Intl. J. of Robotics Research, 14 (1995), 335-350.

Wozny, M.J., Regli, W.C., Guest Editors. Computer science in manufacturing, Special issue of
Comm. ACM 39 (1996), 33-85.

Xiang, W.-N. A GIS method for riparian water quality buffer generation, Int. J. GIS 7 (1993),
57-70.

56

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Yan, X., Gu, P. A review of rapid prototyping technologies and systems, Computer-Aided Design
28 (1996), 307-318.

Yap, C. Symbolic treatment of geometric degeneracies, J. Symb. Comput. 10 (1990), 349-370.

Yap, C. Towards exact geometric computation, Fifth Canadian Conf. on Computational Geom-
etry (1993), 405-419. To appear, Comp.Geom.Theory and Appl.

Yap, C. Eract computational geometry and tolerancing metrology, In “Snapshots of Compu-
tational and Discrete Geometry, Vol 3,” Eds. by David Avis and Jit Bose, McGill School of
Comp.Sci, Tech.Rep. No.SOCS-94.50, 1994. (A special issue dedicated to Godfried Toussaint)

Yap, C. Report on NSF Workshop on Manufacturing and Computational Geometry, IEEE
Computational Science and Engineering, 2 (1995), 82-84. Full report on web at URL
http://cs.nyu.edu/cs/faculty/yap/index.html.

Yap, C., Dubé, T. The ezxact computation paradigm, In “Computing in Fuclidean Geometry”
(2nd Edition). Eds. D.-Z. Du and F.K. Hwang, World Scientific Press (1995), 452-492.

Zagajac, J. A fast method for estimating discrete field values in early engineering design, to

appear in IEEE CG&A.

Zhuang, Y., Goldberg, K. On the existence of solutions in modular fizturing, International Jour-
nal of Robotics Research, to appear.

57

