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Abstract
The most expensive geometric operation in image synthesis is
visibility determination. Classically this is solved with hidden
surface removal algorithms that render only the parts of the scene
visible from a point. Global illumination calculations, however,
may require information between any two points in the scene.
This paper describes global visibility algorithms that preprocess
polygon databases in order to accelerate visibility determination
during illumination calculations. These algorithms are sensitive to
the output complexity in visibility space; that is, how many pairs
of objects are mutually visible. Furthermore, the algorithms are
incremental so that they work well with progressive refinement
and hierarchical methods of image synthesis. The algorithms
are conservative, but exact; that is, when they return visibility
predicates they can be proved true. However sometimes they do not
return either totally visible or totally invisible, but partially visible,
even though in the same situation a better algorithm might return
the exact answer. In this paper we describe the algorithms and
their implementation, and show that, in a scene with low average
visual complexity, they can dramatically accelerate conventional
radiosity programs.
CR Categories and Subject Descriptors: I.3.5 [Computa-
tional Geometry and Object Modeling]: Geometric Algorithms,
Languages, and Systems; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism � Radiosity; J.2 [Physical
Sciences and Engineering]: Engineering.
Additional Key Words: Hidden surface removal, visibility space,
radiosity, global illumination, algorithmic triage.

1 Introduction
In the early days of image synthesis a central geometric problem
was hidden surface removal. With the advent of � -buffering,
modern workstations can display pictures of 3D scenes containing
millions of polygons in real-time. However, such workstations have
limited shading capabilities because they make the assumption that
all light sources illuminate every object. One major thrust of
current research in image synthesis is to remove this restriction
so that the shading correctly accounts for the illumination incident
on every object. To do this every surface element must assess
what light sources, or more generally, what surfaces reflecting light
towards it, are visible to it. This type of illumination calculation is
termed global, in contrast to local, because the entire scene must
be analyzed to determine if there are any occluders interfering
with the transfer of light between objects. Collating such visibility
information is more difficult than determining merely what is
visible from a single vantage point, as is done in hidden surface
removal. For example, the fastest algorithm currently known for
computing a complete description of the interocclusion due to a
polyhedral object of � vertices can take

����� 6 lg
�	�

time [9].
This paper describes global visibility algorithms that analyze the

entire visibility space, and are applicable to a range of illumination
problems. Here, we apply them to a hierarchical radiosity algorithm.
We have implemented several practical algorithms, and show that
they allow efficient global visibility calculations for scenes of low
visual complexity. The algorithms are based on three simple ideas:

Visibility preprocessing. To compute what is visible from all
points on the surfaces of the objects being shaded, we preprocess
the scene to speed future visibility tests. For the purposes of
global illumination we need only consider all pairwise interactions
between objects. Preprocessing removes totally invisible pairs
from consideration, and accelerates later queries regarding visibility
between points on partially visible pairs.

Incremental visibility maintenance. The most efficient global
illumination algorithms operate iteratively based on error criteria.
Examples are hierarchical radiosity, where surfaces are subdivided
with respect to each other according to potential light transfers
between them [11], and progressive refinement methods where
light is transferred among surfaces in order of brightness [5]. Thus,
the visibility algorithms should be lazy and sensitive to required
precision. They should also allow refinement so that more precise
determinations can be made as needed.

Conservative triage. Both the preprocessing and maintenance
methods use conservative triage to avoid the combinatorial com-
plexity of exact visibility determination. We classify visibility into
three categories: totally 
���
�
���
������ , totally 
�
���
������ , and �������� 
���� (partially visible). The classification is conservative in that
all interactions classified as 
���
�
���
������ or 
�
���
������ are correct;
however, it is acceptable for the classification to return ����� � 
����
when the correct result is either 
�
���
�� �!� or 
���
�
���
������ . This
allows us to forego complex analysis or ‘‘punt’’ if such analysis
will take too long to determine the exact answer. Of course, for
this to work we need either another visibility algorithm to complete
the analysis, or we must expect the situation to simplify eventually
(e.g., through subdivision).

The visibility algorithms presented here generalize previous
work on preprocessing environments for interactive walkthroughs.
In [24], an algorithm was given to preprocess a 2D environment
of axial line segments, such as floorplans. This was extended to
3D axial rectangles in [22]. This paper treats the case of convex
polygons in general position.

The global visibility algorithms described here have been imple-
mented with a global illumination system that computes radiosity
values for polygonal scenes [11]. The algorithm maintains a hierar-
chy of interactions between subdivided polygons at different levels
of detail. A key feature of the algorithm is that only

����" 2 # �$�
interactions are ever examined (with % the number of input poly-
gons, and � the number of elements created by subdividing those
polygons). The hierarchical radiosity algorithm, as originally de-
signed, used pairwise visibility information between polygons. In
the original implementation, however, this visibility information
was inexact. Visibility status was determined by shooting a constant
number of rays between two polygons. If all of the rays reached
from one polygon to the other, the polygons were considered totally
visible, whereas if none of the rays reached, the polygons were
considered totally invisible. The conservative algorithms described
in this paper, in contrast, are provably more precise.

2 Overview
We present novel algorithms that subdivide space, construct a
conservative visibility graph over the polygons in a geometric
model, then maintain the correctness of the graph under recursive
subdivision of the polygons. In the context of the hierarchical
radiosity computation, this conservative visibility graph guarantees
that throughout the computation, all polygons that potentially
interact (e.g., exchange energy) will be known. The construction
and maintenance of the graph occurs in four stages.



1. Spatial Subdivision. The geometric model is first spatially
subdivided into convex polyhedral cells, linked across shared
boundaries only when some portal, or transparent region, exists
on the boundary. For a large class of models, and particularly
for architectural models, the subdivision proves a natural way of
hierarchically capturing the geometric and occlusive characteristics
of the model.

2. Visibility Propagation. Each cell of the spatial subdivision
encloses some portion of the geometric model. Clearly, only
when two cells are mutually visible can their contents (i.e., model
polygons) interact. Consequently, we hierarchically enumerate all
visibility between portions of the model by first establishing inter-
cell visibility, then establishing inter-polygon visibility only where
cells are mutually visible. This is accomplished by propagating
incremental visibility information through the cells of the spatial
subdivision; as each cell ‘‘sees’’ into increasingly distant cells, the
visibility graph is augmented to record any previously unknown
interactions. (Portal enumeration is simply the first and crudest
record of visibility propagation.)

Visibility propagation provably discovers all partially or totally
visible cell (polygon) pairs, at the cost of occasionally misclassi-
fying an invisible cell (polygon) pair as visible. The alternative,
misclassification of some mutually visible interaction as invisible,
is plainly unacceptable, since it may omit from consideration an
interaction later to prove important.

3. Blocker Detection. In an exacting illumination computation
such as global illumination, it is not sufficient to determine simply
that two polygons are partially visible; some estimation must be
made of the extent to which they are visible, as well as how
much error might be incurred by the estimation. Therefore, once
potential visibility between a pair of polygons is established, a
set of interfering polygons or blockers is determined that may
occlude part of one polygon as seen from some point on the
other. This interference computation is again conservative; a non-
interfering polygon may occasionally be classified as a blocker,
but a blocker will never be classified as non-interfering. In
the visibility graph, blocker lists augment existing links between
mutually visible polygons; total visibility is established whenever
the blocker list is empty. Perhaps surprisingly, we show that these
conservative overestimated blocker lists are generally smaller than
those maintained by existing algorithms.

4. Blocker Maintenance. In a hierarchical radiosity algorithm,
polygons (patches, in radiosity parlance) are allowed to exchange
radiant energy only when the interaction satisfies some specified
global error bound [11]. Otherwise, the patches are subdivided, and
interaction is recommenced among the child patches. It is natural to
consider how the conservative visibility graph among the patches
can be incrementally maintained under subdivision. Each child
patch may be partially or totally visible, or completely invisible, to
its child counterparts on the other polygon. We show how, given the
parent interaction, conservative blocker lists for the children can be
determined incrementally. We present a novel blocker maintenance
technique involving linespace, a five-dimensional representation
of 3D lines (i.e., light rays).

The algorithms we present are of interest in several ways.
First, they comprise a practical treatment of visibility issues for
unrestricted (i.e., non-axial) three-dimensional environments, in
contrast to previous work [1, 8, 24]. Second, the conservative
visibility description we compute � identification of all mutually
visible pairs, and the blocker set for each pair � is a natural,
output-sensitive way of characterizing visibility among polygons
or more general objects, for any algorithms that require information
about occlusion and/or illumination. Finally, we show that the
use of these algorithms dramatically improves the time and space
efficiency of an existing radiosity computation [11].

3 Spatial Subdivision
The geometric model is specified as a set � of convex polygons
(Figure 1). The space embeddingthe geometric model is subdivided
into convex polyhedral cells, typically separated by polygons
(Figure 2). The construction is based on BSP trees [7], but the
visibility algorithms we subsequently present are provably correct

for any spatial subdivision satisfying a few geometric criteria [22].

Figure 1: A geometric model comprised of polygons.

First, a polyhedral root volume is constructed as the convex hull
of � . While polygons of sufficient size are present, a polygon is
chosen whose support plane is to partition the remainder of the
set. The choice is made using a simple heuristic that determines
the polygon whose cross-section in the current cell is largest, when
expressed as a fraction of the cell’s areal intersection with the
polygon’s support plane; if any polygons separate the cell into
mutually invisible parts, one such polygon is chosen. This heuristic
tends to yield effective splitting trees in practice.

Figure 2: Subdivision of the model into cells and portals.

Next, the portals, or transparent portions, of each cell boundary
are explicitly constructed. Since cell boundaries are induced on the
support planes of polygons, these boundaries are typically partially
or completely obscured. Each boundary stores a list of coaffine and
incident polygons. The portals on each boundarycomprise a convex
decomposition of the set difference of the cell boundary with the
union of these polygons. Each portal stores identifiers for the cells
which it connects. The spatial subdivision therefore comprises an
adjacency graph over the cells, since two cells are adjacent in this
graph iff they share a boundary that is not completely opaque.

4 Visibility Propagation
Once a conforming spatial subdivision is built, visibility propa-
gation commences. The propagation algorithm operates in object
space, and performs a constrained traversal of the adjacency graph
outward from each source cell. Whenever a cell is reached by this
traversal, its associated polygons are examined pairwise with those
in the source for mutual visibility; unreached entities are definitely
invisible from the source.

A given cell can see into its neighbors only through portals, and
into more distant cells only through portal sequences; i.e., ordered
lists of portals such that each consecutive pair of portals lead into
and out of the same cell. The cell adjacency graph is searched by



determining cells between which an unobstructed sightline exists.
A sightline must be disjoint from any occluders and thus must
intersect, or stab, a portal in order to pass from one cell to the next.
To establish inter-cell visibility, it is sufficient to find a stabbing
line through a particular portal sequence; since if some point in
the interior of one cell can see a point in the interior of another, a
sightline must exist between the boundaries of the source cell and
the reached cell.

Thus, the problem of finding sightlines between cell interiors
reduces to finding sightlines through portal sequences of increasing
length. Consequently, the primitive visibility operation in a con-
forming spatial subdivision is the determination of a stabbing line,
given a portal sequence, or the determination that no such stabbing
line exists. The portal sequences are generated incrementally by a
depth-first search (DFS) emanating from a particular cell boundary;
when a sequence no longer admits a sightline, the active branch of
the DFS terminates.

4.1 Inter-Cell Visibility

Sightline determination is an existence predicate, in that it merely
establishes visibility between two points on different cells. Suppose
two cells are mutually visible through a portal sequence. In general,
only a portion of each cell is visible to the other, due to occlusion by
opaque material abutting the edges of intervening portals (Figures
3, 4). Whenever inter-cell visibility is established, mutually visible
volumes are constructed for the cell pair; these volumes and the
reaching portal sequence are then used to determine inter-polygon
visibility among the cells’ associated polygons.

Figure 3: Visibility propagation from a source cell � 1 .

Figure 4: Visibility propagation from a source cell � 2 .

The volume visible to a polygon in the presence of polygonal
occluders is, in general, bounded by quadratic surfaces [18]. An
algorithm for computing this volume was implemented and de-
scribed in [21], but is not yet sufficiently robust for use on complex

models. Consequently, we have developed a simpler algorithm
that computes a polyhedral volume guaranteed to enclose the exact
visible region. The algorithm is a straightforward construction
that, using separating tangent planes, performs a kind of internal
pivoting over the edges and vertices occurring along the portal
sequence. We treat the algorithm briefly here; details can be found
in [22].
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Figure 5: A pivoting step on edge � , from � 1 to ��� .

The algorithm exploits the fact that for each portal edge, at most
two separating planes can contribute a face to polyhedral bounds
on the illuminated volume (Figure 5), since at most one vertex
from each halfspace of the associated portal can span a relevant
plane with the edge. Consider some edge � on a portal � 2, and
the portals occurring before � 2. Each of these portals has at most
one extremal vertex that spans a separating plane with � (in the
figure, � 1 has extremal vertex � 1 and � has extremal vertex ��� ).
Together with � , only one of these (at most �3 ) extremal vertices
can span a plane that contains all the other extremal vertices in the
same halfspace as the portal � 2. This single plane is the only one
of the � candidate planes that can contribute faces to the boundary
of the illuminated volume. Therefore, for any � portal edges there
are at most 2 � boundary planes, each of which can be identified in� � �	�

time by pivoting over the vertices of the other portals. The
total time to identify the 2 � relevant planes is therefore

����� 2 � .
Moreover, the set of

��� �	�
planes can be updated incrementally

whenever a new portal is encountered, simply by updating the
existing halfspaces with respect to the new portal vertices, and
introducing planes tight on the new portal edges. The

��� �	�
positive

halfspaces of the planes are inspected for an intersection with the� BSP halfspaces bounding the reached cell in time
��� � #
	 � with

a linear programming algorithm [15, 19]. If no such intersection
exists then the reached cell can not be visible to the source through
the active portal sequence.

4.2 Inter-Polygon Visibility

Whenever a cell is reached by the graph propagation, an active set
of halfspaces bounds the volume in the reached cell visible to the
source. The orientations of each of these halfspaces are reversed
to bound the volume illuminated by the reached cell in the source.
Only polygons in these respective volumes can be mutually visible.
Each incident source polygon is prefixed to the front of the active
portal sequence (Figure 6). The visible volume in the reached
cell due to the augmented sequence is then tested for incidence
with the appropriate subset of polygons stored in the reached cell.
(The notion of conservative inter-polygon visibility can be simply
extended to treat visibility between general objects [22].)

Figure 6 depicts this mechanism for an analogous 2D situation,
in which ‘‘polygons’’ and ‘‘portals’’ are line segments. A source
cell � (Figure 6-i) establishes inter-cell visibility to a cell � via
some portal sequence. The polygon � in � can have no interaction
with � ’s interior, and it is not considered further. Polygon 
 is
incident on the inter-cell visibility volume, and therefore potentially
visible from some point in � . However, when the portal sequence
is augmented with the constraints due to � (Figure 6-ii), polygon

 is found to be invisible from � . Finally, � is found to intersect
� ’s visible region in � , and � and � are established to be mutually
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Figure 6: Establishing visibility of 2D ‘‘polygons’’ � and � .

visible.
The convexity of spatial subdivision cells allows an important

optimization. Any two polygons entirely incident on the boundaries
of the same cell can have blockers only in the relative interior of
that cell. When the cell interior is empty (as it typically will be), the
polygons can be immediately classified as entirely mutually visible.
Thus, the spatial subdivision quickly identifies many instances of
complete mutual visibility between nearby polygons.

Figures 7 and 8 depict the output of the inter-polygon visibility
computation in three dimensions, for two polygons incident on
different source cells. Display of the spatial subdivision has been
suppressed for clarity.

Figure 7: Visibility propagation from a polygon in cell � 1 .

Figure 8: Visibility propagation from a polygon in cell � 2 .

5 Blocker Detection
When a pair � ��� ��� of polygons is found to be mutually visible,
we record a visibility interaction ��� ��� ��� , and proceed to identify
the blocker list ��� ��� ��� of the pair. One could simply compute
the set of blockers as those polygons incident on a convex volume
containing � and � (as in [10]). However, the visibility graph
and reaching portal sequence generally yield a better (i.e., smaller)
blocker list. Denote the convex hull of all vertices of � and
� as �	� ��
�� ��� �
� . Clearly any blocker � must be incident on��� ��
�� ��� �
� to contribute to ��� ��� ��� . Moreover, observe that only
polygons visible to � along a sequence reaching � , or to � along
a sequence reaching � need be considered as blockers of � and � .
For, if some polygon 
 is not visible to � , then every ray leaving
� (including those rays to any point on � ) must stab some polygon
other than 
 before stabbing 
 .

The polygons � and � do not generally see the same set of
blockers (Figures 7 and 8). Therefore, ��� ��� ��� is augmented
whenever a search from � ( � ) to � ( � ) discovers a previously
unknown blocker. Figure 9 depicts the result of the blocker
computation, where all polygons except � , � , and ��� ��� ��� have
been removed. Note that, of the polygons from the large central
room, neither the large blue interior wall panels nor the thin blue
doorjambs (cf. Figure 1) are classified as blockers. Thus the
purely spatial (shaft) cull produces a blocker list of size 12 or more,
whereas the blocker detection algorithm presented here computes
a list of 6 blockers.

Figure 9: The final blocker list of � and � .

Finally, the blocker criterion presented above is conservative,
since ��� ��� ��� may include polygons that are visible to � or to �
but do not affect occlusion between them. The exact determination
of the blocker list is computationally involved; a polygon � is a
blocker of � and � only if some ray from � to � exists whose only
front-facing polygon intersection, aside from that with � , is with
� . (The asymmetry of the definition arises from the fact that, in a
manifold polyhedral environment of oriented polygons, only front
faces can be visible to front faces.)

6 Blocker Maintenance
Given a set of polygons � , the visibility preprocessing scheme
produces, for every polygon ��� � , a set of visible polygons ��� ��� .
For each polygon ������� ��� , the blocker list ��� ��� �
� enumerates
all polygons ��� ����� ��� ��� that potentially impede visibility
between � and � . ��� ��� ��� points only to top-level patches; this
makes sense, since blockers should be as large as possible to cause
maximal occlusion. For each interaction ��� ��� ��� , we store a tube
data structure, which associates an interacting patch pair, a blocker
list, the visibility status ��� ��� �
� of the interaction (i.e., 
�
���
������
or ����� � 
���� ), and some additional geometric information used for
incremental visibility tests.

In the hierarchical radiosity algorithm, when the energetic in-
teraction between two patches can not be characterized to within
the global error bound, one of the patches of the interaction is
symmetrically subdivided, and its children are allowed to interact
with the other patch [11]. Clearly, interactions between either



patch and the children of its counterpart are highly coherent. The
tube data structure exploits this coherence to perform efficient and
accurate visibility reclassification after subdivision.

Each child interaction’s blocker list is necessarily a subset of
the parent’s blocker list; we wish to efficiently, and incrementally,
determine the child tube’s blockers. We say that a blocker �
impinges on ��� ��� ��� if it occludes � from � , and that � is
disjoint from ��� ��� �
� if � can not cause occlusion. Whenever a
blocker list is discovered to be empty (i.e., to contain no impinging
blockers), complete visibility between the interacting patches will
be established, and no further visibility computations need be
done for any children of this interaction. Conversely, whenever the
blocker list is discoveredto be completely occluding, there can be no
energy transport between � and � , and the interaction is discarded
(alternatively, the culprit blocker(s) can be retained as ‘‘proof’’
that the patches cannot interact). Finally, when neither complete
visibility nor complete occlusion can be quickly determined, the
status of the child interaction remains partially visible.

6.1 Linespace
The tube structure efficiently encodes the set of all lines between
� and � , using a five-dimensional line representation known as
Plucker coordinates [20], or simply linespace. Lines in three
dimensions correspond to hyperplanes and points in linespace. Any
two 3D rays � and

�
can be oriented by considering their linespace

counterparts ��� , a 5D hyperplane, and ��� , a 5D point (details of
the mapping can be found in [21]).

side (a, b) < 0 side (a, b) = 0 side (a, b) > 0

a a a

b b b

Λa
Πb

5D

3D
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Πb

Λa
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The signed distance of ��� from ��� determines the sense in
which the lines ‘‘go around’’ each other in 3D; if ��� lies on ���
the lines � and

�
are coplanar. This ‘‘sidedness’’ property can be

used to represent the set of lines through a collection of convex
polygons. In practice, there is one caveat to using the linespace
representation [23]. The only portion of linespace corresponding
to 3D lines with real coefficients are those linespace points lying
on a 4D manifold known as the Plucker quadric [20]; all other
linespace points correspond to 3D lines with complex coefficients.
Fortunately, the algorithms used in this paper need never consider
the Plucker quadric, since they manipulate only lines known a
priori to have real coefficients.

Consider two convex polygons � and � , comprised of sets of
oriented edges �
	 and ��	 , respectively. For there to exist some line�

that stabs the interiors of � and � , � � must lie in the appropriate
signed halfspaces � 	 of the hyperplanes � ��
 and � ��
 .

S

sk

Sk rk
Rk

R

L

Thus, the set of all lines through � and � corresponds to the
interior of a five-dimensional convex polytope � 	���	 [21]. Rather
than attempt to compute this polytope directly, we can manipulate
the vertices of its intersection with the Plucker quadric, which are
comparatively easy to generate. Each such vertex corresponds to

a collection of four support lines from � and � , since four 5D
hyperplanes must intersect with the Plucker quadric to generate
each such vertex. These vertices must correspond to stabbing lines
tight on four edges of � and � in 3D; i.e., lines through a vertex of
� and a vertex of � (note that these lines necessarily have real 3D
coefficients). In our implementation, there are at most sixteen such
lines, since all patches are quadrilaterals.

There are several advantages to performing blocker analysis in
linespace. The data structure for a single blocker is constant size,
and for a single patch interaction is linear in the number of blockers.
The linespace analysis obviates complicated 3D topological and
numerical computations. The only operations required by the
linespace representation are mapping from 3D lines to 5D points
and hyperplanes, and computing inner products between points and
hyperplanes.

6.2 Incremental Blocker Maintenance

The tube data structure, and incremental visibility maintenance,
can now be fully described. Suppose patch � is subdivided against
patch � into child elements 
�� ����� � . The tube for � and each

���� 
�� �
� stores � , 
�� , and a constant number of linespace
points ��� ��� �
� whose convex hull ������� ����� ��� ��� � includes the
set of all lines through � and 
�� . Finally, each blocker in ��� ��� �
�
is reclassified with respect to the child tube to produce ��� ��� 
�� � ,
and the visibility status ��� ��� 
 � � of each interaction ��� ��� 
 � �
is determined. As before, many instances of total invisibility,
partial visibility, and total visibility are discovered quickly. Other
situations are considered too complex to analyze completely, and
we ‘‘punt’’ and classify the interaction as partially visible (perhaps
causing further subdivision [11]).

B
B

B B

INVISIBLE PARTIAL VISIBLE PUNT

SR

SR
SR

SR

SR
SR

Figure 10: Performing 3D triage in 5D linespace.

Consider an interaction � ��� �
� and a single potential blocker �
(Figure 10). We wish to determine, without extensive analysis,
whether all, none, or some of the lines through � and � stab the
blocker � . Respectively, this is equivalent to determining whether
conv ����� ��� �
� � lies entirely inside, is disjoint from, or has some
intersection with � 	�� 	 �"!�� , the set of lines through the blocker
(Figure 11). We exploit the fact that, in linespace, both sets of lines
are convex.

The points in ��� ��� ��� are first classified with respect to the
blocker hyperplanes � 	 � ��� . If all of the points lie inside the
��	 � � � , then ���#��������� ��� �
� �$�%� 	���	 �&!�� , by convexity. � is
therefore completely occluding and ��� ��� �
� is 
���
�
���
�� �!� . If
some of the points lie inside the �'	 � ��� , and some lie outside, some
lines through � and � stab � , and ��� ��� �
� is ����� � 
���� . If all
of the points lie outside some single � 	 � � � , ��� ��� �
� is 
�
���
�� �!� .
Finally, the complex case occurs when all of the points lie outside
all of the � 	 � � � . This does not guarantee total visibility, since
���#��������� ��� �
� � may still have some intersection with � 	 � 	 �&!��
(this case is labeled ��(�� � in Figures 10 and 11); accordingly,
��� ��� ��� is classified as ����� � 
���� .

The logic for multiple blockers is straightforward; any single
blocker can cause ��� ��� �
� to be 
���
�
���
�� �!� , but all blockers must
be disjoint in order for ��� ��� ��� to be 
�
���
�� �!� . Otherwise, any
impinging blocker causes ��� ��� �
� to become ����� � 
���� .

6.3 Evolution

Figure 12 depicts an example of blocker list evolution and incre-
mental reclassification of child interactions. White lines connecting
quadrilateral centroids represent 
�
���
�� �!� interactions; green lines
represent ����� � 
���� interactions, and red lines represent the tube
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Figure 11: The four possible outcomes of a blocker classification.

between two interacting polygons. ( 
���
�
���
�� �!� interactions are
not shown.) In Figure 12-i, two red polygons interact via a blocker
list containing the orange polygon. In Figure 12-ii, the large red
polygon is subdivided into quadrants, and its child interactions
with the small red polygon are shown. One of these interactions
is 
���
�
���
������ . The other three are ����� � 
���� ; the tube for one
of them is shown. Finally, in Figure 12-iii, the child polygon is
subdivided; three of its children become 
�
���
������ to the polygon
at right, but one (shown) remains ����� � 
���� .

(i) Parent interaction. (ii) ����� � 
���� interaction.

(iii) 
�
���
������ interaction.

Figure 12: Reclassification of child interactions after subdivision.

The linespace algorithms guarantee conservative visibility, in
that blockers are only discarded from interactions if they are defi-
nitely known to be disjoint. Existing algorithms use point-sampling
[2, 6, 11, 16] or point-to-area visibility [3, 4] techniques and
therefore do not guarantee correct inter-area visibility determina-
tion. In contrast, we establish exact visibility information where
possible, and adaptively subdivide until the uncertainty of visibility
estimation in the remaining cases is so small as to be unimportant.

The linespace blocker maintenance algorithms are simple and
fast, although they sometimes overestimate occlusion by classifying
disjoint blockers as impinging, and may not identify 
���
�
���
������
interactions as early as might a more sophisticated algorithm.
Establishment of improved algorithms for the determination of

inter-polygon visibility in the presence of multiple blockers is an
active area of research [17, 21, 25]. An exact algorithm was
presented in [21], but is not yet sufficiently robust for application
here.

The work and storage expended for the incremental visibility
maintenancealso serves to accelerate the sampling done to establish
inter-patch energy transfer (i.e., to estimate form factors). The
ray/blocker machinery is simply applied to random sample rays (as
used in [11]). The cost of each ray/blocker test is four 5D inner
products.

7 Results
7.1 Spatial Subdivision

We implemented the spatial subdivision, propagation, interference,
and maintenance algorithms described, and instrumented their
execution for the data set shown in Figure 1. All execution was on
a lightly loaded 50-MIP Silicon Graphics VGX. The input model
comprised 403 patches. Constructing the BSP tree required about
thirty CPU seconds; the resulting tree contained 220 leaf cells. Each
cell had 5.99 boundary faces, and 5.87 patches coaffine with some
boundary face, on average (thus the spatial subdivision heuristics
produced fairly local partitioning behavior). Another seven CPU
seconds were absorbed by cell neighbor-finding and enumeration
of the 525 portals between leaf cells of the subdivision.

7.2 Visibility Propagation

Computing inter-cell and inter-patch visibility for the model ab-
sorbed five CPU minutes. Of the 81003 � � 403 � 402 � �

2 patch
pairs in the model, 4,391, or 5.4%, were classified as mutually
visible. (Thus preprocessing obviated nearly 95% of the potential
patch-patch interactions). Of these 4,391 patch pairs, 2,814 (64.1%)
were partially visible, and 1,577 (35.9%) were totally visible. Each
patch saw, on average, 22 other patches.

The inter-cell traversals performed 10,128 stabbing tests of
portal sequences, or about 46 tests per cell. The inter-polygon
traversals performed 16,055 further incremental stabbing tests, one
for each successfully reached cell and potentially visible patch pair.
Thus, about 40 tests per patch were required to establish inter-patch
visibility for all patches. The average length of a tested inter-cell
portal sequence was just over 5 portals. This is consistent with our
experience using a ten-thousand polygon, five-thousand cell axial
model, in which the average portal sequence length was less than
ten [8, 22]. A histogram of observed portal sequence lengths and
stabbing percentages is shown in Figure 13.
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Figure 13: Stabbing successes and failures, by sequence length.

The inter-cell visibility determination uses a depth-first-search
through the cell adjacency graph, applying an incremental stabbing
predicate and visible volume computation at each step. The
incremental operation expends linear time in the number of portals
currently in the sequence, assuming a constant number of edges per
portal, and so requires

����� 2 � time to stab a sequence of � portals.
In practice, this seems not to prohibit use of the algorithms on
real data sets, since most portal sequences are short (less than ten
portals), and the algorithmic constants are therefore more important
than the asymptotic complexity measure.
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Figure 14: Refinement of the input patches (left), 
�
���
�� �!� links (middle), and ����� � 
���� links (right).

7.3 Blocker Detection

There were 5 blockers between partially visible patches, on average,
reached through portal sequences of average length five. The
subdivision heuristic was effective; the BSP tree did not suffer from
excessive ‘‘free-space’’ splitting, or regions in which subdivision
planes were induced due to far away polygons.

The visibility analysis communicated its results to the radiosity
computation via an � ����
�
 file. Each file line recorded an interaction
��� ��� �
� between two polygons, the length of the associated blocker
list ��� ��� �
� , and the blockers themselves. A zero-length blocker list
implied total visibility between � and � , i.e., ��� ��� �
� � 
�
���
������ ;
otherwise the visibility status was ����� � 
���� .

7.4 Blocker Maintenance

The model input to the radiosity computation is shown at the
upper left of Figure 14. The input patches form the radiosity
program’s initial mesh. The 4,391 initial 
�
���
������ and ����� � 
����
links are shown, respectively, in white (middle column) and green
(right column). Two iterations of patch-patch refinement were
performed. The resulting model mesh, ����� � 
���� and 
�
���
�� �!�
interactions are displayed in the second and third rows of Figure 14.
The number of 
�
���
������ links drastically increases after the first
iteration. Their increased density naturally indicates unoccluded
regions of the model. Similarly, the green ����� � 
���� links indicate
occlusion. 
���
�
���
�� �!� links are not shown, as they were discarded
by the radiosity program upon detection.

Using the results of the visibility preprocessing, the initial refine
took only 11 seconds, performing 145,846 interactions. The second
refinement stage required 50 seconds, and performed 186,703

interactions. About 90% of the refined interactions were 
�
���
������ ,
thus requiring no sampling for form-factor estimation. Table 1
charts the evolution of each link type, the number of elements, and
the number of interactions at each refine.

V

P
V
P
I

V

P
V
P
I

V

P

4,391

1,577 (35.9%)

2,814 (64.1%)

170,440 (87.6%)
6,034 ( 3.1%)

16,889 ( 8.7%)
1,096 ( 0.6%)

176,474

16,889

218,420 (87.6%)
7,343 ( 2.9%)

1,339 ( 0.5%)
22,157 ( 8.9%)

194,459 249,259

225,763

22,157

193,363 247,920

Input Links Refine RefineLinks Links

403 patches 15,039 patches
4,391 interactions 145,846 interactions

17,347 patches
186,703 interactions

Table 1: Link evolution by type, with patch and interaction counts.

Since the time complexity of the radiosity algorithm is propor-
tional to the number of interactions, the visibility preprocessing
significantly decreased the computation done by the radiosity al-
gorithm. Moreover, the modified radiosity algorithm was more
accurate, since no partially visible interactions were missed due to
sampling errors (as in [11]).

7.5 Blocker Visualization
All of the algorithms described in this paper were implemented
using visualization tools that allowed interactive inspection of
complex data structures. Figures 15 through 17 depict the use of this
tool to investigate some interesting ����� � 
���� interactions. Again,
the white and green line segments represent 
�
���
������ and ����� � 
����
interactions, respectively; for a particular partial interaction in each
figure, the tube is shown (in red), and the blockers for the interaction



Figure 15: The tube data structure (red, or-
ange) for an ordinary ����� � 
���� interaction.

Figure 16: Spatially incident polygons that
have not been classified as blockers.

Figure 17: A ����� � 
���� interaction that
could be classified as 
���
�
���
������ .

are highlighted in orange. Figure 15 depicts an ordinary ����� � 
����
interaction. Figure 16 depicts spatially incident polygons that
(correctly) have not been classified as blockers. Figure 17 depicts
a ����� � 
���� interaction for which no single blocker occludes the
source and receiver; a more sophisticated algorithm could classify
this interaction as 
���
�
���
�� �!� .

8 Summary and Conclusion
We have presented several novel algorithms that represent an
effective application of global visibility analysis to radiosity com-
putations, an important problem in image synthesis. Given the
complexity of both the visibility and radiosity approaches used,
it was surprisingly easy to couple the two processes. We did so
using an abstraction in which interactions between polygons were
maintained along with all potentially blocking polygons. We argue
that, for an interesting class of large models, inter-polygon visibil-
ity has roughly constant complexity throughout the interior of the
model. After construction of a spatial subdivision for the model, the
visibility algorithms we present are output sensitive; they expend
work proportional to the amount of inter-polygon visibility present.

None of the visibility algorithms attempt to compute exact vis-
ibility information. However, they achieve precision in a different
sense, by reporting all visibilities conservatively; potentially visible
interactions are always reported.

Only blockers can occlude a specified source from a specified
emitter. Thus, the blocker list formulation is applicable to the
problem of discontinuity meshing in the presence of area light
sources [12, 13, 14, 21], as well as to the construction of an ‘‘oracle’’
to decide which, if any, among a collection of discontinuities should
be meshed upon earliest.

We showed that the visibility analysis significantly accelerated
a radiosity computation in a polygonal environment. Finally, we
demonstrated the successful application of some elegant concepts
such as linespace and algorithmic triage to the concrete problem of
construction and incremental maintenance of blocker lists.
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