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A B S T R A C T

We present a multi-frame narrow-baseline stereo matching algorithm based on extracting and matching
edges across multiple frames. Edge matching allows us to focus on the important features at the very begin-
ning, and deal with occlusion boundaries as well as untextured regions. Given the initial sparse matches,
we fit overlapping local planes to form a coarse, over-complete representation of the scene. After breaking
up the reference image in our sequence into superpixels, we perform a Markov random field optimization
to assign each superpixel to one of the plane hypotheses. Finally, we refine our continuous depth map esti-
mate using a piecewise-continuous variational optimization. Our approach successfully deals with depth
discontinuities, occlusions, and large textureless regions, while also producing detailed and accurate depth
maps. We show that our method out-performs competing methods on high-resolution multi-frame stereo
benchmarks and is well-suited for view interpolation applications.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

While binocular (pairwise) stereo matching remains a challeng-
ing open problem, the availability of ubiquitous video recording and
computing devices such as cell phones makes it timely to re-examine
the benefits of multi-frame stereo matching [1-3] and edge-based
stereo approaches [4, 5]. In this paper, we focus on multi-frame
narrow-baseline stereo matching. We show that an edge-based
approach is particularly well-suited for multi-frame analysis, since
it allows us to focus the computation on the important features,
to identify object boundaries, and to defer region-based reason-
ing as well as handling untextured areas, resulting in dramatically
improved performance in regions that are only visible in some
frames.

Our approach has four main stages (Fig. 1). The first stage matches
edges, which correspond to locations where reliable depth infor-
mation can be inferred and potential locations of depth discontinu-
ities and occlusion boundaries. The second stage estimates a coarse
description of the scene by fitting overlapping slanted planes to the
matched edges. In the third stage, we use a Markov random field to
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infer a dense piecewise-planar depth estimate of the scene over a
set of superpixels. Finally, we refine the depth map using piecewise-
continuous variational optimization. Decomposing the model into
multiple stages makes it easier to test each component individu-
ally and to perform experiments on different variants. Each of the
proposed stages is optimized to infer the most reliable information
available at that point, building up a hierarchy of successively more
detailed, dense, and accurate shape estimates.

This approach mainly solves two issues of previous stereo match-
ing algorithms: 1) the foreground objects are sometimes enlarged
in estimated depth maps due to occlusion, which is also known as
foreground fattening, and 2) depth in flat regions are sometimes
inaccurate due to insufficiently matched features. In this work, we
solve these two problems by jointly using edge-based matching
[4-10] and plane representation [2, 11-13]. Both these two ideas have
been used separately in previous works, but we have demonstrated
in this work that by combining them in a single optimization frame-
work, we can reduce foreground fattening and improve the accuracy
of stereo matching in flat regions and occlusion boundaries.

More specifically, multi-frame edge matching produces a semi-
dense, reliable, and rich representation of 3D shape. Since edges can
be extracted to sub-pixel precision, the resulting disparity estimates
can attain very high precision. Furthermore, the features of edges
usually changes more slowly than the photometric (texture) appear-
ance. In particular, at depth discontinuities where the background

https://doi.org/10.1016/j.imavis.2019.05.006
0262-8856/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.imavis.2019.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/imavis
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2019.05.006&domain=pdf
mailto:tfxue@csail.mit.edu
https://doi.org/10.1016/j.imavis.2019.05.006


2 T. Xue, A. Owens, D. Scharstein, et al. / Image and Vision Computing (2019) 103771

(a) Input (b) Depth of edges (c) Depth of patches (e) Final depth (d) Superpixels

Fig. 1. We match intensity edges in a multi-frame sequence (a) to obtain a sparse depth map (b), from which we derive overlapping slanted plane hypotheses (c). Using an MRF
defined over superpixels (d), we obtain a piecewise-planar dense depth estimate, which we refine using continuous optimization (e).

colors can change, the edge orientation and foreground colors usu-
ally remain unchanged. Overlapping slanted planes (layered depth
models) provide a compact set of structure hypotheses that aggre-
gate local low-level evidence in a way that naturally supports dis-
continuities [14]. Layered models also support efficient per-pixel
depth inference, due to the small number of hypotheses being con-
sidered at each pixel [15]. Finally, superpixels [16] are an efficient
way to obtain dense reconstructions that naturally align with dis-
continuities and textureless regions, removing the need for spatially
shiftable matching windows. They also reduce the number of vari-
ables over which global inference is performed, leading to more
efficient and less error-prone algorithms.

2. Related work

Our approach revisits some of the earliest approaches to
stereo, including edge-based and line-based matching [4-10], multi-
baseline approaches [2, 11-13], and epipolar-plane analysis [1, 3].
Many of these early ideas have gained new popularity over the years;
e.g., gradients are used as a robust matching primitive for stereo
[17-19], and optical flow [20]. Multi-frame analysis has also been
successful for occlusion reasoning [11, 12, 21, 22]. Most work in
stereo, however, has focused on binocular (two-frame) methods for
producing dense disparity maps [23].

Depth discontinuities pose a challenge for dense per-pixel stereo
methods that utilize window-based matching. A number of solu-
tions have been proposed to reduce the resulting foreground fat-
tening effect, such as shiftable windows and temporal selection [12,
23, 24], but these methods still suffer at depth boundaries, espe-
cially when the background region lacks texture. We address this
problem by tracking and robustly combining intensity edges over
multiple frames. This approach is similar to methods that track
keypoints [25] and also fine-to-coarse models that detect lines in

epipolar planes [3]. However, since we match edges (rather than key-
points), our initial reconstruction is relatively dense, and it contains
many complete object boundaries (Fig. 1b).

Our method for producing a dense depth map from edge recon-
structions is based on the assumption that a complicated scene can
be approximated by a set of planar surfaces. Similar assumptions are
also used in previous work, in which surfaces are detected either via
matched keypoints [15], or based on the photometric consistency
of matched regions [26-29]. In contrast, we detect the planes in the
scene by fitting planes to matched edges, which are denser than
matched keypoints, and more robust than photometric appearance
on occlusion boundaries.

To obtain final depth maps, we follow several recent methods
and estimate a piecewise-planar reconstruction with an MRF defined
over superpixels. This is closely related to the work of Yamaguchi et
al. [30, 31], since our MRF uses pairwise terms between superpixels
to model occlusion relationships. In that work, the piecewise-planar
model is used to refine depth estimates originating from semi-
global matching. In contrast, our MRF takes edge matches directly as
input, and creates depth maps with crisp edges, using a novel edge-
superpixel compatibility function to model the relationship between
edge depths and superpixel depths.

Besides, in this work, we focus on narrow-baseline stereo.
Wide baseline multiview stereo algorithm used in the literature of
image-based 3D reconstruction and structure-from-motion [32-35]
is beyond the scope of this work.

3. Edge matching

We first extract and match edges in all images individually. The
goal of this stage is to provide sparse but reliable disparity estimates
for later stages, e.g., the creation of local plane hypotheses, and to
signal potential locations for depth discontinuities.

While our approach could be extended to arbitrary motion, in this
paper, we focus on equally-spaced multi-baseline sequences with
purely horizontal camera motion [1-3]. We typically use sequences
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Fig. 2. Edge extraction and matching: (a) input frame; (b) detail of extracted edges for the marked region; (c) summed edge matching cost function for the scanline in (b), where
blue indicates lower costs, red indicates higher costs, and gray indicates no edges. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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with 7–9 equally-spaced frames and choose the central frame as the
reference frame. Given this setup, we restrict edge detection to the
horizontal direction. Instead of using regular rotationally-invariant
edge detectors [36-38], we identify local maxima of the squared hor-
izontal gradients and refine their location using a parabola fit. We
control edge density using a detection threshold (we use 0.25 pixel
in the experiment) in the reference frame. To ensure the detected
edges are distributed more evenly, we only keep all the edges whose
magnitude is maximum in the 5 × 5 local patch around that point.
We also keep strong edges whose gradient is larger than a higher
threshold (set to 2.64 intensity levels) even though they are not local
maximums. Besides, we use a smaller threshold (half of that in the
reference frame) in the matching frames to increase the chance of
matching. We also estimate the edge orientation from the local 2D
gradient (Fig. 2b), which we use for edge matching.

After detecting all the edges in our source images, we match them
to obtain a sparse estimate of 3D scene geometry for each edge in
the reference image. We represent this geometry (and the final depth
map) in terms of disparity, i.e., the horizontal displacement (in pixels)
between neighboring frames.

To find corresponding features, we define a cost function to score
the fitness of a particular match using a weighted sum of three
distance terms: location distance, orientation difference, and color
difference.

The location distance Dl between the predicted location
xp = xr − bd and its actual location xe is Dl(d) = |xp − xe|, where xr

is the edge location in the reference frame, b ∈ [−4, 4] is the integer
baseline between the reference and matched frame, and d is the
disparity.

We define the orientation difference Do as the absolute value of the
cross product between the normal vectors of the reference edge and
the putative matching edge,

Do = |nr × ne|/|b|, (1)

where nr and ne are the edge normals in the reference and matching
frames. Since edges on slanted surfaces change their orientation as
both a function of slant and distance from the reference image, we
divide the cross product by the frame difference from the reference
frame.

The color difference Dc is measured as the smaller of the two differ-
ences (in RGB space) between corresponding pixels adjacent to the
edge location,

Dc = min(‖ cr− − ce− ‖, ‖ cr+ − ce+ ‖), (2)

where c*± are the colors of the pixel just to the right and left of a
detected edge location. Because the background color may change
at depth discontinuities, we take the smaller of the two color differ-
ences.

The three squared differences are weighted by their inverse
expected variances and summed to produce a composite weighted
squared distance (variances are chosen empirically: s l = 0.4,
so = 0.25, and sc = 10),

D2
m = s−2

l D2
l + s−2

o D2
o + s−2

c D2
c , (3)

which is then passed through a robust penalty function to obtain the
cost of matching a given reference edge at a disparity d to its nearest
edge in a different image,

Em(d) = 0(D2
m). (4)

We use the robust penalty function suggested by Zach [39],

0(d2) = w2d2 + t2(1 − w2)2/2, (5)

where w2 = max(0, 1 − d2/t2) ∈ [0, 1] is an inlier weight and t is an
outlier threshold, which we set to 3.

Since we operate in a multi-frame setting, we need to consolidate
all pairwise matches between a reference frame and all other frames.
One approach is to simply sum the cost functions Em across all frames
evenly and hope that the robust outlier function takes care of miss-
ing edges (e.g., due to occlusions). Another alternative is to just take
the best fraction (e.g., the top half) of matches, i.e., sum up the N/2
lowest scores [13],

Em(e, d) =
∑

i=1...N/2

E(i)
m (d), (6)

where the E(i)
m are sorted in increasing value and e denotes the edge

under consideration. Experimentally, we have found that the second
approach produces more reliable estimates.

Fig. 2c shows the cost function Em(e, d) for a set of edges e on a
given scanline as a function of their disparities d. This is a sparse ver-
sion of the disparity space image (DSI) [23, 24] that is used by many
stereo algorithms to form a cost volume. One can see a clear trend
where the dominant surfaces appear as continuous slowly-varying
minima (blue regions) in this cost function.

4. Plane hypothesis generation

While multi-frame matching often produces correct matches by
independently matching each edge, i.e., selecting the value of d for
each edge e that minimizes Em(e, d), the reliability can be greatly
improved by aggregating the matching information spatially. One
can imagine several ways to do this, including approaches that
use the cost volume to directly integrate local support [23, 40]. In
our work, we use fixed-size overlapping square image patches as
the main mechanism to simultaneously perform spatial aggregation
and to estimate local plane hypotheses. We then extend the local
hypotheses to cover larger regions.

4.1. Patch-based aggregation and plane fitting

To obtain an initial set of plane hypotheses, we divide the image
into 32 × 32 patches with 16 pixels overlap and perform an inde-
pendent plane sweep [8, 23]. We then refine each patch to obtain a
slanted plane hypothesis. Once all of the hypotheses have been gen-
erated, we assign each edge to the overlapping plane whose fit has
the highest confidence.

We start by first matching each reference edge to all the other
edges (within the disparity range) and forming a single sampled
cost function per edge, as shown in Fig. 2c. Once we have computed
Em(e, d) for the permissible range of disparity values d, we find all
local minima with inlier weights w2 greater than 0.5 and keep their
sub-pixel locations (obtained using a parabolic fit) and cost value. In
practice, we only keep the top 5 (or fewer) minima and throw away
the rest.

Next, we aggregate matches over the whole patch to compute
the best-fitting plane. We do this in two steps. First, we compute
a weighted histogram of the top three disparities for all edges,
where the weight is a bilinear tent function centered over the patch.
We then find the maximum histogram value and use a three-point
parabolic fit to find a refined estimate for the best (fronto-parallel)
patch disparity value dfp. Next, we fit a robust weighted 3-parameter
plane model to the inlier matches, i.e., those matches that are either



4 T. Xue, A. Owens, D. Scharstein, et al. / Image and Vision Computing (2019) 103771

(a) (b) (c)

Fig. 3. Illustration of plane merging. (a) Two plane patches fitted to depth of edges. The sparse points show the depth of matched edges, and the colors inside the two black boxes
encode the depth of the plane patches. (b, c) The results of plane merging, using the two patches in (a) as seeds. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

within 0.5 disparities of the winning disparity dfp or whose dispar-
ity gradient is below 0.5, again using a bilinear spatial weighting
function.

The last stage of our edge matching algorithm assigns each edge
to its best overlapping plane hypothesis by choosing the plane
(within ±1 disparities) with the lowest matching cost. This filters out
spurious bad matches that are not associated with any nearby planes.

4.2. Plane merging and extension

In the previous stage, small planar patches are locally fit to
matched edges. We now merge patches that are roughly coplanar to
reduce the number of plane hypotheses and improve the accuracy of
estimated plane equation using an efficient greedy algorithm.

We first select the patch with the most edges as the initial seed
plane and grow it by merging other roughly coplanar patches until
there are no patches left that can be merged. We remove all inlier
edges that belong to this plane (within 0.2 disparities of the plane
equation). We then pick the next patch that contains the most edges
as the initial seed plane. We repeat this process until we cannot pick
a patch that contains more than 3 edges to be a seed plane.

To grow a seed plane, we repeatedly select among the neighbor-
ing patches the one that best fits the plane. We evaluate how good
the patch fits to the plane by counting the number of edges in the
patch that lie on the extension of the plane (also within 0.2 dis-
parity of the plane). We refit the plane equation to all inlier edges
after merging, and repeat this process until none of neighboring
patches contain more than 2 inlier edges. We set the extent of the
final merged plane as the bounding box of all constituent patches, as
shown in Fig. 3. For robustness, we also extend the plane extent by
� W

20 � pixels, where W is the width of the input image.

5. Superpixel MRF

After the previous stage, each pixel is covered by one or more
planes. In the next step, we decide which plane a pixel actually
belongs to. To reduce the search space and accelerate the algorithm,
we segment the reference frame into superpixels using SLIC [16] and
assign all pixels within a superpixel to the same plane.

Our superpixel assignment is based on two sources of informa-
tion, namely photo consistency, as used in most stereo matching algo-
rithms [15, 23], and edge consistency, which requires that the depth

of edges should be consistent with the depth of the corresponding
plane.

The assignment problem is modeled as an MRF with a data
term consisting of the photo-consistency term Ephoto and an edge-
consistency term Eedge as described below.

5.1. Photo consistency

Let Pj be the j-th plane after plane merging and Li the index of the
plane that superpixel Si is assigned to. Let t* be the index of the ref-
erence frame and t be another frame in the sequence, and let It and
Ix

t be the color image and its x-gradient of the t-th frame respec-
tively. Also, let x be the location of a pixel in the i-th superpixel Si

and Wt(x, PLi
) be the corresponding pixel in frame t assuming x is

on plane PLi
. The photo-consistency term penalizes both color and

gradient difference [18] between the reference frame and frame t:

Et
photo(Li) =kc

∑

x∈Si

0Tc

(
It∗(x) − It(Wt(x, PLi

))
)

+kg

∑

x∈Si

0Tg

(
It∗
x (x) − It

x(Wt(x, PLi
))

)
, (7)

where 0T (v) =
∑

j min(|vj|, T) is the truncated l1-norm. In all exper-
iments, we use the following weights and thresholds for color and
gradient terms: kc = 0.1,kg = 0.9, Tc = 0.03, Tg = 0.004.

5.2. Edge consistency

The second data term Eedge measures the consistency between the
depth of superpixels and the depth of edges. If an edge is inside a
superpixel or on its boundary, the depth of that superpixel should
agree with the depth of the edge. There are two cases to be con-
sidered. First, when an edge is inside a superpixel (the top row of
Fig. 4), their depths should be the same. Second, when an edge is on
the boundary of a superpixel (the bottom row of Fig. 4), the edge can
either lie at the depth of the superpixel or in front of it, since it might
belong to another closer superpixel.

For the first case (an edge inside a superpixel), we penalize the
difference in depth between edges and superpixels:

Ein(Li) =
∑

e∈ISi

x
(
de − D(xe, PLi

)
)

, (8)

where de is the depth of edge e predicted in edge matching, xe is
the 2D spatial coordinate of that edge, ISi

is the set of edges inside
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O.K.

O.K. O.K.

Fig. 4. Edge consistency. (a–c) When an edge (black line) is inside a superpixel (red square), their depths must agree. (d–f) An edge on the boundary between superpixels cannot
be behind either of them. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the superpixel Si, x(x) = min(x2, Td) is the squared truncation func-
tion, and function D(xe, PLi

) returns the predicted depth by the plane
equation PLi

at the location xe. For the second case (an edge on the
boundary of a superpixel), we penalize the difference in depth only
if an edge is behind a superpixel:

Ebound(Li) =
∑

e∈BSi

x
(
max(D(xe, PLi

) − de), 0)
)
. (9)

The edge-consistency term is then the sum of these two terms

Eedge(Li) = Ein(Li) + Ebound(Li). (10)

Fig. 5 demonstrates how the edge-consistency term reduces fore-
ground fattening. Without edge consistency, the light region behind
the dark vertical bar (Fig. 5a) is grouped with the foreground in
the recovered depth map (Fig. 5c). The depth of the background
region should be dark blue, but it is light blue (indicating the fore-
ground depth) in Fig. 5c. If the edge-consistency term is included,
the light region is correctly grouped with the background (Fig. 5d).
This is because the matched edges on the left (dark blue dots in
Fig. 5b) push their neighboring superpixels to the background, as

the edge-consistency term does not allow a superpixel in front of
its neighboring edges. Some superpixels in that light region are
not directly neighbors of matched edges on the right, but they are
still assigned to the background because of the smoothness term
discussed below.

5.3. Smoothness term

The smoothness term Eb(Li, Lj) checks whether the labels of two
neighboring superpixels are consistent. It is a product of two terms:

Eb(Li, Lj) = ksmooth • w(Si, Sj)x(PLi
, PLj

, Bi,j). (11)

The first term w(Si, Sj) is an affinity term that measures the similarity
of the appearance (mean color) of superpixels:

w(Si, Sj) = exp(−(Ci − Cj)2/s2
c ). (12)

The second term x(PLi
, PLj

, Bi,j) measures the average disparity dif-
ference of two superpixels along their shared boundary, and it is
truncated in the similar way as in Eqs. (8) and(9).

At last, we solve the MRF using alpha expansion [41].

(c) Depth without 
edge consistency

(a) Input (e) Ground truth 
depth

(b) Matched edges
+ superpixels

(c) Depth with 
edge consistency

Fig. 5. Edge consistency reduces foreground fattening. See text above for more details. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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Before refinement After refinementInput
Fig. 6. Effect of depth refinement. The model introduced in Section 4 can only model piecewise-planar surfaces. Through the depth refinement, our model can also model the
curved surfaces, like human faces, and most depth “staircasing” is removed after the refinement.

5.4. Refinement

At this point, our pipeline yields a piecewise-planar reconstruc-
tion. In order to faithfully reconstruct smoothly varying surfaces,
we add a refinement step that uses the depth information at edges
located close to the piecewise-planar reconstruction and performs a
variational piecewise-smooth 2D interpolation [42] (Fig. 6).

The piecewise-planar reconstruction provides the location of dis-
continuities and serves as a weak data term. We combine this with a
second, stronger data term consisting of robust weighted edges (using
again the smoothly truncated quadratic (Eq. (5)) by Zach [39]), where
such edges are available close to the surface. In practice, we use a cut-
off of 1.0 disparity levels and perform only a single iteration, since a
reweighted least-squares approach yielded worse results. This yields a
smoothly-interpolated discontinuity-preserving reconstruction that
is closer to the (locally more reliable) original edges than the planes.

6. Experimental results

The focus of our work is high-resolution multi-baseline matching.
Our method utilizes multiple frames taken from a narrow-baseline
and produces a depth map for the reference (center) frame. Unfor-
tunately, there are no established benchmarks for this scenario. The
Middlebury and KITTI stereo benchmarks [43, 44] are restricted to
two input views, while existing multiview benchmarks [45, 46] use
a wide-baseline scenario and evaluate 3D surface meshes. Thus, pro-
viding a fair comparison with published results is difficult. Here,
we compare with existing two-view results. In addition, we imple-
mented a multi-frame extension of SGM [47] to provide a baseline
comparison for our method when utilizing all frames. Finally, we
show a qualitative comparison with Kim et al.’s approach [3], which
uses a multi-baseline setup with a large number of views. All results
are also available at http://people.csail.mit.edu/tfxue/edgestereo/.

6.1. Datasets and baselines

We evaluate our algorithm on two sets of high-resolution multi-
baseline sequences. The first one, Midd-F, consists of 7 full-resolution
sequences from the Middlebury 2003–2006 datasets [43], with
7–9 frames each at a resolution of 1.4–2.7 megapixels (MP). While
our main focus is high-resolution matching, we also report results on
quarter-resolution sequences Midd-Q, which include the Teddy and
Cones images used in the Middlebury stereo benchmark version 2.
The second group, Disney, is from the high-resolution multi-baseline
dataset used in Kim et al. [3]. Each sequence contains 101 frames,
from which we pick 9 frames in 5-frame increments.

The disparity range in both datasets varies from 200 to 330 pixels.
All sequences contain either 7 or 9 frames, and we always select the
middle frame as the reference frame. For the Middlebury datasets,
we create ground-truth disparities for the center frame by warping
the provided left and right disparity maps. For Disney, ground-
truth disparities are not available, so we only provide a qualitative
comparison.

6.2. Quantitative results

We compare our method against four stereo algorithms.
LIBELAS [25] and Local Plane Sweeps (LPS) [15] are two competitive
high-resolution 2-view algorithms. As mentioned, these methods
do not utilize the additional input frames, so they face a greater
challenge especially in occluded regions. For a multi-frame baseline
comparison, we extend the OpenCV implementation of the semi-
global matching (SGM) algorithm [47] from two frames to multiple
frames by replacing the original matching cost with a summation
of k lowest matching costs between the reference frame and other
frames. We also extend one of the pioneer neural-network-based
stereo algorithm, MCCNN [48], to multiple frames using the similar
strategy.

Table 1
Errors (%) for three methods on Midd-F (we use threshold t = 2.0 for all full-resolutions experiments).

Sequence LIBELAS (2 frames) LPS (2 frames) SGM (3 frames) SGM (all frames) MCCNN (all frames) Ours (3 frames) Ours (all frames)

Nonocc All Nonocc All Nonocc All Nonocc All Nonocc All Nonocc All Nonocc All

Aloe 2.83 5.47 1.73 7.81 1.87 3.70 2.27 3.85 2.12 4.21 2.30 3.50 1.06 2.38
Art 7.28 17.61 4.43 20.02 5.57 9.64 4.77 8.41 8.56 11.79 2.06 3.54 1.93 3.32
Cloth3 1.67 7.24 0.56 6.39 0.45 1.38 0.44 1.26 1.07 1.34 0.71 1.45 0.42 1.01
Cones 4.13 11.04 1.59 9.21 2.25 5.11 1.73 4.25 2.69 4.15 3.40 5.82 1.06 2.59
Dolls 4.81 12.52 4.02 13.10 4.46 7.76 6.25 9.21 3.42 4.71 2.68 6.15 2.25 4.84
Rocks2 1.51 5.47 0.82 6.55 0.85 1.70 0.82 1.63 1.07 1.26 0.71 1.34 0.59 1.06
Teddy 12.00 18.46 7.55 16.40 10.30 13.31 7.47 9.68 7.27 7.84 6.61 8.69 3.84 5.46
Avg. 4.89 11.12 2.96 11.35 3.68 6.09 3.39 5.47 3.74 5.04 2.64 4.36 1.59 2.95

http://people.csail.mit.edu/tfxue/edgestereo/
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Table 2
Errors (%) for our method on Midd-Q (t = 1.0). Errors of the top-performing two-view
algorithms on Teddy and Cones are around 2–3% (in all regions).

Aloe Art Cloth3 Cones Dolls Rocks2 Teddy

Nonocc 1.57 2.56 0.75 1.02 2.69 1.08 2.16
All 3.51 4.45 1.48 2.56 4.41 1.78 3.43

Following established practice, we report the error rate for non-
occluded pixels visible in both input frames as well as for all pixels.
To obtain the occlusion mask for our method, we warp the left and
right occlusion masks to the center frame.

Table 1 compares numerical results for the four methods on the
full-resolution dataset Midd-F. The table shows that in non-occluded
regions, our method beats LIBELAS and LPS both in non-occluded
and all regions. It also beats the baseline SGM method by a com-
fortable margin in terms of average errors, as well as on most
individual sequences, and our algorithm with 3 frames as input even
beats SGM and MCCNN with 9 frames as input. The largest improve-
ments of our method over the baseline SGM method and MCCNN are
on sequences such as Teddy and Art containing textureless regions,
where our edge-based approach successfully prevents foreground
fattening. This demonstrates the power of our edge-based multi-
frame approach in the presence of occlusions.

Table 2 shows our numerical results on the quarter-resolution
sequences Midd-Q, which are comparable to the best two-view
results listed in the Middlebury stereo benchmark version 2, for both
nonocc and all regions.

6.3. Qualitative results

A side-by-side comparison on a subset of the Midd-F and Disney is
shown in Figs. 7 and 8. (See the Supplementary materials for the full
results and error maps.) Note that LPS and LIBELAS use the left frame
(the third frame in 9-frame sequences) as the reference frame, while
our algorithm and SGM use the middle frame.

On Midd-F, our algorithm produces much cleaner depth maps
compared to the other methods. The boundaries of objects are
cleaner with fewer fuzzy edges (e.g., the leaves in Aloe). In the
depth maps created by either SGM or MCCNN, foreground objects
with untextured background are often enlarged (e.g., Cones and the
right edge of the Teddy). These are typical examples of foreground
fattening that our algorithm can avoid using edge reasoning. More-
over, in the flat regions, like the white background besides the
teddy bear, SGM or MCCNN generate incorrect depth, while our
approach correctly predicts depth in those regions using our planar
representation.
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Fig. 7. Reconstruction results on Midd-F. Corresponding close-up views are shown below each sequence (please see Supplementary material for the full results).
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Fig. 8. Reconstruction results on Disney for Kim at al. [3], SGM, and our algorithm. Kim et al. [3] use 101 frames as input, while SGM and our method use only 9 frames.
Corresponding close-up views are shown below each sequence.

On Disney, both our algorithm and SGM use only 9 frames as
input and achieve a similar performance as the method by Kim
et al. [3], which uses 101 frames. Many thin structures are recov-
ered in the depth maps, like the power lines in Church and the
leaves in Mansion. Compared with SGM, our algorithm again reduces
the foreground fattening for objects with untextured background,

e.g., the leaves in Mansion and Statue, and the car antenna in
Statue.

Fig. 9 compares our method with the method by Kim et al. [3]
when both methods are run on only 11 frames (thus handicapping
the latter), and our depth map has much cleaner boundaries and
again avoids foreground fattening.

Result by [3] (11 frames) Our result (11 frames)

Fig. 9. Comparison to Kim et al. [3] on Disney’s Mansion sequence. Both algorithms use 11 frames as input. Corresponding close-up views are shown on the right.
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Table 3
Evaluation of matching algorithms under two evaluation metrics, accuracy and percentage of missing edges. Two variants of the original matching algorithm (both) are tested:
only using the orientation term and only using the color term.

Measurement Matching cost Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

Accuracy Only orientation term 66.44 46.83 79.99 34.30 53.29 73.07 29.97 54.84
Only color term 73.11 55.32 84.59 51.53 61.07 75.99 45.36 63.85
Both 76.33 60.33 87.23 55.13 65.49 81.22 47.64 67.62
Percentage of missing edges Only orientation term 23.61 40.37 15.35 51.46 33.26 21.42 52.60 34.01
Only color term 9.27 19.71 6.54 16.45 13.49 12.60 22.33 14.34
Both 8.31 18.73 5.21 16.98 12.83 9.44 23.64 13.59

Table 4
Errors (%) of estimated depth using two different algorithms to find sparse matches: our edge matching algorithm and the keypoint matching algorithm used in LIBELAS [25].

Matching algorithms Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

LIBELAS: keypoint matching 3.53 4.61 1.41 4.47 6.42 1.37 13.40 5.03
Ours: edge matching 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

6.4. Analysis

To understand how each step in our algorithm contributes to its
performance, we conduct several evaluations on the middF dataset.
All the error rate, if not specified, are calculated using T = 2.0.

6.4.1. Edge detection
First, to evaluate the edge matching, we compare our results

with an oracle that predicts the actual depth of an edge using the
ground-truth depth map. We evaluate the performance of edge
detection using two criteria: edge accuracy, which is the percent-
age of edges whose estimated depth is within 0.5 disparities of the
ground truth, and percentage of missing edges, which is the percent-
age of edges that cannot find matches (recall that we reject matches
that do not agree with locally fitted planes).

Table 3 shows the quantitative evaluation of edge matching. We
compare our edge matching algorithm with two variants: only using
the orientation term (set the weight for the color difference term
defined Eq. (2) to 0) and only using the color term (set the weight
for the orientation difference term defined Eq. (1) to 0). The results
show that both color term and the orientation term improve accu-
racy of edge matching: using both terms out-perform the algorithm
only using the color term by 7% and out-perform the algorithm only
using the orientation term by 4%.

Furthermore, to demonstrate that the edge matching finds bet-
ter sparse matches than keypoint matching, we also replace the
edge matching step in our algorithm by the keypoint matching
used in LIBELAS algorithm [25], and feed the matched to key-
point to the rest of the pipeline (including plane detection, super-
pixel assignment, and depth map refinement). The original keypoint
matching algorithm in LIBELAS only takes two frames as input, and
we extend it to also allow multiple frames as input. Table 4 shows
the accuracy of estimated depth maps using two different sparse

matches as input (our edge matching and keypoint matching used in
LIBELAS), and our edge matching out-performs the keypoint matches
by LIBELAS in all sequences.

6.4.2. Plane estimation
To demonstrate the importance of the plane merging in the plane

estimation, we compare estimated depth from the original planes fit-
ted to 32 × 32 patches and larger planes after the plane merging.
Table 5 shows that plane merging significantly improves the qual-
ity of reconstructed depth, especially on the sequences with large
untextured regions, such as Teddy and Art. This is because the initially
estimated plane equations from local untextured regions are inaccu-
rate. The plane merging step increases the number of edges in each
plane, resulting in more accurate plane estimation.

6.4.3. Superpixel assignment
Fig. 5 already qualitatively shows that the edge consistency

reduces the foreground fattening. To quantitatively evaluate that,
we run the superpixel assignment with three different energy func-
tions: only using the edge consistency, only using the photo con-
sistency, and using both consistencies. Table 6 shows that even by
fitting a smooth surface to matched edge, the algorithm already can
recover decent depth maps (that is the result by only using the edge
consistency, whose the average error rate is 5.88%) and using the
appearance information from input sequences further improves it to
2.91%.

6.4.4. Refinement
At last, Table 7 shows how the refinement affects the perfor-

mance of the algorithm. The refinement algorithm is mostly designed
to correct small error on curved surfaces (before refinement, the
algorithm only estimates a piecewise-planar depth map). Therefore,
there is a large improvement on sequences with many curved struc-
tures, like Cones and Dolls, especially when using a lower threshold

Table 5
Errors (%) of estimated depth with/without plane merging.

Source of planes Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

Without plane merging 3.33 7.52 1.18 4.76 5.23 1.32 12.87 5.17
With plane merging 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

Table 6
Errors (%) of estimated depth using different energy functions in the superpixel assignment (note that in this experiment, we do not run the refinement, so the number of both is
slightly different than the last column of Table 1).

Energy functions Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

Only edge consistency 4.81 7.17 2.36 6.20 9.43 2.25 8.93 5.88
Only photo consistency 2.20 2.76 1.04 2.84 5.90 1.03 5.12 2.98
Both 2.14 2.75 1.02 2.74 5.30 1.10 5.32 2.91



10 T. Xue, A. Owens, D. Scharstein, et al. / Image and Vision Computing (2019) 103771

Table 7
Errors (%) of estimated depth with/without refinement.

Threshold Algorithms Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

T = 1.0 W.o. refinement 4.13 4.36 1.87 5.44 11.34 2.29 9.64 5.58
With refinement 4.20 5.01 1.56 3.81 9.26 1.66 8.88 4.91
T = 2.0 W.o. refinement 2.14 2.75 1.02 2.74 5.30 1.10 5.32 2.91
With refinement 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

in calculating the accuracy. Even though, the accuracy under the
threshold 2.0 slightly decreases when using refinement, it still makes
the estimated depth map much smoother, as shown in Fig. 6.

6.4.5. Number of frames
Fig. 10 shows the effect of reducing the number of input frames

on our algorithm. As already discussed in the quantitative analysis,
our algorithm still works reasonably well when fewer frames are
provided. Even from 3 frames, clean depth maps can still be derived,
and errors decrease when more frames are used (we do not show the
result of using two frames as input, as it cannot check the consistency
in occluded regions).

6.5. View interpolation

One of major usage of depth map is image-based rendering. To
demonstrate the quality of our depth, we generate view interpola-
tion result as follows. We pick two frames in the sequence as the left
and right reference frames. For each of these two reference frames,
we pick 5 to 9 frames around them and use them to recover the
depth map in the reference frame. We then render any view points

between the left and right frames by warping both color images with
the recovered depth maps of those two frames and blending the
two warped images using a z-buffer and proportional weighting. The
synthesized sequences are available in the Supplementary material.

One big advantage of our algorithm is that the recovered depth
map has sharp boundaries and is also smooth within objects. It there-
fore creates fewer artifacts when synthesizing a viewpoint, as shown
in Fig. 11. Due to foreground fattening, the interpolated image by
SGM has missing pieces in the background. For example, both the
digit 2 in the top patch and the digit 4 in the bottom patch are miss-
ing. Such error does not exists in our results, as our depth has a
clear foreground-background boundary. The interpolated image by
our depth is almost identical as the ground truth, and has higher
PSNR than the interpolated image by SGM depth.

6.6. Runtime

At last, we evaluate the runtime of our algorithm and com-
pare it with two multi-frame stereo algorithms: SGM [47] and
MCCNN [48]. All three algorithms are evaluated on a Intel i7 CPU

3 frames 
(err 8.32%)
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(err 8.03%)
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Fig. 10. Recovered depth maps using the proposed method with different number of input frames. Errors are shown below each sequence.

Interpolation by SGM (PSNR=28.89dB) Interpolation by ours (PSNR=30.03dB) Ground truthTwo input frames

Fig. 11. Interpolation results using depth map estimated by our algorithm and SGM on middF dataset. The ground-truth image is the actual image captured by the camera located
at interpolated viewpoint.
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Table 8
Runtime of three different algorithms: SGM [47] (using all frames), MCCNN [48], and
ours. We evaluated on three different resolutions: original, half (the width and height
are 1/2 of the original), and quad.

Resolution of Middlebury dataset Runtime (seconds)

SGM MCCNN Ours

Quad resolution (100–200 kP) 8.2 16.4 10.1
Half resolution (200–500 kP) 68.1 139.2 35.8
Original resolution (1–2 MP) 458.7 1905.4 170.1

with a GeForce GTX 1080 Ti GPU. Both SGM and ours are running
on a single-thread CPU. For MCCNN, the matching costs are calcu-
lated on a single-thread CPU and depth estimation from matching
cost are calculated on GPU (there is no CPU implementation for
this part). Table 8 shows the runtime of our algorithm on Middle-
bury dataset with three different resolutions. Our algorithm is much
faster than SGM and MCCNN on the original resolution. Moreover,
our runtime increases linearly with the number of pixels, while
others increase superlinearly. This also demonstrates the scalability
of our algorithm.

7. Conclusion

In this paper, we have developed a multi-frame stereo algorithm
based on matching edges, inferring local slanted plane hypotheses,
and computing dense per-pixel disparities using a superpixel-based
MRF followed by piecewise-continuous relaxation. Our multi-stage
pipeline computes the most reliable estimates (edge correspon-
dences and local planar hypotheses) first, and then produces a dense
estimate that better preserves depth discontinuities and deals with
semi-occluded and textureless regions.

Our experiments demonstrate the importance of edge matching.
Edge matching reduces foreground fattening, is more robust to color
variation, and provides better initial sparse matches compared with
keypoint matching. With matched edges, our approach out-performs
alternative approaches when recovering depth from high-resolution
multi-frame sequences, particularly when we evaluate errors on all
the pixels, including semi-occluded regions. This increased accuracy
is particularly important in applications such as view interpolation
and video editing.

In future work, we plan to extend our approach in several
directions. The first is to associate color distribution models with
planar depth hypotheses, as is done by Bleyer et al. [27]. The
second is to implement a coarse-to-fine approach, which can sig-
nificantly reduce the computational complexity of the initial edge
correspondence stage by re-using local planar hypotheses from
coarser levels.

In our current approach, we do not yet fully exploit all of the
local occlusion cues that are available in multi-frame sequences.
For example, we could use the larger of the two color dif-
ferences adjacent to edges (Eq. (2)) as a local cue for occlu-
sions and depth discontinuity events. We could also replace the
edge-on-boundary edge-consistency constraint in Eq. (9) with one
that requires at least one neighboring superpixel to be at the
depth of the edge. However, this leads to an MRF formulation
with non-submodular terms, requiring a more powerful solver, such
as Thuerck et al. [49].

In the longer term, we would like to extend our approach to
arbitrary camera motions, investigate alternative (non-patch-based)
aggregation strategies such as bilateral filtering [40], and use our
edge-based approach to deal with transparent motions and reflec-
tions. We believe that our approach can have significant advantages
in all of these extended scenarios.
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