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Abstract—Wepropose a novelmethod for templatematching in unconstrained environments. Its essence is the Best-Buddies Similarity

(BBS), a useful, robust, and parameter-free similaritymeasure between two sets of points. BBS is based on counting the number of

Best-Buddies Pairs (BBPs)—pairs of points in source and target sets that aremutual nearest neighbours, i.e., each point is the nearest

neighbour of the other. BBS has several key features thatmake it robust against complex geometric deformations and high levels of outliers,

such as those arising from background clutter and occlusions.We study these properties, provide a statistical analysis that justifies them,

and demonstrate the consistent success of BBS on a challenging real-world dataset while using different types of features.

Index Terms—Best buddies, mutual nearest neighbors, template matching, point set similarity, non-rigid matching

Ç

1 INTRODUCTION

FINDING a template patch in a target image is a core com-
ponent in a variety of computer vision applications such

as object detection, tracking, image stitching and 3D recon-
struction. In many real-world scenarios, the template—a
bounding box containing a region of interest in the source
image—undergoes complex deformations in the target
image: the background can change and the object may
undergo nonrigid deformations and partial occlusions.

Template matching methods have been used with great
success over the years but they still suffer from a number of
drawbacks. Typically, all pixels (or features) within the tem-
plate and a candidate window in the target image are taken
into account when measuring their similarity. This is unde-
sirable in some cases, for example, when the object of interest
is partially occluded or when the background behind it
changes between the template and the target image (see
Fig. 1). In such cases, the dissimilarities between pixels from
different backgrounds may be arbitrary, and accounting for
themmay lead to false detections of the template (see Fig. 1b).

In addition, many template matching methods assume a
specific parametric deformation model between the tem-
plate and the target image (e.g., rigid, affine transformation,
etc.). This limits the type of scenes that can be handled, and
may require estimating a large number of parameters when
complex deformations are considered.

In order to address these challenges, we introduce a
novel similarity measure termed Best-Buddies Similarity

(BBS), and show how it can be applied successfully to tem-
plate matching in the wild. BBS measures the similarity
between two point sets in Rd. A key feature of this measure
is that it relies only on a subset (usually small) of pairs of
points—the Best-Buddies Pairs (BBPs). A pair of points is
considered a BBP if the points are mutual nearest neigh-
bours, i.e., each point is the nearest neighbour of the other
in the corresponding point set. BBS is then taken to be the
fraction of BBPs out of all the points in the set. To apply BBS
for template matching, we represent both the template
patch and candidate query patches as point sets in Rd and
directly measure the BBS between these point sets.

Albeit simple, this measure turns out to have important
and non-trivial properties. Because BBS counts only the
pairs of points that are best buddies, it is robust to signifi-
cant amounts of outliers. Another, less obvious, property is
that the BBS between two point sets is maximal when the
points are drawn from the same distribution, and drops
sharply as the distributions diverge. In other words, if two
points are BBP, they were likely drawn from the same distri-
bution. We provide a statistical formulation of this observa-
tion, and analyze it numerically in the 1D case for point sets
drawn from distinct Gaussian distributions (often used as a
simplified model for natural images).

In addition, we prove a connection between BBS and the
Chi-Square (x2) distance, in the 1D case. x2 is typically used
in computer vision to measure distance between histo-
grams. Specifically, we show that for sufficiently large sets,
BBS converges to the x2 distance between two distributions.
However, unlike x2, computing BBS is done directly on the
raw data without the need to construct histograms. This in
turn alleviates the need to choose the histogram bin size.
Moreover, BBS is able to work with high dimensional repre-
sentation, such as deep features, for which constructing his-
tograms is not tractable.

We apply BBS to template matching using a sliding win-
dow over a query image. Both the template and each of the
candidate image regions are represented as point sets in a
joint location-appearance space. We use normalized patch
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coordinates as our spatial descriptor, and experiment with
both color as well as deep features for capturing appearance
information (although BBS is not restricted to these specific
choices). Once the template and candidate windows are
converted to point-sets BBS is used to measure the similarity
between them. The aforementioned properties of BBS now
readily apply to template matching. That is, pixels on the
object of interest in both the template and the candidate
patch can be thought of as originating from the same under-
lying distribution. These pixels in the template are likely to
find best buddies in the candidate patch, and hence would
be considered as inliers. In contrast, pixels that come from
different distributions, e.g., pixels from different back-
grounds, are less likely to find best buddies, and hence
would be considered outliers (see Fig. 1c). Given this impor-
tant property, BBS bypasses the need to explicitly model the
underlying object appearance and deformation.

To summarize, the main contributions of this paper are:
(a) introducing BBS—a useful, robust, parameter-free mea-
sure for template matching in unconstrained environments,
(b) analysis providing theoretical justification of its key fea-
tures and linking BBS with the x2 distance, and (c) extensive
evaluation on challenging real data, using different feature
representations, and comparing BBS to a number of com-
monly used template matching methods. A preliminary ver-
sion of this paper appeared in CVPR 2015 [1].

2 RELATED WORK

Template matching algorithms depend heavily on the simi-
larity measure used to match the template and a candidate
window in the target image. Various similarity measures
have been used for this purpose. The most popular are the
Sum of Squared Differences (SSD), Sum of Absolute Differ-
ences (SAD) and Normalized Cross-Correlation (NCC),
mostly due to their computational efficiency [2]. Different
variants of these measures have been proposed to deal with
illumination changes and noise [3], [4], [5].

Another family of measures is composed of robust error
functions such as M-estimators [6], [7] or Hamming-based

distance [8], [9], which are less affected by additive noise
and ’salt and paper’ outliers than cross correlation related
methods. However, all the methods mentioned so far
assume a strict rigid geometric deformation (only transla-
tion) between the template and the target image, as they
penalize pixel-wise differences at corresponding positions
in the template and the query region.

A number of methods extended template matching to deal
with parametric transformations (e.g., [10], [11]). Korman
et al. [12] introduced a template matching algorithm under
2D affine transformation that guarantees an approximation to
the globally optimal solution. Likewise, Tian andNarasimhan
[13] find a globally optimal estimation of nonrigid image
distortions. However, these methods assume a one-to-one
mapping between the template and the query region for the
underlying transformation. Thus, they are prone to errors in
the presence of many outliers, such as those caused by occlu-
sions and background clutter. Furthermore, these methods
assume a parametric model for the distortion geometry,
which is not required in the case of BBS.

Measuring the similarity between color histograms,
known as Histogram Matching (HM), offers a non-paramet-
ric technique for dealing with deformations and is com-
monly used in visual tracking [14], [15]. However, HM
completely disregards geometry, which is a powerful cue.
Other tracking methods have been proposed to deal with
cluttered environments and partial occlusions [16], [17]. But
unlike tracking, we are interested in detection in a single
image, which lacks the redundant temporal information
given in videos.

Olson [18] formulated template matching in terms of
maximum likelihood estimation, where an image is repre-
sented in a 3D location-intensity space. Taking this
approach one step further, Oron et al. [19] use xyRGB space
and reduced template matching to measuring the EMD [20]
between two point sets. Unlike EMD, BBS does not require
1 : 1 matching (does not have to account for all the data
when matching), which makes it more robust to outliers.

In the context of image matching, another widely used
measure is the Hausdorff distance [21]. To deal with occlu-
sions or degradations, Huttenlocher et al. [21] proposed a
fractional Hausdorff distance in which the Kth farthest
point is taken instead of the most farthest one. Yet, this mea-
sure highly depends onK that needs to be tuned.

The BBS is a bi-directional measure. The importance of
such two-side agreement has been demonstrated by the
Bidirectional similarity (BDS) in [22] for visual summariza-
tion. Specifically, the BDS was used as a similarity measure
between two images, where an image is represented by a
set of patches. The BDS sums over the distances between
each patch in one image to its nearest neighbor in the other
image, and vice versa. In contrast, the BBS is based on a
count of the Best-Buddies Pairs–pairs of points in source
and target sets that are mutual nearest neighbours (each
point is the nearest neighbour of the other), and makes only
implicit use of their actual distance.

The concept of mutual nearest neighbours criterion is not
new and has been used in various tasks in computer vision.
For example, it has been used to select reliable matches
between keypoints in stereo images [23], affine registra-
tion [24], and image matching [25]. Similar ideas are also

Fig. 1. Best-Buddies Similarity (BBS) for template matching: (a) The
template, marked in green, contains an object of interest against a back-
ground. (b) The object in the target image undergoes complex deforma-
tion (background clutter and large geometric deformation); the detection
results using different similarity measures are marked on the image (see
legend); our result is marked in blue. (c) The Best-Buddies Pairs (BBPs)
between the template and the detected region are mostly found the
object of interest and not on the background; each BBP is connected by
a line and marked in a unique color.
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proposed in classification of images [26] and natural lan-
guage data [27]. All these methods use the mutual nearest
neighbours only as a post processing step as a mean to filter
out outliers in the data. In contrast, our work makes a direct
use of mutual nearest neighbours as the core similarity mea-
sure. In image retrieval, a number of methods have been
proposed to estimate a metric that maximizes the number of
images with mutual nearest neighbours in a given image
collection [28], [29], [30]. Here too, mutual nearest neigh-
bours have not been used directly as a similarity measure.

On the theoretical side, we show a connection between
BBS and the Chi-Square (x2) distance used as a distance
measure between distributions (or histograms). Chi-Square
distance comes from the x2 test-statistic [31] where it is
used to test the fit between a distribution and observed fre-
quencies. x2 was successfully applied to a wide range of
computer vision tasks such as texture and shape classifica-
tion [32], [33], local descriptors matching [34], and bound-
ary detection [35] to name a few.

It is worth mentioning that the term Best Buddies was
used by Pomeranz et al. [36] in the context of solving jigsaw
puzzles. Specifically, they used a metric similar to ours in
order to determine if a pair of pieces are compatible with
each other.

3 BEST-BUDDIES SIMILARITY

Our goal is to match a template to a given image, in the pres-
ence of high levels of outliers (i.e., background clutter, occlu-
sions) and nonrigid deformation of the object of interest. We
follow the traditional sliding window approach and com-
pute the Best-Buddies Similarity between the template and
every window (of the size of the template) in the image. In
the following, we give a general definition of BBS and dem-
onstrate its key features via simple intuitive toy examples.
We then statistically analyze these features in Section 4.

General Definition. BBS measures the similarity between two
sets of points P ¼ fpigNi¼1 and Q ¼ fqigNi¼1, where pi; qi 2 Rd

(throughout the paper we assume the size of P and Q is equal).
The BBS is the fraction of Best-Buddies Pairs (BBPs) between
the two sets. Specifically, a pair of points fpi 2 P; qj 2 Qg is a
BBP if pi is the nearest neighbor of qj in the set Q, and vice
versa. Formally,

bbðpi; qj; P;QÞ ¼ 1 NNðpi; QÞ ¼ qj ^NNðqj; P Þ ¼ pi

0 otherwise;

�
(1)

where, NNðpi; QÞ¼argminq2Qdðpi; qÞ, and dðpi; qÞ is some
distance measure. The BBS between the point sets P and Q is
given by

BBSðP;QÞ ¼ 1

N
�
XN
i¼1

XN
j¼1

bbðpi; qj; P;QÞ: (2)

The key properties of the BBS are: (i) it relies only on a
(usually small) subset of matches i.e., pairs of points that
are BBPs, whereas the rest are considered as outliers. (ii)
BBS finds the bi-directional inliers in the data without any
prior knowledge on the data or its underlying deformation.
(iii) BBS uses rank, i.e., it counts the number of BBPs, rather
than using the actual distance values.

To understand why these properties are useful, let us
consider a simple 2D case of two point sets P and Q. The set
P consist of 2D points drawn from two different normal dis-
tributions, Nðm1;S1Þ, and Nðm2;S2Þ. Similarly, the points in
Q are drawn from the same distribution Nðm1;S1Þ, and a
different distribution Nðm3;S3Þ (see first row in Fig. 2). The
distribution Nðm1;S1Þ can be treated as a foreground model,
whereas Nðm2;S2Þ and Nðm3;S3Þ are two different back-
ground models. As can be seen in Fig. 2, the BBPs are mostly
found between the foreground points in P and Q. For set P ,
where the foreground and background points are well sepa-
rated, 95 percent of the BBPs are foreground points. For set
Q, despite the significant overlap between foreground and
background, 60 percent of the BBPs are foreground points.

This example demonstrates the robustness of BBS to high
levels of outliers in the data. BBS captures the foreground
points and does not force the background points to match.
In doing so, BBS sidesteps the need to model the back-
ground/foreground parametrically or have a prior knowl-
edge of their underlying distributions. This shows that a
pair of points fp; qg is more likely to be BBP if p and q are
drawn from the same distribution. We formally prove this
general argument for the 1D case in Section 4. With this
observations in hand, we continue with the use of BBS for
template matching.

3.1 BBS for Template Matching

To apply BBS to template matching, one needs to convert
each image patch to a point set in Rd. BBS, as formulated in
Eq. (2), can be computed for any arbitrary feature space and

Fig. 2. Best-Buddies Pairs (BBPs) between 2D Gaussian signals: First
row, Signal P consists of “foreground” points drawn from a normal distri-
bution, Nðm1; s1Þ, marked in blue; and “background” points drawn from
Nðm2; s2Þ, marked in red. Similarly, the points in the second signal Q are
drawn from the same distribution Nðm1; s1Þ, and a different background
distribution Nðm3; s3Þ. The color of points is for illustration only, i.e., BBS
does not know which point belongs to which distribution. Second row,
only the BBPs between the two signals which are mostly found between
foreground points.
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for any distance measure between point pairs. In this paper
we focus on a joint location-appearance space which was
shown to be useful for template matching [19]. Specifically,
for the locationwe use normalized patch coordinates, and for
the appearance, we consider two specific representations: (i)
color features, and (ii) using deep features taken from a pre-
trained neural net. Using such deep features is motivated by
recent success in applying features taken from deep neural
nets to different applications [37], [38]. A detailed descrip-
tion of each of these feature spaces is given in Section 5.

Following the intuition presented in the 2D Gaussian
example (see Fig. 2), the use of BBS for template matching
allows us to overcome several significant challenges such as
background clutter, occlusions, and nonrigid deformation of
the object. This is demonstrated in three synthetic examples
shown in Fig. 3. The templates A and B include the object of
interest in a cluttered background, and under occlusions,
respectively. In both cases the templates are successfully
matched to the image despite the high level of outliers. As
can be seen, the BBPs are found only on the object of interest,
and the BBS likelihood maps have a distinct mode around
the true location of the template. In the third example, the
template C is taken to be a bounding box around the forth
duck in the original image, which is removed from the
searched image using inpainting techniques. In this case,
BBS matches the template to the fifth duck, which can be
seen as a nonrigid deformed version of the template. Note
that the BBS does not aim to solve the pixel correspondence.
In fact, the BBPs are not necessarily semantically correct (see
third row in Fig. 3), but rather pairs of points that likely origi-
nated from the same distribution. This property, which we
next formally analyze, helps us deal with complex visual
and geometric deformations in the presence of outliers.

4 ANALYSIS

So far, we have shown some empirical evidence demon-
strating that the BBS is robust to outliers, and results in
well-localized modes. In what follows, we give a statistical
analysis that justifies these properties, and explains why
using the count of the BBP is a good similarity measure.
Additionally, we show that for sufficiently large sets BBS
converges to the well known x2 distance, which provides
additional insight into the way BBS handles outliers.

4.1 Expected Value of BBS

We begin with a simple mathematical model in 1D, in which
an “image” patch is modeled as a set of points drawn from a
general distribution. Using this model, we derive the expec-
tation of BBS between two sets of points, drawn from two
given distributions fP ðpÞ and fQðqÞ, respectively. We then
analyze numerically the case in which fP ðpÞ, and fQðqÞ are
two different normal distributions. Finally, we relate these
results to the multi-dimentional case. We show that the BBS
distinctively captures points that are drawn from similar
distributions. That is, we prove that the likelihood of a pair
of points being BBP, and hence the expectation of the BBS,
is maximal when the points in both sets are drawn from the
same distribution, and drops sharply as the distance
between the two normal distributions increases.

4.1.1 One-Dimensional Case

Following Eq. (2), the expectation BBS(P, Q), over all possi-
ble samples of P and Q is given by

E½BBSðP;QÞ� ¼ 1

N

XN
i¼1

XN
j¼1

E½bbi;jðP;QÞ�; (3)

where bbi;jðP;QÞ is defined in Eq. (1). We continue with
computing the expectation of a pair of points to be BBP,
over all possible samples of P and Q, denoted by EBBP.
That is

EBBP ¼
ZZ
P;Q

bbi;jðP;QÞPrfPgPrfQgdPdQ; (4)

This is a multivariate integral over all points in P and Q.
However, assuming each point is independent of the others
this integral can be simplified as follows.

Claim.

EBBP ¼
ZZ1
�1

ðFQðp�Þ þ 1� FQðpþÞÞN�1�

ðFP ðq�Þ þ 1� FP ðqþÞÞN�1fP ðpÞfQðqÞdpdq;
(5)

where, FP ðxÞ, and FQðxÞ denote the CDFs of P and Q,
respectively. That is, FP ðxÞ ¼ Prfp � xg. And, p� ¼ p�
dðp; qÞ, pþ ¼ pþ dðp; qÞ, and qþ; q� are similarly defined.

Proof. Due to the independence between the points, the
integral in Eq. (4) can be decoupled as follows:

EBBP ¼
Z
p1

� � �
Z
pN

Z
q1

� � �
Z
qN

bbi;jðP;QÞ
YN
k¼1

fP ðpkÞ
YN
l¼1

fQðqlÞdPdQ:

(6)

With abuse of notation, we use dP ¼ dp1 � dp2 � � � dpN , and
dQ ¼ dq1 � dq2 � � � dqN . Let us consider the function bbi;jðP;QÞ
for a given realization of P and Q. By definition, this indica-
tor function equals 1 when pi and qj are nearest neighbors
of each other, and zero otherwise. This can be expressed in
terms of the distance between the points as follows:

bbi;jðP;QÞ

¼
YN

k 6¼i;k¼1

I½dðpk; qjÞ > dðpi; qjÞ�
YN

l6¼j;l¼1

I½dðql; piÞ > dðpi; qjÞ�;

(7)

Fig. 3. BBS template matching results. Three toys examples are shown:
(A) cluttered background, (B) occlusions, (C) nonrigid deformation. The
template (first column) is detected in the target image (second column)
using the BBS; the results using BBS are marked in a blue. The likeli-
hood maps (third column) show well-localized distinct modes. The BBPs
are shown in last column. See text for more details.
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where I is an indicator function. It follows that for a given
value of pi and qj, the contribution of pk to the integral in
Eq. (6) can be decoupled. Specifically, we define

Cpk ¼
Z 1

�1
I½dðpk; qjÞ > dðpi; qjÞ�fP ðpkÞdpk: (8)

Assuming dðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� qÞ2

q
¼ jp� qj, the latter can be

written as

Cpk ¼
Z 1

�1
I½pk < q�j _ pk > qþj �fP ðpkÞdpk; (9)

where q�j ¼ qj � dðpi; qjÞ, qþj ¼ qj þ dðpi; qjÞ. Since q�j < qþj ,
it can be easily shown that Cpk can be expressed in terms of
FP ðxÞ, the CDF of P

Cpk ¼ FP ðq�j Þ þ 1� FP ðqþj Þ: (10)

The same derivation hold for computing Cql, the contribu-
tion of ql to the integral in Eq. (6), given pi, and qj. That is,

Cql ¼ FQðp�i Þ þ 1� FQðpþi Þ; (11)

where p�i ; p
þ
i are similarly defined and FQðxÞ is the CDF of

Q. Note that Cpk and Cql depends only on pi and qj and on
the underlying distributions. Therefore, Eq. (6) results in

EBBP ¼
ZZ
pi;qj

dpidqjfP ðpiÞfQðqjÞ
YN

k¼1;k6¼i

Cpk
YN

l¼1;l 6¼j

Cql

¼
ZZ
pi;qj

dpidqjfP ðpiÞfQðqjÞCpN�1
k CqN�1

l :

(12)

Substituting the expressions for Cpk and Cql in Eq. (12), and
omitting the subscripts i; j for simplicity, result in Eq. (5),
which completes the proof.

In general, the integral in Eq. (5) does not have a closed
form solution, but it can be solved numerically for selected
underlying distributions. To this end, we proceed with
Gaussian distributions, which are often used as simple sta-
tistical models of image patches. We then use Monte-Carlo
integration to approximate EBBP for discrete choices of
parameters m and s of Q in the range of [0, 10] while fixing
the distribution of P to have m ¼ 0; s ¼ 1. We also fixed the
number of points to N ¼ 100. The resulting approximation
for EBBP as a function of the parameters m; s is shown in
Fig. 4, on the left. As can be seen, EBBP is the highest at
m ¼ 0; s ¼ 1, i.e., when the points are drawn from the same

distribution, and drops rapidly as the the underlying distri-
bution of Q deviates from Nð0; 1Þ.

Note that EBBP does not depends on p and q (because of
the integration, see Eq. (5). Hence, the expected value of the
BBS between the sets (Eq. (3)) is given by

E½BBSðP;QÞ� ¼ N � EBBP: (13)

We can compare the BBS to the expectation of SSD, and
SAD. The expectation of the SSD has a closed form solution
given by

E½SSD(P, Q)� ¼
ZZ1
�1

ðp� qÞ2fP ðpÞfQðqjkÞdpdq ¼ 1þ m2 þ s2:

(14)

Replacing ðp� qÞ2 with jp� qj results in the expression
of the SAD. In this case, the expected value reduces to
the expectation of the Half-Normal distribution and is
given by

E½SAD(P,Q)� ¼ 1ffiffiffiffiffiffi
2p

p sK exp�m2=ð2s2Þ þ mð1� 2fP ð�m=sÞÞ:
(15)

Figs. 4b and 4c shows the maps of the expected values for
1� SSDnðP;QÞ, and 1� SADnðP;QÞ, where SSDn; SADn are
the expectation of SSD and SAD, normalized to the range of
[0,1]. As can be seen, the SSD and SAD results in a much
wider spread around their mode. Thus, we have shown that
the likelihood of a pair of points to be a BBP (and hence the
expectation of the BBS) is the highest when P and Q are
drawn from the same distribution and drops sharply as the
distance between the distributions increases. This makes
the BBS a robust and distinctive measure that results in
well-localized modes.

4.1.2 Multi-Dimensional Case

With the result of the 1D case in hand, we can bound the
expectation of BBS when P and Q are sets of multi-dimen-
sional points, i.e., pi; qj 2 Rd.

If the d-dimensions are uncorrelated (i.e., the covariance
matrices are diagonals in the Gaussian case), a sufficient
(but not necessary) condition for a pair of points to be BBP
is that the point would be BBP in each of the dimensions. In
this case, the analysis can be done for each dimension inde-
pendently similar to what was done in Eq. (5). The expecta-
tion of the BBS in the multi-dimensional case is then
bounded by the product of the expectations in each of the
dimensions. That is

EBBS �
Yd
i¼1

Ei
BBS; (16)

where Ei
BBS denote the expectation of BBS in the ith

dimension. This means that the BBS is expected to be more
distinctive, i.e., to drop faster as d increases. Note that if a
pair of points is not a BBP in one of the dimensions, it
does not necessarily imply that the multi-dimentional
pair is not BBP. Thus, this condition is sufficient but not
necessary.

Fig. 4. The expectation of BBS in the 1D Gaussian case: Two point sets,
P and Q, are generated by sampling points from Nð0; 1Þ, and Nðm; sÞ,
respectively. (a) the approximated expectation of BBS(P,Q) as a function
of s (x-axis), and m (y-axis). (b)-(c) the expectation of SSD(P,Q), and
SAD(P,Q), respectively. (d) the expectation of BBS as a function of m
plotted for different s.
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4.2 BBS and Chi-Square

Chi-Square (x2) is often used to measure the distance
between histograms of two sets of features. For example, in
face recognition, x2 is used to measure the similarity
between local binary patterns (LBP) of two faces [39], and it
achieves superior performance relative to other distance
measures. In this section, we prove a connection between
this well known statistical distance measure and BBS in the
1D case. Specifically, we show that, for sufficiently large
point sets, BBS converges to the x2 distance.

We assume, as before, that point sets P and Q are drawn
i.i.d. from 1D distribution functions fP ðpÞ and fQðqÞ respec-
tively. We begin by considering the following lemma:

Lemma 1. Let Pr½bbðpi ¼ p;P;QÞ� be the probability that a point
pi ¼ p 2 P has a best buddy in Q. Then when the limit (w.r.t.
the number of points) of that probability is given by

lim
N!þ1

Pr½bbðpi ¼ p;P;QÞ� ¼ fQðpÞ
fP ðpÞ þ fQðpÞ ; (17)

The proof of this lemma in given in Appendix A. Intui-
tively, if there are many points from P in the vicinity of
point p, but only few points from Q, i.e., fP ðpÞ is large but
fQðpÞ is small. It is then hard to find a best buddy in Q for p,
as illustrated in Fig. 5a. Conversely, if there are few points
from P in the vicinity of p but many points from Q, i.e.,
fP ðpÞ is small and fQðpÞ is large. In that case, it is easy for p
to find a best buddy, as illustrated in Fig. 5b.

A synthetic example illustrating Lemma 1 is shown
in Fig. 6.We consider two point sets P andQ, each is sampled
from a different Gaussian mixture (red and blue in (Fig. 6a).
Each mixture model consists of two modes. We then empiri-
cally calculate the probability that a certain point pi 2 P has a
best buddy in set Q for different set sizes, ranging from 10 to
10,000 points, Fig. 6b. As the sets size increases, the empirical
probability converges to the analytical value given by
Lemma 1, marked by the dashed black line. Note how the
results agree with our intuition. For example, at p ¼ 0, fP ðpÞ
is very large but fQðpÞ is almost 0, such that Pr½bbsðpi;P;QÞ� is
almost 0. At p ¼ 5, however, fP ðpÞ is very small and fQðpÞ is
almost 0, soPr½bbsðpi;P;QÞ� is almost 1.

Lemma 1 assumes the value of the point pi is fixed. How-
ever, we need to consider that pi itself is also sampled from
the distribution fP ðpÞ, in which case the probability this
point has a best buddy is

Pr½bbðpi;P;QÞ�

¼
Z M

p¼�M

fP ðpÞ � Prðpi ¼ p;P;QÞdp: ¼
Z M

p¼�M

fQðpÞfP ðpÞ
fP ðpÞ þ fQðpÞ dp:

(18)

Where we assume both density functions are defined on the
closed interval ½�M;M�.

With Lemma 1 in hand, we are now ready to proof that
BBS converges to Chi-Square,

Theorem 1. Suppose both density functions are defined on a
close interval ½�M;M�, non-zero and Lipschitz continuous.1

That is,

1) 8p; q, fP ðpÞ 6¼ 0; fQðqÞ 6¼ 0
2) 9A > 0; 8p; q; h; s:t: jfP ðpþ hÞ � fP ðpÞj < Ajhj

and jfQðq þ hÞ � fQðqÞj < Ajhj,
then we have,

lim
N!þ1

E½BBSðP;QÞ� ¼
Z M

p¼�M

fP ðpÞfQðpÞ
fP ðpÞ þ fQðpÞ dp

¼ 1

2
� 1

4
x2ðfp; fqÞ;

(19)

where x2ðfp; fqÞ is the Chi-Square distance between two
distributions.

To see why this theorem holds, consider the BBS measure
between two sets, P and Q. When the two sets have the
same size, the BBS measure equals to the fraction of points
in P that have a best buddy, that is BBSðP;QÞ ¼
1
N

PN
i¼1 bbsðpi;P;QÞ. Taking expectation on both sides of the

equation, we get

E½BBSðP;QÞ� ¼ 1

N

XN
i¼1

E½bbsðpi;P;QÞ�

¼ 1

N
�N � E½bbsðpi;P;QÞ�

¼
Z M

p¼�M

fQðpÞfP ðpÞ
fP ðpÞ þ fQðpÞ dp:

(20)

Where for the last equality we used lemma 1. This com-
pletes the proof of Theorem 1.

The theorem helps illustrate why BBS is robust to out-
liers. To see this, consider the signals in Fig. 6a. As can be
seen fP and fQ are both Gaussian mixtures. Let us assume
that the Gaussian with mean �5 represents the fore-
ground (in both signals), i.e., mfg ¼ �5, and that the sec-
ond Gaussian in each mixture represents the background,
i.e., mbg1 ¼ 0 and mbg2 ¼ 5. Note how, fP ðpÞ is very close to
zero around mbg2 and similarly fQðqÞ is very close to zero
around mbg1. This means that the background distribu-
tions will make very little contribution to the x2 distance,
as the numerator fP ðpÞfQðqÞ of Eq. (19) is very close to 0
in both cases.

We note that using BBS has several advantages com-
pared to using x2. One such advantage is that BBS does not

Fig. 5. Finding a Best-Buddy: We illustrate how the underlying density
functions affect the probability that a point p (bold red circle) has a best
buddy. (a) Points from set P (red circles) are dense but points from set Q
(blue cross) are sparse. Although q is the nearest neighbor of p in Q, p is
not the nearest neighbor of q in P (p0 is closer). (b) Points from set Q are
dense and points from set P are sparse. In this case, p and q are best
buddies, as p is the closest point to q.

1. Note that most of density functions, like the density function of a
Gaussian distribution, are non-zero and Lipschitz continuous in their
domain.
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require binning data into histograms. It is not trivial to set
the bin size, as it depends on the distribution of the features.
A second advantage is the ability to use high dimensional
feature spaces. The computational complexity and amount
of data needed for generating histograms quickly explodes
when the feature dimension becomes large. On the contrary,
the nearest neighbor algorithm used by BBS can easily scale
to high-dimensional features, like Deep features.

5 FEATURE SPACES

A joint spatial-appearance representation is used in order to
convert both template and candidate windows into point
sets. For the spatial component, normalized xy coordinates
within the windows are used. For the appearance descrip-
tor, we experiment with color features as well as deep
features.

Color features. For building our color feature we break the
template and candidate windows into k� k distinct patches.
Each such k� k patch is represented by its 3 � k2 color chan-
nel values and xy location of the central pixel, relative to the
patch coordinate system. For all our toy examples and quali-
tative experiments RGB color space is used. However, for
our quantitative evaluationHSV was used as it was found to
produce better results. Both spatial and appearance channels
were normalized to the range ½0; 1�. The point-wise distance
measure usedwith our color features is

dðpi; qjÞ ¼ jjpðAÞ
i � q

ðAÞ
j jj22 þ �jjpðLÞi � q

ðLÞ
j jj22; (21)

where superscripts A and L denote the appearance and
location descriptor, respectively. The parameter � ¼ 0:25
was chosen empirically (see Fig. 11) and was fixed in all of
our experiments.

Deep features. As our deep feature [40] descriptor, we
used the VGG-Deep-Net [41] pretrained on ImageNet. Spe-
cifically, we extract features from two layers of the network,
conv 1 2 (64 features) and conv 3 4 (256 features). The fea-
ture maps from conv 1 2 are down-sampled twice, using
max-pooling, to reach the size of the conv 3 4 which is
down-sampled by a factor of 1=4 with respect to the
original image. In this case we treat every pixel in the

down-sampled feature maps as a point. Each such point is
represented by its xy location in the down-sampled window
and its appearance is given by the 320 feature channels.

We found it is important to normalize the features prior
to computing the point-wise distances. Therefore each fea-
ture channel is independently normalized to have zero
mean and unit variance over the window.

The deep feature has much higher dimensionality than
our color feature and we found the cosine distance works
better in this case. Therefore, our point-wise distance when
using deep features is

dðpi; qjÞ ¼< p
ðAÞ
i ; q

ðAÞ
j > þ expð��jjpðLÞi � q

ðLÞ
j jj22Þ; (22)

where < �; � > denotes the inner product operator between
feature vectors. Unlike the color features we now want to
maximize d rather then minimize it (we can always mini-
mize �d). The parameter � ¼ 0:5 was chosen empirically
(see Fig. 11) and was fixed in all of our experiments.

6 COMPLEXITY

Computing the BBS between two point sets P;Q 2 Rd,
requires computing the distance between each pair of
points. That is, constructing a distance matrix D where
½D�i;j ¼ dðpi; qjÞ. Given D, the nearest neighbour of pi 2 Q,
i.e., NNðpi; QÞ, is the minimal element in the ith row of D.
Similarly, NNðqj; P Þ is the minimal element in the jth col-
umn of D. The BBS is then computed by counting the num-
ber of mutual nearest neighbours (divided by a constant).
We first analyze the computational complexity of comput-
ing BBS exhaustively for every window in a query image.
We then propose a caching scheme, allowing extensive
computation reuse which dramatically reduces the compu-
tational complexity, trading it off with increased memory
complexity.

Naive implementation. Consider a target window P of size
w� h and a query image I of size W �H. We want to
exhaustively measure the similarity between P and every
w� h window Q in image I. For brevity, we interchange-
ably refer to P and Q as both patches and point sets. Both
target window and query image are represented in a
g-dimensional feature space.

Fig. 6. Illustrating Lemma 1: Point sets P and Q are sampled iid from the two Gaussian mixtures shown in (a). The probability that a point in set P has
a best buddy in set Q is empirically computed for different set sizes (b). When the size of the sets increase, the empirical probability converges to the
analytical solution in Lemma 1 (dashed black line).
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We start by considering each pixel in our target window
as a point in our target point set P and similarly every pixel
in some query window is considered as a point in the query
point set Q. In this case, jP j ¼ jQj ¼ w � h , l and our dis-
tance matrices D are of size l� l. Assuming some arbitrary
image padding, we have W �H , L query windows for
which BBS has to be computed. Computing all the L dis-
tance matrices requires OðLl2gÞ. For each such distance
matrix we need to find the minimal element in every row
and column. The minimum computation for a single row or
column is done in OðlÞ and for the entire matrix in Oðl2Þ.
Therefore, the complexity of computing BBS naively for all
query windows of image I is,

OðLl4gÞ: (23)

This is a high computational load compared to simpler
methods such as sum-of-square-difference that require only
OðLlgÞ.

Distance computation reuse. Assuming our sliding window
works column by column. We cache all the distance matri-
ces computed along the first image column. Staring from
the second matrix in the second column, we now have to
compute the distance between just one new candidate pixel
and the target window. This means we only have to recom-
pute one column of D, which requires only OðlÞ. Assuming
W;H > > w; h the majority of distance matrices can be
computed in OðlÞ, instead of Oðl2Þ. This means that comput-
ing BBS for the entire image I would now require

OðLl3gÞ: (24)

Minimum operator load reduction. For the majority of query
windows we only have one new column of D, as discussed
above. In this case, for all other l� 1 columns we already
know the minimal element. Therefore, we can obtain the
minimum over all columns in justOðlÞ. Along the rows there
are two cases to consider. First, that the minimal value, for a
certain row, was in the column that was pushed out of D. In
which case we have to find the minimum value for that row
in OðlÞ. The second option is that the minimal value of the
row was not pushed out and we know where it is. In such a
case we only have to compare the new element added to the
row (by the new column in D) relative to the previous mini-
mum. This operation requires onlyOð1Þ. Assuming the posi-
tion of the minimal value along a row is uniformly
distributed, on average, there will be only one rowwhere the
minimumvalue needs to be recomputed. To see this consider
a set of randomvariables fXigli¼1 such thatXi ¼ 1 if and only
if the minimal value in the i’th row of D was pushed out of
the matrix when a new column was introduced. Assuming a
uniform distribution Xi 	 Bernoullið1=lÞ. The number of
rows for which the minimum has to be recomputed is given
bym ¼ Pl

i¼1 Xi, and the expected number of such rows is,

E½m� ¼ E
Xl

i¼1

Xi

" #
¼

Xl

i¼1

E½Xi� ¼
Xl

i¼1

1

l
¼ 1: (25)

This means that, on average, there will be only one row for
which the minimum has to be computed in OðlÞ. In which
case we are able to find the minimum for all rows and col-
umns inD, in OðlÞ instead on Oðl2Þ. Combining these results

with what we have so far yields an overall BBS complexity
over the entire image of,

OðLl2gÞ: (26)

Additional load reduction. When using color features, the
complexity of BBS is actually lower due to the use of non-
overlapping k� k patches (instead of individual pixels). In
this case the image, candidate window and distance matri-
ces are 1

k2
smaller, and the feature space is k2 larger. Overall

this gives a complexity of

O
Ll2g

k4

� �
: (27)

Regarding the spatial distance matrix used in Eqs. (21) and
(22). We note that it is fixed for a given patch size and thus
only has to be computed once for each query image.

The reuse schemes presented above cannot be used with
our deep features because we normalize the features differ-
ently, with respect to each query window. The above analy-
sis ignores the complexity of extracting the deep features
themselves. Additionally, some of the above techniques,
and specifically using non-overlapping patches, benefits all
methods, e.g., SSD, and not only BBS.

As can be seen in the above analysis BBS runtime depends
on both image and template size. In practice, typical runtime,
of our unoptimized Matlab code, for a 360� 480 image with
a 30� 40 template is 	 1 sec when using color feature, and
	 3 sec for deep features.

7 RESULTS

We perform qualitative as well as extensive quantitative eval-
uation of ourmethod on real world data.We compare the BBS
with the following similarity measures commonly used for
template matching: (1) Sum-of-Square-Difference, (2) Sum-
of-Absolute-Difference, (3) Normalized-Cross-Correlation,
(4) color Histogram Matching using the x2 distance,
(5) Bidirectional Similarity [22] (BDS) and (6) Kernelized
Correlation Filters [42] (KCF). All methods use the same
appearance-location space as BBS (location is only usedwhere
relevant).

7.1 Qualitative Evaluation

Four template-image pairs taken from the Web are used for
qualitative evaluation. The templates, which were manually
chosen, and the target images are shown in Figs. 1a and 1b,
and in Fig. 7. In all examples, the template drastically
changes its appearance due to large geometric deformation,
partial occlusions, and change of background.

Detection results, using color features with RGB color
space, are presented in Figs. 1a and 1b, and in Fig. 7b, and
compared to the above mentioned methods as well as to the
Earth Movers Distance (EMD) [20]. BBS is the only method
successfully matching the template in all these challenging
examples. The confidence maps of BBS, presented in Fig. 7c,
show distinct and well-localized modes compared to other
methods.2 The BBPs for the first example are shown in

2. Our data and code are publicly available at: http://people.csail.
mit.edu/talidekel/Best-Buddies Similarity.html
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Fig. 1c. As discussed in Section 3, BBS captures the bidirec-
tional inliers, which are mostly found on the object of inter-
est. Note that the BBPs, as discussed, are not necessarily
true physical corresponding points.

7.2 Quantitative Evaluation

The data for our quantitative experiments was generated
using 100 annotated video sequences (color and gray-scale)
taken from the Visual Tracking Benchmark3 introduced by
Wu et al. [43]. These videos capture a wide range of challeng-
ing scenes inwhich the objects of interest are diverse and typ-
ically undergo nonrigid deformations, photometric changes,
motion blur, in/out-of-plane rotation, and occlusions.

Three template matching datasets were randomly sam-
pled from the annotated videos. Each dataset is comprised of
template-image pairs, where each such pair consists of
frames f and f þ df , where f was randomly chosen. For
each dataset a different value of df was used (25, 50 or 100).
The ground-truth annotated bounding box in frame f is
used as the template, while frame f þ df is used as the query
image. This random choice of frames creates a challenging
benchmark with a wide baseline in both time and space (see
examples in Figs. 9 and 10). For df ¼ 25; 50 the data sets con-
sist of 270 pairs and for df ¼ 100 there are 254 pairs.

The ground-truth annotations were used for quantitative
evaluation. Specifically, we measure the accuracy of the top
match as well as the top k-ranked matches, using the com-
mon intersection over union (IoU) measure between bound-
ing boxes

Acc: ¼ areaðBe \BgÞ
areaðBe [BgÞ ; (28)

where Be and Bg are the estimated and ground truth bound-
ing boxes, respectively. The ROC curves show the fraction of

examples with overlap larger than a threshold (TH 2 ½0; 1�).
Mean average precision (mAP) is taken as the area-under-
curve (AUC).

Fig. 8 shows the success rates for BBS and the six similarity
measures mentioned above for df ¼ 25, using both color and
deep features (see Section 5). We evaluated the performance
considering only the global maximum (best mode) prediction
(Figs. 8a and 8b) and the best out of the top 3 modes, com-
puted using non-maximum suppression (Figs. 8c and 8d). As
can be seen, BBS outperforms competing methods regardless
of the feature space used. Using color features and consider-
ing only the top mode Fig. 8a, BBS outperforms competing
methods with amargin ranging from 4.6 percent compared to
BDS, and over 30 percent compared to SSD. When consider-
ing the top 3 modes (Fig. 8c) the performance of all methods
improves, however the margin of BBS over competing meth-
ods increases as well (BBS reaches mAP of 0.648 compared to
0.589 with only the top mode). This increase in performance
suggests that there are cases where BBS is able to produce a
mode at the correct target position however this mode may
not be the globalmaximumof the likelihoodmap.

Results using using deep feature and considering only
the top mode are shown in figures Fig. 8b. We note that
HM was not evaluated in this case due to the high
dimensionality of the feature space requiring large
amounts of samples to generate meaningful histograms
for the template and candidate. We observe that BBS out-
performs the second best methods by only a small margin
of 2.4 percent. Considering the top 3 modes allows BBS to
reach mAP of 0.684 increasing its margin relative to com-
peting methods. For example the margin relative to the
second best method (SSD) is now 5.2 percent. It is interest-
ing to see that BDS which was the runner up when color
features were used comes in last when using deep fea-
tures. This demonstrates the robustness of BBS which is
able to successfully use different features. Additionally,
we see that the performance of BBS with deep features

Fig. 7. BBS results on real data: (a) the templates are marked in green over the input images. (b) the target images marked with the detection results
of 6 different methods (see text for more details). BBS results are marked in blue. (c)-(e) the resulting likelihood maps using BBS, EMD and NCC,
respectively; each map is marked with the detection result, i.e., its global maxima. BBS produces well localized modes with respect to other methods
and is able to indicate the correct target location in all these examples.

3. https://sites.google.com/site/benchmarkpami/
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Fig. 8. Template matching accuracy: Evaluation of method performance using 270 template-image pairs with df ¼ 25. BBS outperforms competing
methods as can be seen in ROC curves showing fraction of examples with overlap greater than threshold values in [0,1]. Top: only best mode is con-
sidered. Bottom: best out of top 3 modes is taken. Left: Color features. Right: Deep features. Mean-average-precision (mAP) values taken as area-
under-curve are shown in the legend. Best viewed in color.

Fig. 9. Example results using color features. Top, input images with annotated template marked in green. Middle, target images and detected bound-
ing boxes (see legend); ground-truth (GT) marked in green (our results in blue). Bottom, BBS likelihood maps. BBS successfully match the template
in all these examples.
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improves (a margin of 5.5 percent with top 3 modes).
However, this performance gain requires a significant
increase in computational load.

Finally, we note that, when using the color features BBS
outperforms HM which uses the x2 distance. Although
BBS converges to x2 for large sets there are clear benefits
for using BBS over x2. Computing BBS does not require
modeling the distributions (i.e., building normalized histo-
grams) and can be performed on the raw data itself. This
alleviates the need to choose the histogram bin size which
is known to be a delicate issue. Moreover, BBS can be per-
formed on high dimensional data, such as our deep fea-
tures, for which modeling the underlying distribution is
challenging.

Some successful matching results, along with the likeli-
hood maps produced by BBS using color features are shown
in Fig. 9, and using the deep features in Fig. 10. Typical fail-
ure cases are also presented in Figs. 13 and 14.

The deep features are not sensitive to illumination varia-
tions and can capture both low level information as well as
higher level object semantics. As can be seen, the combina-
tion of using deep features and BBS can deliver superior
results due to its ability to explain non-rigid deformations.
Note how when using the deep feature, we can correctly
match the bike rider in Fig. 10c for which color features
failed (Fig. 13 bottom row). BBS with deep features produce
very well localized and compact modes compared to when
color features are used.

Most of the failure cases using the color features,
Fig. 13, can be attributed to either distracting objects with
a similar appearance to the target (top row), illumination
variations (middle row), or cases were BBS matches the
background or occluding object rather than the target
(bottom row). This usually happens when the target is
heavily occluded or when the background region in the
target window is very large. As for deep features most of
the failure cases, Fig. 14, are due to distracting objects
with a similar appearance (top and middle rows) or cases
where BBS matches the background or occluding object
(bottom row).

Effect of �. The only parameter that has to be tuned for
BBS is � which affects the point-wise distances, weighing
between appearance and spatial information. As can be
seen in Fig. 11 BBS is not very sensitive to the choice of
lambda. When � ¼ 0, performance degrades but the
method does not breakdown. Using deep features is less

Fig. 10. Example results using deep features. Top, input images with annotated template marked in green. Middle, target images and detected
bounding boxes (see legend); ground-truth (GT) marked in green (our results in blue). Bottom, BBS likelihood maps. BBS successfully match the
template in all these examples.

Fig. 11. Effect of choice of � on BBS performance: BBS is not very sensi-
tive to choice of � (Results shown are for df ¼ 25).
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sensitive to the choice of lambda. We believe this is
because deep features already contain some spatial infor-
mation stored in the appearance channels due to the
receptive field of the different neurons which have some
overlap.

The space time baseline. Effect on performance was exam-
ined using data-sets with different df values (25, 50, 100).
Fig. 12 shows mAP of competing methods for different val-
ues of df . Results using color features are shown on the left
and using deep features on the right. All results were ana-
lyzed taking the best out of the top 3 modes. It can be seen
that BBS outperforms competing methods for the different
df values with the only exception being deep feature with
df ¼ 100 in which case BBS and SSD produce similar results
reaching mAP of 0.6.

8 CONCLUSIONS

We have presented a novel similarity measure between sets
of objects called the Best-Buddies Similarity. BBS leverages
statistical properties of mutual nearest neighbors and was
shown to be useful for template matching in the wild. Key
features of BBS were identified and analyzed demonstrating
its ability to overcome several challenges that are common
in real life template matching scenarios. It was also shown,
that for sufficiently large point sets, BBS converges to the
Chi-Square distance. This result provides interesting
insights into the statistical properties of mutual nearest
neighbors, and the advantages of using BBS over x2 were
discussed.

Extensive qualitative and quantitative experiments on
challenging data were performed and a caching scheme

Fig. 13. Example of failure cases using color features. Left, input images
with annotated template marked in green. Right, target images and
detected bounding boxes (see legend); ground-truth (GT) marked in
green (our results in blue). As can be seen, some common failure
causes are illumination changes, similar distracting targets or locking
onto the background.

Fig. 14. Example of failure cases using Deep features. Left, input images
with annotated template marked in green. Right, target images and
detected bounding boxes (see legend); ground-truth (GT) marked in
green (our results in blue). Some common failure causes are similar dis-
tracting targets or locking onto the background.

Fig. 12. Effect of space time baseline: Methods performance evaluated for data sets with different space-time baseline, df ¼ 25; 50 and 100. Left:
Color features, Right: Deep features. BBS outperforms competing methods for both feature choices and for all df values. Best viewed in color.
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allowing for an efficient computation of BBS was proposed.
BBS was shown to outperform commonly used template
matching methods such as normalized cross correlation,
histogram matching and bi-directional similarity. Different
types of features can be used with BBS, as was demon-
strated in our experiments, where superior performance
was obtained using both color features as well as Deep
features.

Our method may fail when the template is very small
compared to the target image, when similar targets are pres-
ent in the scene or when the outliers (occluding object or
background clutter) cover most of the template. In some of
these cases it was shown that BBS can predict the correct
position (produce a mode) but non necessarily give it the
highest score.

Finally, we note that since BBS is generally defined
between sets of objects it might have additional applications
in computer-vision or other fields that could benefit from its
properties. A natural future direction of research is to
explore the use of BBS as an image similarity measure, for
object localization or even for document matching.

APPENDIX A
PROOF OF LEMMA 1

Because of independent sampling, all points in Q have
equal probability being the best buddy of p. From this we
have

Pr½bbðpi ¼ p;P;QÞ� ¼
XN
i¼1

Prðbbðp; qi;P;QÞ ¼ 1Þ

¼ N � Prðbbðp; q;P;QÞÞ;
(29)

where q is a point from Q and subscript is dropped for ease
of description.

The probability that two points are best buddies is given
by

Prðbbðpi ¼ p; q;P;QÞÞ
¼ ðFQðp�Þ þ 1� FQðpþÞÞN�1ðFP ðq�Þ þ 1� FP ðqþÞÞN�1:

(30)

where FP ðxÞ and FQðxÞ denote CDFs of these two distribu-
tions, that is, FP ðxÞ ¼ Prfp � xg. And, p� ¼ p� jp� qj,
pþ ¼ pþ jp� qj, and qþ; q� are similarly defined.
Combining Eqs. (29) and (30), the probability that pi has a
best buddy equals to

lim
N!þ1

N

Z M

q¼�M

ðFQðp�Þ þ 1� FQðpþÞÞN�1

� ðFP ðq�Þ þ 1� FP ðqþÞÞN�1fQðqÞdq:
(31)

We denote the signed distance between two points by
m ¼ p� q. Intuitively, because the density function are non-
zero at any place, when N goes to infinity, the probability
that two points p 2 P; q 2 Q are BBP decreases rapidly as m
increases. Therefore, we only need to consider the case
when the distance between p and q is very small. Formally,
for any positive m, changing the integration limits in

Eq. (31) from
RM
p¼�M to

R pþm
q¼p�m does not change the result

(see Claim 2 in the supplementary material, which can
be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.
2737424).

Then let us break down FP ð�Þ and FQð�Þ in Eq. (31). Given
that the density functions fP ðpÞ and fQðqÞ are Lipschitz con-
tinuous (Condition 2 in Theorem 1), we can assume that
they take a constant value in the interval ½p�; pþ�, and
½q�; qþ�. That is,

fP ðp�Þ 
 fP ðpþÞ 
 fP ðpÞ
fQðq�Þ 
 fQðqþÞ 
 fQðqÞ:

(32)

And thus, the expression FQðpþÞ � FQðp�Þ can be approxi-
mated as follows:

FQðpþÞ � FQðp�Þ

¼
Z pþ

p�
fQðqÞdq 
 fQðqÞ � ðpþ � p�Þ ¼ 2jmj � fQðpÞ:

(33)

Similarly, FpðqþÞ � FP ðq�Þ 
 2jmj � fP ðqÞ. Note that this
approximation can also be obtained using Taylor expansion
on FpðqþÞ and Fpðq�Þ. At last, since p and q are very close to
each other, we assume

fQðqÞ 
 fQðpÞ: (34)

Plugging all these approximations (Eqs. (33) and (34)) to
Eq. (31) and replacing q bym, we get

Eq: ð31Þ ¼ lim
N!þ1

N

Z m

m¼�m

ð1� 2jmjfQðpÞÞN�1

� ð1� 2jmjfP ðpÞÞN�1fQðpÞdq
(35)

¼ fQðpÞ lim
N!þ1

N

Z m

m¼�m

�
1� 2ðfP ðpÞ þ fQðpÞÞjmj

þ 4fP ðpÞfQðpÞm2
�N�1

dm

(36)

¼ fQðpÞ lim
N!þ1

N

Z m

m¼�m

�
1� 2ðfP ðpÞ þ fQðpÞÞm

�N�1

dm:

(37)

It is worth mentioning that the approximated equality in
Eqs. (33) and (34) becomes restrict equality when N goes to
infinity (for the proof see Claim 3 in the supplementary
material, available online). Also, since the distance between
two points m is very small, the second order term
4fP ðpÞfQðpÞm2 in Eq. (36) is negligible and is dropped in
Eq. (37) (for full justification see Claim 4 in the supplemen-
tary material, available online).

At last, limN!þ1N
Rm

m¼�mð1� ajmjÞN�1dm ¼ 2
a (see Claim

1 in supplementary material, available online). Thus
Eq. (37) equals to

fQðpÞ
fP ðpÞ þ fQðpÞ ; (38)

which completes the proof of Lemma 1.
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