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Abstract

This paper investigates methods of computing nonlinear functions ef-
ficiently under the constraints of common fully homomorphic encryption
schemes — access to only addition and multiplication modulo t. We show
that

√
t multiplications are necessary and 3

√
t multiplications are suffi-

cient to evaluate a general single variable function. We then show that
many multivariate functions, such as division and boolean comparisons
can also be evaluated using O(

√
t) multiplications. The multiplicative

depth of both algorithms is O(log t). Despite meeting asymptotic lower
bounds, it is disappointing to learn that any reasonably complex homo-
morphic function is necessarily weakly polynomial. This suggests that
more flexible encryption schemes must be pursued if homomorphic en-
cryption is to become practical.

Experimental results utilizing an implementation of the somewhat ho-
momorphic scheme, YASHE, demonstrate secure, homomorphic evalua-
tions of arbitrary 8-bit single variable functions in less than 4 milliseconds
amortized on a 2012 MacBook Pro. Test scenarios that could be useful
in cloud computing, such as converting an image from RGB to YCbCr
color formats and applying color filters, are computed in minutes. Both
of these results show significant improvement over the state of the art.

1 Introduction
Put simply, homomorphic encryption allows one to encrypt messages and then
perform math on these encrypted messages without revealing the contents [1].
Researchers speculate that if the field becomes practically feasible it could rev-
olutionize the security of cloud computing [2]. For example, imagine a search
engine that allowed you to encrypt a query with homomorphic encryption before
sending it to the server. The server would perform some sort of computation on
your query to transform it into a list of results, and then send the results back
to you without ever knowing what it was that you searched for!

1



Many commonly used encryption schemes, like RSA, are partially homomor-
phic because they allow for some, but not all, operations to be performed on
the encrypted texts [3]. However, for many decades it remained an unsolved
problem as to whether there exists a fully homomorphic encryption scheme —
a scheme where any operation can be performed on the encrypted texts [3]. In
2013, Craig Gentry’s groundbreaking work [1, 4] demonstrated that this “holy
grail” of cryptography [5] does, in fact, exist.

This discovery and most derivative schemes [1, 4, 6–14], obey the following
format. The plaintext is encrypted with some sort of noise. As homomorphic
operations are performed this noise grows until, after a certain amount of com-
putation, it becomes so large that the ciphertext can no longer be decrypted.
To mitigate this, a procedure called bootstrapping decrypts and re-encrypts the
text, entirely with homomorphic operations, resetting the noise to some small
constant. By continuing to apply bootstrapping whenever necessary, an arbi-
trary number of operations can be performed. However, this comes with an
immense computational overhead. So, in practice, many schemes are somewhat
homomorphic [1, 4]. These schemes do not bootstrap, which bounds the number
of operations that can be performed before the text deteriorates.

In early work, homomorphic encryption was reported to be extremely slow,
with single bit operations taking as long as half an hour to compute [1]. Re-
cent advancements allow large circuits to be evaluated in seconds [6, 15]. But
still, these circuits are limited to consist of only addition and multiplication
operations. Although any function can theoretically be computed with these
operations [4], it is not obvious how to do so efficiently [16–19].

This paper investigates ways of computing these nonlinear functions includ-
ing boolean comparisons and division under a particular model of homomorphic
computing. In section 2, the specific constraints of this model are established.
Section 3 provides a solution to this proposed problem and proves the solution
is asymptotically optimal. Section 4 expands these results to include multivari-
ate functions. Finally, section 5 provides experimental results and section 6
concludes with a discussion of some of the inherent limitations of homomorphic
encryption revealed by these results.

2 A Model of Homomorphic Computing
The goal of this work is to describe methods of evaluating functions over the
integers modulo t efficiently under homomorphic encryption. Setting aside the
specifics of homomorphic schemes, the constraints of many of them can be gen-
eralized as follows [1, 4, 6–15]:

1. The available operations are addition and multiplication modulo the plain-
text modulus, t.

2. Additions and scalar multiplications are relatively easy to compute, where
as nonscalar multiplications are much harder to compute.
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3. Additions and scalar multiplications do not increase the noise of cipher-
texts by much, whereas nonscalar multiplications greatly increase the noise
of ciphertexts.

Therefore, in order to evaluate functions efficiently, the computation must
minimize the total number of nonscalar multiplications (reducing the total com-
putation time), as well as the nonscalar multiplicative depth (reducing the over-
head associated with noise growth).

2.1 Limitations of this model
Naturally, this model does not cover all cases as there are many homomorphic
schemes, some of which have additional properties that can ease computation.
For example, some configurations allow the individual bits of ciphertexts to be
accessed and computed upon [16, 18, 19]. This make it possible to implement
standard computer hardware algorithms that rely on bit shifting and bit logic
to perform operations like evaluating inequalities and performing division.

Additionally, there are homomorphic schemes that support plaintext moduli
so large that performing integer multiplications to the maximum multiplicative
depth will not cause overflow. Under these schemes one can perform floating
point operations by keeping track of a radix index for each integer and scaling
down the decrypted result appropriately [16, 17].

While these alternatives are freeing, they currently come at enormous cost.
In the bit method, the ciphertexts only encrypt single integers, making them
orders of magnitude less efficient than schemes that use batch processing. As for
ciphertexts that do not overflow, they must be immense in size, again sacrificing
valuable performance.

3 Evaluating Single-Variable Functions
The key insight of our proposed solution is to form a more symbiotic relationship
with the modulo operation that is built into the homomorphic addition and
multiplication operations. We show that this modulus can be used as a tool for
simplification, rather than a boundary that must be avoided, as in [16, 17].

Using this philosophy we will derive a method to compute any single variable
homomorphic function. In section 3.1, we establish notation, in section 3.2 we
discuss the conditions under which single variable functions are computable,
and in 3.3 we discuss the algorithms that compute them and their complexity.

3.1 Notation
For clarity, the proofs and discussion to below use the following notation:

- A function is computable if it can be computed using only addition and
multiplication operations modulo t.

- All homomorphically encrypted variables are represented in bold.
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- All operations are assumed to be modulo t and equality “=” is used to
represent congruence modulo t.

- δ : Z/tZ→ {0, 1} is the standard Dirac delta function, modulo t:

δ(x) =

{
1 if x = 0
0 if x ̸= 0

(1)

3.2 Computability of Single-Variable Functions
In lemmas 1 and 2, we establish, through construction, that it is possible to
compute any function with the given operations if the modulus, t, is prime.
Lemmas 3 and 4 go on to enumerate the number distinct functions that exist as
well as the number of ways that these functions can be computed. Theorem 1
concludes through a counting argument that all functions are computable if and
only if the modulus t is prime, and furthermore that each of these functions has
a unique polynomial that computes it.

Lemma 1. If δ is computable, then any total function f : Z/tZ → Z/tZ is
computable.

Proof. Using the function δ, any total function f : Z/tZ → Z/tZ can be com-
puted as follows:

f(x) =

t−1∑
k=0

f(k)δ(x− k) (2)

Lemma 2. δ is computable if t is prime.

Proof. If t is prime then δ can be computed as follows:

δ(x) = 1− xt−1 (3)

By Fermat’s Little Theorem [20], if x ̸= 0 then xt−1 = 1 and so δ(x) = 0. If
x = 0, then xt−1 = 0 and so δ(x) = 1.

Lemma 3. Exactly tt distinct total functions f : Z/tZ→ Z/tZ exist.

Proof. Each of the |Z/tZ| possible inputs to f corresponds to one of |Z/tZ|
possible outputs, therefore there are

|Z/tZ||Z/tZ| = tt (4)

distict functions that exist.

Lemma 4. At most tφ(t)+1 distinct total functions f : Z/tZ → Z/tZ are com-
putable.
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Proof. By Euler’s Theorem [20], xφ(t)+1 = x, therefore any polynomial P can
be reduced to the form

P (x) =

φ(t)∑
i=0

aix
i (5)

This reduced polynomial has φ(t)+1 coefficients, each of which can take on one
of |Z/tZ| = t values, therefore tφ(t)+1 such polynomials exist. Any computation
involving only addition and multiplication modulo t is equivalent to a polynomial
modulo t, therefore at most tφ(t)+1 total functions can be computed.

Theorem 1. All possible functions f : Z/tZ → Z/tZ can be computed if and
only if t is prime. Furthermore, if t is prime, then each function f : Z/tZ →
Z/tZ is uniquely represented by a polynomial of degree less than t.

Proof. If t is prime then δ can be computed by lemma 2. So, by lemma 1, all
functions can be computed. If t is not prime then φ(t)+1 < t. So, by lemmas 3
and 4 there must exist some function that cannot be computed.

If t is prime, there are tφ(t)+1 = tt functions computable by polynomials
and tt distinct functions. Since no two distinct functions can be computed
in the same way each function must be uniquely represented by exactly one
polynomial.

3.3 Complexity of Single-Variable Functions
Given the analysis in the previous section, consider the modulus t to be prime
from this point forward. From the construction in lemma 1 and the definition
of δ from lemma 2, we can calculate the minimal polynomial representing a
function as follows:

P (x) =

t−1∑
k=0

f(k)δ(x− k) (mod xt − x) (6)

Computing this polynomial takes O(t2F ) time where F is the complexity of
f(x). However, this computation occurs without any homomorphic overhead,
so it can be considered negligible, for reasonable choices of f and t.

Theorem 1 proved that each function f has a unique polynomial that com-
putes it. Therefore, there is no faster way to calculate f(x) than by evaluating
P at x. Paterson and Stockmeyer [21] proved that evaluating an arbitrary
polynomial of degree t requires at least

√
t nonscalar multiplications.

Algorithm 1 is a modification of Paterson and Stockmeyer’s Algorithm B
that maintains a logarithmic multiplicative depth. It requires approximately
3
√
t nonscalar multiplications and has a multiplicative depth of O(log t).
Therefore any single variable function can be computed homomorphically

with 3
√
t nonscalar multiplications and a multiplicative depth of O(log t). This

is asymptotically equal to the minimum number of nonscalar multiplications
needed to compute an arbitrary single variable function.
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Algorithm 1 Evaluate a single variable polynomial
function EvaluatePolynomial(x, P )

Let P be a polynomial a0 + a1x+ · · ·+ atx
t with t = m2 − 1

X[0]← 1, X[1]← x ▷ X[i] = xi

for i = 2 to m do
X[i] = X

[⌊
i
2

⌋]
·X

[⌈
i
2

⌉]
▷ Compute powers x2 . . .xm

end for

for i = 2 to m− 1 do
X[im] = X

[⌊
i
2

⌋
m
]
·X

[⌈
i
2

⌉
m
]

▷ Compute powers x2m . . .x(m−1)m

end for

p← 0 ▷ Compute the polynomial as
for i = 0 to m− 1 do ▷

∑m−1
i=0 xim

(∑m−1
j=0 aim+jx

j
)

q← 0
for j = 0 to m− 1 do

q← q+ aim+j ·X[j]
end for
p← p+ q ·X[im]

end for
return p

end function
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4 Multivariate Functions
Mimicking the single variable case, we can compute any bivariate function by
evaluating the polynomial

P (x, y) =

t−1∑
k=0

t−1∑
l=0

f(k, l)δ(x− k)δ(y − l) (mod xt − x) (mod yt − y) (7)

This polynomial has O(t2) coefficients, and unfortunately the same tricks used
in algorithm 1 cannot be easily applied to simplify the computation because of
the intertwined variables.

So, evaluating the polynomial naively would take O(t2) multiplications, but
section 4.1 below describes how many useful bivariate functions can be con-
structed by combining single-variable functions.

4.1 Linearly separable functions
Many functions, although not linear, can be evaluated as a combination of single
variable functions and linear operations, giving them a complexity of O(

√
t).

Table 4.1 demonstrates how division, logarithms, exponentiation and boolean
comparisons are all linearly separable.

One thing to note about this table is that division, logarithms and exponen-
tiation are all approximate. These functions and their subcomponents evaluate
to real numbers, so they are not well defined over the integers. With some
careful modification these approximations can be improved.

Consider the case of division. Resolution is lost when taking the logarithm,
so to counteract this, we can inflate the output of the logarithmic functions to
take advantage of their entire range, t. We also must account for the fact that
the subtraction is done modulo t, so we will need to leave an extra bit to check
if y > x. Finally, we must choose what should happen in the case of division by
zero. Algorithm 2 demonstrates these modifications and chooses to return the
numerator if the denominator is zero.

An almost identical algorithm can also be used to compute logb x. A homo-
morphic algorithm to compute exponentiation depends largely on the desired
response when xy ≥ t. Discovering a more precise way to compute these func-
tions is left to future work.

5 Experimental Results
The algorithms described in this paper have been implemented in C++ under
the somewhat homomorphic encryption scheme YASHE (Yet Another Some-
what Homomorphic Encryption scheme) [6]. The library is built upon Victor
Shoup’s number theoretic library C++, NTL [22]. It is available along with the
following experiments at http://github.com/sportdeath/NonlinearSHE.

The YASHE encryption is determined by the plaintext modulus t, the batch
size β and the security parameter λ. Hidden parameters that determine the
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Division
x

y
= exp(logx− logy)

Logarithm logb x = exp(log logx− log logb)

Exponentiation xy = exp(y logx)

Equal To [x = y] = [x− y = 0]

Greater Than

a =

[
x ≥ t− 1

2

]
b =

[
y ≤ t− 1

2

]
c =

[
(x− y mod t) ≤ t− 1

2

]
[x ≥ y] = ab+ c(a+ b− 2ab)

Table 1: Linearly separable functions.

batch size and security parameter are the cylotomic degree d and the ciphertext
modulus q. Batches are made using the Chinese Remainder Theorem and the
batch size is equal to the number of factors modulo t of the dth cyclotomic
polynomial. For the system to be secure both d and q must be large. The
degree of the dth cyclotomic polynomial is n = φ(d), where φ is Euler’s Toitient
function. As per convention, we set the standard deviation of the ciphertext
noise to be a constant; σerr = 8.

We investigated YASHE parameters for both 8 and 16 bit integers. We use
the Fermat primes t = 28+1 and t = 216+1 as moduli for 8 and 16 bit integers
respectively. Through manual search we have found values of d with maximal
batch sizes that are large enough to be secure and provide a large multiplicative
depth, while not being so large as to be computationally infeasible, shown in
table 2.

For those batch sizes, we calculate the maximum value of log2 q that guar-
antees λ bits of security with the following equation from [23]:

log2(q) ≤ min
m>n

m2 · log2(γ(m)) +m · log2
(
σerr/

√
λ log(2)/π

)
m− n

(8)

We found the values of the minimal root Hermite factor γ(m) by interpolating
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Algorithm 2 Approximate Homomorphic Division
function log(x)

if x = 0 then
return 0

else
return

⌊
t
2 logt x

⌉
end if

end function

function exp(x)
if x > t

2 then
return 0

else
return

⌊
t
2x
t

⌋
end if

end function

function div(x, y)
return exp(log(x)− log(y))

end function

t d Batch
28 + 1 22016 5376
28 + 1 66048 10752
216 + 1 32768 16384
216 + 1 65536 32768

Table 2: Feasible values of d and corresponding batch sizes.

the values of γ(m) found in Table 1 of [23]. Table 3 shows the derived values.
We have chosen to perform timing tests on the parameters shown in table 4,

which are each optimized to have a multiplicative depth just large enough to
support a particular operation. We have found that setting the radix, w, such
that log2 w ≈

log2 q
6 to be a good trade off between running time and multiplica-

tive depth.
The timing results shown at the end of this paper in table 8 were computed

on a 2012 Macbook Pro. NTL was not built with threading and all of the tests
have been averaged over 10 trials. It is worth noting that computing any random
function on the 8-bit inputs can be completed in as little as 4 milliseconds per
input with the minimal number of layers. This function could be anything from
division by a constant to a random mapping of inputs to outputs. Additionally,
division of ciphertexts can be completed in 27 ms per input and comparison of
ciphertexts can be completed in as little as 13 ms per input.

Compared to [16], this is roughly three times faster at computing compar-
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max Batch
log2 q 5376 10752 16384 32768

λ
64 584.11 1195.53 992.54 1850.70
80 437.49 1055.43 878.60 1627.87

128 389.82 791.51 658.27 1218.44

Table 3: Number of bits in the ciphertext modulus for various security param-
eters and batch sizes.

# t log2 q d log2 w λ Operation
1 28 + 1 438 22016 74 ≈ 80 Polynomial
2 28 + 1 546 22016 92 > 64 Inequality
3 28 + 1 930 66048 156 > 80 Division

Table 4: The chosen sets of timing parameters.

isons. Moreover, the experiments in [16] were computed on only 5-bit integers
rather than 8-bit integers. My division is 9 ms ( 66%) slower than their’s, but
again they were using smaller, 6-bit, integers. The biggest improvement however
is that [16]’s algorithms were designed by hand for each function, so computing
other more complicated functions is infeasible, whereas in our case it is very
straight forward.

Some proof-of-concept image processing applications are also tested. These
include transforming the color space of an image from RGB to YCbCr, perform-
ing a random color transformation on the inputs (an image filter), and mixing
images together. Performing the color transformation involves performing frac-
tional multiplications and can be computed in roughly 4 minutes on 70x70, 3
channel images shown in figure 1. The random color transformation involved
computing a single variable function on a single channel, 8-bit image and com-
pletes in under 1 minute as shown in figure 2. Finally, taking the mean of
images involved performing linear combination of fractional multiplications and
completed in roughly 5 minutes as shown in figure 3.

6 Conclusion
In this paper we investigated the problem of computing nonlinear functions un-
der the constraints of homomorphic encryption. We developed a computational
model that describes the complexity of most homomorphic schemes. Under this
model we showed that if the plaintext modulus t is prime, then any function of
a single variable can be computed in O(

√
t) time. Moreover, many multivari-

ate functions, like division and boolean operations, can be comprised of single
variable functions to achieve the same complexity. My experimental results
are both comparatively fast and demonstrate the correctness of our algorithms.
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Additionally, the results show that this method is capable of solving realistic
image processing tasks that might be performed by a cloud computing service.

One issue that these results raise is that the complexity of evaluating a
function is polynomial with respect to the description of the input, t. This
makes this algorithm weakly polynomial. So, applying the techniques we used
on 8-bit integers to 64-bit integers, or equivalently, doubles, would be almost 1
billion times slower. If homomorphic encryption is really intended to be used on
real world data then it must be possible to do without this exponential overhead.
This suggests that some part of the homomorphic computing model must be
relaxed to allow for more than simply multiplication and addition modulo t.

As for the other proposed computational models [16–19], it remains an open
problem as to whether they allow for strongly polynomial evaluation.
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8 Appendix

Figure 1: A homomorphic transformation of Mona Lisa from RGB to YCbCr
preserves visual similarity. The Y, Cb, and Cr channels are displayed in the
middle

Figure 2: The input (left) and output (right) of an arbitrary homomorphic color
transformation.

Figure 3: A linear mixture of Mona Lisa and Lena, computed homomorphically.
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# Time/Batch Time/Operation
Encryption

1 6659.2ms 1.239ms
2 6648.9ms 1.237ms
3 38 263.2ms 3.559ms

Decryption
1 9938.4ms 1.849ms
2 9958.3ms 1.852ms
3 39 974.1ms 3.718ms

Addition with Constant
1 18.4µs 3.423 ns
2 16.6µs 3.088 ns
3 27.2µs 2.530 ns

Multiplication with Constant
1 1974.2µs 367.2 ns
2 2186.9µs 406.8 ns
3 5496.7µs 511.1 ns

Addition of Ciphertexts
1 417.6µs 77.679 ns
2 501.6µs 93.304 ns
3 6099.4µs 567.281 ns

Multiplication of Ciphertexts
. 1 462.0ms 85.932µs
2 560.7ms 104.288µs
3 2306.4ms 214.511µs
Random Single Variable Function
1 20 248.2ms 3.766ms
2 25 029.7ms 4.656ms
3 91 361.1ms 8.497ms

Comparison of Ciphertexts
2 71 071.4ms 13.220ms
3 300 576ms 27.955ms

Division of Ciphertexts
3 294 826ms 27.688ms

Table 5: Timing results from the parameters in table 4.
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