
Efficient Generation of Poisson-Disk Sampling

Patterns

Thouis R. Jones

April 24, 2006

Abstract

Poisson Disk sampling patterns are of interest to the graphics commu-
nity because their blue-noise properties are desirable in sampling patterns
for rendering, illumination, and other computations. Until now, such pat-
terns could only be generated by slow methods with poor convergence, or
could only be approximated by jittering individual samples or tiling sets
of samples.

We present a simple and efficient randomized algorithm for generating
true Poisson Disk sampling patterns in a square domain, given a minimum
radius R between samples. The algorithm runs in O(N log N) time for
a pattern of N points. The method is based on the Voronoi diagram.
Source code is available online.

1 Introduction

Much of computer graphics is concerned directly or indirectly with sampling. At
the most basic level, the location of point samples and how they are combined
is fundamental to many rendering tasks. Accordingly, much effort has been
expended in the exploration of different sampling strategies, primarily in the
area of generating two-dimensional sampling patterns.

Sampling patterns are often characterized by their behavior in frequency
space. For many tasks, sampling patterns with a blue noise Fourier spectrum
are preferred. Blue noise spectra in two dimensions are characterized by a
concentration of energy beyond some radius from the origin in frequency space.
It is also desirable that the pattern have low radial anisotropy in frequency space
(see figure 6). One way to produce patterns having these properties is by using
a Poisson Disk process to generate points ([Yel83, Coo86, Mit87]).

We present a randomized algorithm for generating Poisson Disk patterns,
given the minimum separation between points. The algorithm runs in O(N log N)
time where N is the number of points in the resulting pattern. The patterns
produced are complete, in the sense that no further points could be added. Our
method makes use of Delaunay triangulations along with two common data

1



structures, a balanced binary tree and a hash table. Although not as straight-
forward as the näıve algorithm, our algorithm can be easily implemented using
off-the-shelf and widely available software libraries. Source code is available
online at the address listed at the end of this paper.

2 Background

The Poisson Disk distribution can be defined as the limit of a uniform sampling
process with a minimum-distance rejection criterion. Successive points are in-
dependently drawn from the uniform distribution on [0, 1]2. If a point is at
least distance R from all points in the set of accepted points, it is added to that
set. Otherwise, it is rejected. The choice of R controls the minimum allowable
distance between points and, indirectly, the density of the Poisson Disk pattern.

A direct implementation of the description above (also known as “dart-
throwing”, [Mit87, MF92]) is inefficient. This is in part because of the expense
of testing each new sample against all samples. More importantly, as more sam-
ples pass the minimum distance test, the open area in [0, 1]2 from which samples
could be accepted becomes arbitrarily small. Similarly, the probability of a uni-
form sample landing in this open area drops, and an increasingly large number
of samples from the uniform distribution must be generated and tested to find
one that passes the minimum distance criterion. Moreover, it is unclear when
to stop trying to generate samples, i.e., there is no obvious stopping condition.
An O(N2) method for generating samples that gives a distribution empirically
similar to the Poisson Disk distribution was introduced by Mitchell [Mit91], as
well as a discussion of why patterns with blue-noise properties are preferred for
sampling in computer graphics.

Relaxation methods have also been proposed. Lloyd’s relaxation [Llo83]
generates points uniformly at random and then repeatedly moves them to their
Voronoi regions’ centroids. The convergence rate of this method is also quite
poor, though better than dart throwing. This method trades off isotropy of the
final pattern for speed [HDK01].

Recently, a method based on aperiodic tiling was proposed by Ostromoukhov
et al. [ODJ04]. This method is able to produce sets of samples with blue-noise
properties very quickly, but the algorithm is somewhat complex to understand
and implement.

This paper demonstrates an algorithm for creating true (non-approximate)
Poisson Disk sampling patterns efficiently (in O(N log N) time and linear stor-
age). The algorithm is conceptually simple, and is straightforward to implement.
Its implementation can make use of widely available libraries for computing De-
launay triangulations.

2



Given: R

Initialize D = Delaunay triangulation with single point
Initialize W = Weighted tree of Voronoi regions

while W contains free space:
1: Search W for Voronoi region V containing free space
2: Generate new point p in free region of V
3: Insert p in D
4: Compute Voronoi region of p and insert in W
For each neighbor q of p in D:

5: Recompute Voronoi region of q and update W

Figure 1: Pseudo-code for our algorithm. Here “free” means that the Voronoi
region of a point is not entirely covered by a disk of radius R.

3 Method

Our method can be described concisely in pseudo-code, given in figure 1. Each
step in the algorithms takes O(log N) time with high probability (w.h.p.), and
the entire algorithm terminates in O(N log N) time, w.h.p. We will explore each
step below.

Our algorithm maintains a Delaunay triangulation D of the generated sample
points, updating it incrementally as points are added. For each point p in D,
our algorithm also computes its Voronoi region V,, along with the total “free”
area in V that is more than R from p. Points and their free areas are stored in
a weighted tree, W . The weighted tree W stores at each node the sum of the
weights in its left and right branches. Terminal nodes of the tree correspond
to vertices in the Delaunay triangulation, and are weighted by the free area of
their corresponding vertices’ Voronoi regions. See Figures 2 and 3.

Finding a Voronoi region V with free space in the tree (step 1) is done by
randomly traversing the tree from the root with each left/right decision weighted
according to the total weight in the two subtrees. The tree has depth O(log N)
w.h.p. (see the discussion of step 4 below and Figure 2), so this step is O(log N).

We discuss the generation of a new point in the free region of V (step 2) in
Section 3.1, below, noting only that it can be done in O(log N) w.h.p.

The code to maintain and update the Delaunay triangulation (step 3) can
be any of several incremental construction algorithms. The only requirement is
that the time to add a new point be O(log N) (amortized, if necessary). Given
foreknowledge of the closest point in the Delaunay triangulation (in our case,
the central point of V ), the time to insert a new point is O(1) in a random-
ized incremental construction [LDM92]. Note that this implies the number of
Delaunay neighbors of the new point is O(1), amortized.

Computation of the Voronoi regions and their free space for the new point

3



b

c

e

a

f

d

Figure 2: Voronoi diagram of a group of points, and their weighted tree W .
Weights for the leaf nodes correspond to the free (shaded) area in the Voronoi
diagram (see Figure 3), and the interior nodes store the total weight of their
children. The points are inserted into the tree randomly (without regard to
weights). When creating a new point in the Poisson-disk pattern, the tree is
traversed randomly, with probabilities proportional to subtree weight, to create
a uniform sampling of the free area.

and its neighbors in D (steps 4 and 5) is effectively O(1) because the amount
of work in updating the Voronoi cells is proportional to the amount of work to
update the Delaunay triangulation. (The Delaunay neighbors of the inserted
point are the only ones whose Voronoi regions change when the new point is
inserted.)

Inserting the new point into the tree W (step 4) is done by randomly travers-
ing the tree with equal probability of taking the left or right branch, until the
chosen branch is empty. The new point is inserted in W to fill the missing
branch. This keeps the tree of depth O(log N) w.h.p., by an N -balls-in-N -bins
argument [MR95], as follows. At a depth of log2 N in the tree, there are N
nodes. A new node inserted into the tree randomly will end up parented by one
of those nodes with equal probability. By the standard argument, w.h.p. there
is no node at the log2 N level with more than O(log N) children.

Updating the tree to reflect the changes in area of the Delaunay neighbors
of the new point (step 5) takes O(log N) time, as each neighbor must update
its parents in the tree to reflect the change in free area, recursively. In order to
make such updates straightforward, in our implementation we maintain parent
pointers in the tree and a hash table from points in the Delaunay triangulation
to nodes in the tree1

1It would be feasible to remove the hash table by using a balanced-binary tree ordered by
a random per-point index.

4



v

Figure 3: The Voronoi region for a point v. The circle shows the radius by
which points must be separated in the Poisson Disk pattern. New points would
be allowed in the shaded area, which we call the free space for the Voronoi
region. The point v would receive weight in the binary tree W proportional to
the shaded area. The area is calculated by decomposing the Voronoi area into
a triangle fan and computing the shaded area in each triangle.

3.1 Generation of a new point

All of the described steps thus far are O(log N). It remains to be shown that
a new point in the free region of V can be generated in O(log N) time. This is
the key insight behind our algorithm.

We treat the Voronoi region of a point as a triangle fan centered at that
point. See figure 3. We first select one of the triangles in the fan at random
weighted by their respective free areas. Our strategy for uniformly generating
a random point in the triangle’s free area relies on a case analysis. See figure
4. Label the vertices of the triangle vc, v1, v2 with vc the central point of the
Voronoi region. We refer the reader to figure 4.

Case 1: One of v1, v2 is within R of vc. In this case, we compute the
intersection vi of v1v2 and the circle centered at vc. The triangle formed by
vc, vi and the farther of v1, v2 falls into case 4 below.

Case 2: v1v2 intersects the circle of radius R centered at vc in two
places. In this case, both intersections are computed, and two triangles that
fall into case 4 occur.

Case 3: The point of closest approach on v1v2 to vc is interior to v1v2.
In this case, the point of closest approach is computed, and two triangles that
fall into case 4 are formed.

5



cv

1
v

2
v

iv

cv

1
v

2
v

cv

1
v

2
v

cv

1
v

2
v

Case 1 Case 2 Case 3 Case 4

Figure 4: The four cases for a triangle in the Voronoi region. Cases 1, 2, and 3
all reduce to case 4 after subdivision. Shaded areas are trivial rejections after
subdivision.

cv

iv

j
v

kv

1
v

2v

θ

Figure 5: Sampling from the quadrilateral v1v2vjvi has a better than 1
2 chance

of being outside the circle centered at vc. The line through vi, vk is the tangent
at the intersection point vi. v1 is the point of closest approach to vc on v1v2.

Case 4: The point of closest approach on v1v2 is one of v1, v2. In this
case, the intersections vi, vj of vcv1 and vcv2 with the circle are computed. A
random point is repeatedly generated uniformly within the quadrilateral formed
by these intersections and v1, v2, until such a point is at least R away from vc.
See also figure 5.

We must now show that case 4 terminates in O(log N) time with high prob-
ability. It suffices to show that the probability that a random point uniformly
drawn from the quadrilateral is at least R distance from vc is > 1

2 .
We refer to the labels in figure 5. If a point is drawn uniformly from the

triangle defined by vi, vj , vk, the probability of it being more than R away from
vc is at least 2

3 , by the following argument. This probability is the ratio of
the area outside the arc v̂ivj to that of the triangle vi, vj , vk. Straightforward
trigonometry shows that this ratio is tan θ−θ

tan θ−sin θ , which is 2
3 when θ approaches

zero, and grows to unity at θ = π
2 .

6



Figure 6: A set of points generated by our algorithm, and their Fourier trans-
form. The spectrum reveals the typical blue noise properties, with an annulus
of low energy around the origin. The insets show mean radial power and radial
anisotropy, respectively.

Thus, case 4 above terminates in O(log N) time w.h.p., since the probability
of requiring more than log2 N trials is less than 1

N .

4 Results

A set of points output from our algorithm is shown in figure 6, along with the
Fourier transform of those points. The spectrum shows the typical blue-noise
profile, with a large spike at the origin and an annulus of low energy surrounding
it.

We show the empirical performance of our implementation in figure 7, in
which we plot the ratio of time taken to generate N points and N log N , during
a run generating a pattern with 1,000,000 points. The performance matches
the theoretical expectations. The sigmoidal behavior of the timing curve is
probably due to tradeoffs between cache and memory behavior, as well as fewer
valid choices in the binary tree traversal as large areas of [0, 1]2 become covered
by samples.

5 Discussion

Any implementation of geometric operations such as distance calculations and
intersection of primitives must deal with the possibility of machine precision.
Our algorithm is no exception. We have not used robust predicates in our
implementation, but have taken some care to gracefully handle any inaccuracies
due to precision. Our implementation is able to generate patterns of millions of

7



0 10 20 30 40 50 60 70 80 90 100

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1
x 10

−5

tim
e 

/ N
 lo

g(
N

)

number of points / 10,000

Figure 7: Time taken to generate N points divided by N log N , plotted against
the number of points generated.

points without roundoff becoming an issue. We have made use of GTS [Pop00]
for its incremental Delaunay construction code and geometric predicates.

It is sometimes advantageous to vary the density of points in space [ODJ04].
It is possible to adapt our algorithm to generate patterns with spatially-varying
densities, though it would require using a weighted Voronoi diagram [OBS92].

Similarly, hierarchical patterns are sometimes useful to allow refinement in
sampling processes [MF92]. Our method allows for a complete pattern to be
generated at a particular R, and then a more dense set to be generated by
reducing R and continuing to add points.

When generating patterns with a large number of points, the density of
points around the boundary of the [0, 1]2 square is different than that in the
middle, due to boundary effects. This can be overcome by inserting copies of
every point with +1 or −1 offsets into the Voronoi diagram, or more simply
though with less theoretical justification, generating a slightly denser pattern
and discarding the edges.

One difficulty with any Poisson-Disk method is choosing the correct radius
of exclusion to achieve a particular density of points. For very dense patterns,
theoretical results on Poisson-disk patterns (AKA “random sequential adsorp-
tion” and “hard-core processes”) can be used to guide the choice of R. It is
known, for example, that the coverage density, πR2N/4 approaches 0.548 in
the limit [DWJ91]. For less dense patterns, since generation is not particularly
expensive, we generally use a binary search to find a reasonable setting for R
yielding a value close but just above the exact N we want, and scale the points
up slightly around (0.5, 0.5) to eliminate the few extra points.

Our method also extends to higher dimensions. Though it is not known
how the complexity of the Voronoi diagram for Poisson Disk patterns behaves
in higher dimensions, for uniform samples the results are promising [Dwy89].

8



Addendum

A similar O(N log N) algorithm has been proposed simultaneously with this
work by Dunbar & Humphries [DH06]. They represent the free space where new
points can be generated with a “scalloped sector” data structure, and avoid the
rejection sampling discussed in section 3.1. They also give a linear-time algo-
rithm for generating patterns that, while not Poisson-disk, are similar in their
spectral properties. Our algorithm could be analogously modified to produce
such patterns in linear time by randomly choosing a Voronoi region V with free
space, rather than maintaining the weighted tree W, and placing a new sample
on the circle of radius R centered at vc in the portion where it intersects V,
instead of using rejection sampling. We refer the reader to their work [DH06]
for analysis of the properties of these approximate Poisson-disk patterns.

Acknowledgements

The author would like to thank Frédo Durand, Bob Sumner, Matthias Zwicker,
Peter-Pike Sloan, and Don Mitchell for their helpful discussion of this paper, as
well as the reviewers for their comments.

References

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM
Trans. Graph., 5(1):51–72, 1986.

[DH06] Daniel Dunbar and Greg Humphreys. A spatial data structure for
fast Poisson-disk sample generation. To appear in Transaction on
Graphics (SIGGRAPH 2006), 2006.

[DWJ91] R. Dickman, J.-S. Wang, and I. Jensen. Random sequential adsorp-
tion: Series and virial expansions. J. Chem. Phys., pages 8252–8257,
1991.

[Dwy89] R. A. Dwyer. Higher-dimensional voronoi diagrams in linear expected
time. In Proceedings of the fifth annual symposium on Computational
geometry, pages 326–333, 1989.

[HDK01] Stefan Hiller, Oliver Deussen, and Alexander Keller. Tiled blue noise
samples. In VMV, pages 265–272, 2001.

[LDM92] L.J.Guibas, D.E.Knuth, and M.Sharir. Randomized incremental con-
struction of delaunay and voronoi diagrams. Algorithmica 7, pages
381–413, 1992.

[Llo83] S. Lloyd. An optimization approach to relaxation labeling algorithms.
Image and Vision Computing, 1(2):85–91, 1983.

9



[MF92] Michael McCool and Eugene Fiume. Hierarchical poisson disk sam-
pling distributions. In Proceedings of the conference on Graphics in-
terface ’92, pages 94–105, 1992.

[Mit87] Don P. Mitchell. Generating antialiased images at low sampling den-
sities. In Siggraph ’87 Conference Proceedings, pages 65–72, 1987.

[Mit91] Don P. Mitchell. Spectrally optimal sampling for distribution ray
tracing. In Computer Graphics (Siggraph ’91 Conference Proceedings),
1991.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
Cambridge University Press, 1995.

[OBS92] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial tessel-
lations: concepts and applications of Voronoi diagrams. John Wiley
& Sons, Inc., 1992.

[ODJ04] Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin.
Fast hierarchical importance sampling with blue noise properties.
ACM Trans. Graph., 23(3):488–495, 2004.

[Pop00] S. Popinet. Gts: The gnu triangulated surface library, 2000.

[Yel83] John I. Jr. Yellot. Spectral consequences of photoreceptor sampling
in the rhesus retina. Science, pages 382–385, 1983.

10


