
Generating Training Data for Denoising
Real RGB Images via Camera Pipeline Simulation

Ronnachai Jaroensri Camille Biscarrat Miika Aittala Frédo Durand
MIT CSAIL

{tiam,cjbisc,miika,fredo}@csail.mit.edu

(a) Input real noisy JPEG
(32.4dB)

(b) N3Net[26] trained
with AWGN (32.3dB)

(c) N3Net[26] trained
with our pipeline (35.2dB)

(d) Ground truth
(demosaicked)

Figure 1: (a) Real noise in cellphone-processed JPEG pictures is very different from uncorrelated Gaussian noise widely
assumed (see Fig. 2). (b) A blind denoiser trained on additive white Gaussian noise (AWGN) is unable to recognize the
noise pattern resulting and denoise the image. (c) In contrast, the network trained on realistic noise model generated by our
pipeline was able to denoise properly, resulting in over 3dB improvement.

Abstract

Image reconstruction techniques such as denoising often
need to be applied to the RGB output of cameras and cell-
phones. Unfortunately, the commonly used additive white
noise (AWGN) models do not accurately reproduce the noise
and the degradation encountered on these inputs. This is
particularly important for learning-based techniques, be-
cause the mismatch between training and real world data
will hurt their generalization. This paper aims to accu-
rately simulate the degradation and noise transformation
performed by camera pipelines. This allows us to gener-
ate realistic degradation in RGB images that can be used
to train machine learning models. We use our simulation to
study the importance of noise modeling for learning-based
denoising. Our study shows that a realistic noise model
is required for learning to denoise real JPEG images. A
neural network trained on realistic noise outperforms the
one trained with AWGN by 3 dB. An ablation study of our
pipeline shows that simulating denoising and demosaicking
is important to this improvement and that realistic demo-
saicking algorithms, which have been rarely considered, is

needed. We believe this simulation will also be useful for
other image reconstruction tasks, and we will distribute our
code publicly.

1. Introduction
Most image reconstruction techniques such as denois-

ing operate on RGB images, either JPEGs directly from a
camera or RAW files that have been demosaicked later. In
this paper, we show that the simple additive Gaussian noise
(AWGN) usually used in the literature [33, 22, 32] does not
accurately model the artifacts observed in real image. This
is especially true when working from JPEG images, which
undergo a long pipeline that includes operations such as de-
mosaicking, denoising, and compression that dramatically
transform the noise (see Fig. 2). The mismatch of noise
profiles can have a strong adverse effect on performance,
especially for learning-based approaches.

Several works have shown that image reconstruction
tasks can benefit from better noise modeling [4, 9, 5, 13].
However, most noise and degradation models found in the

1



AWGN Real Noise from
Pixel XL phone

Figure 2: AWGN noise (left) and real noise from Pixel XL
phones (right). The noise in real images is processed exten-
sively by the camera pipeline. For this particular camera,
the artifact is long-grained (right) and very different from
the fine chroma pattern of AWGN (left).

literature remain simplistic. For example, most works do
not consider demosaicking artifacts, and the ones that do
typically use bilinear demosaicking [5, 13, 25], which is
rarely used in real consumer cameras [15, 14].

In this paper, we propose a camera simulation pipeline
that can be used to realistically simulate camera processing
of images. We implement over 40 individual modules that
can be custom-built into a camera pipeline. While not ex-
haustive, they cover a good range of typical camera modules
such as tonemapping, demosaicking, and denoising. From
these modules, we build a pipeline capable of processing
RAW images, with some manual tuning, into visually simi-
lar RGB images that some cellphone cameras produce.

We believe this pipeline can be used to generate data for
many low-level vision tasks. To demonstrate, we use our
pipeline to study the importance of noise modeling in super-
vised denoising of JPEG images. We generate different ver-
sions of a dataset, where the pipeline processing parameters
and, therefore, the noise characteristics vary. We train state-
of-the-art denoising convolutional neural networks (CNN)
[26] on these datasets and measure their performance on
real processed images. We show that networks trained with
our realistic pipeline outperformed ones that are trained on
AWGN by roughly 3 dB on real test images (see Fig. 1 and
Fig. 7).

To understand how our pipeline contributes to this im-
provement, we train additional networks with different
combinations of simulation components. We find that per-
formance drops markedly if denoising and/or demosaick-
ing components are removed. Furthermore, the choice of
demosaicking algorithm is also important. Using bilinear
demosaicking in camera simulation pipelines [5, 13, 25]
leads to less effective denoising compared to using edge-
aware methods such as the Adaptive Homogeneity-Directed
(AHD) algorithm [17].

While we are not the first to propose a camera simula-

tion [19, 11], our main contribution is to integrate it into the
learning pipeline and use it to show the importance of real-
istic simulation for learning-based image restoration tasks.
We summarize our contributions as follow:

1. We propose a camera simulator that is expressive
enough to simulate processing of real cameras. We
believe that this simulator will be useful for many
learning-based image restoration tasks.

2. Using this simulator, we study the importance of re-
alistic noise modeling for denoising real images. We
show that:

(a) A realistic noise model is beneficial for denois-
ing real JPEG images and leads to superior per-
formance compared to AWGN.

(b) Denoising filters and demosaicking are the most
important components for simulating realistic
noise.

(c) Realistic demosaicking algorithm is important
and leads to improvement over bilinear demo-
saicking commonly used in camera simulation
pipelines [5, 13, 25].

All code and evaluation datasets will be released pub-
licly.

2. Related Work
Classical denoising techniques often create probabilis-

tic models of the noise and signal and use this model to
derive a denoising algorithm. Wavelet coring is based on
the observation that noise is usually smaller than the image
signal, resulting in smaller wavelet coefficients that can be
suppressed [29, 27, 10]. The current state-of-the-art clas-
sical denoising method remains BM3D [8]. The algorithm
performs non-local matching within the image and average
these matched blocks together. These methods typically as-
sume an AWGN model in order to simplify their modeling
effort.

With the growing popularity of CNNs [21], learning-
based denoising is becoming prevalent. DnCNN [32] uses
CNNs to predict a residual map that corrects noisy images.
N3Net [26] formulates a differentiable version of nearest
neighbor search to further improve DnCNN. FFDNet [33]
attempts to address spatially varying noise by appending
noise level maps to the input of DnCNN. Despite many im-
provements, these works perform very similarly, with often
less than 0.5 dB difference. Moreover, they assume spa-
tially uncorrelated noise, which is not true for real noisy
JPEG images.

Many works in image processing are recognizing the im-
portant of noise modeling. [12, 15] jointly model noise with



Figure 3: Our camera pipeline consists of four main stages:
artifact generation, demosaicking, denoising, and post-
processing.

their demosaicking task and found it to improve their perfor-
mance. [4] uses an adhoc noise model that simulates spatial
correlation of noise. They found this to significantly boost
the quality of their deblurring results.

Recent denoising work proposes simulating camera
pipelines. [5] unprocesses JPEG images to get RAW rep-
resentation and focus on RAW-to-RAW denoising. Very re-
lated to our work is [13] who also uses simulated camera
pipeline to supplement real training data. However, these
works tend to assume a limited camera pipeline and do not
evaluate on real processed images. Our work follows in
the same spirit, though we aim to accurately model realistic
camera pipelines, and evaluate our results with real images.

3. Camera Simulation Pipeline

Our camera pipeline is designed to mirror typical cam-
era processing stages. We build our pipeline from individual
modules that are easily extensible. Additionally, we also in-
clude an artifact generation stage that simulates the degra-
dation of the image signal, by introducing artifacts such as
noise and motion blur.

Fig. 3 shows the 4 main stages of our pipeline: artifact
simulation, demosaicking, denoising, and postprocessing.
In sum, we have over 70 parameters that control the behav-
ior of our pipeline. We describe each stage as follows.

Artifact Generation. The first stage of our pipeline is
the physical artifact simulators. It aims to simulate the phys-
ical degradation process that happens before the sensor. It
includes motion blur, chromatic aberration, multiplicative
exposure adjustment, and noise.

Noise at the sensor is largely uncorrelated and zero-
mean. So we only simulate spatially uncorrelated noise
here. Because photon noise is Poisson in nature and the
sensor read noise is Gaussian, we provide both additive and
multiplicative noise to simulate the two effects. We option-
ally mosaick input images before adding noise if the user
wishes to simulate the Bayer pattern, which will then be
demosaicked and processed in the subsequent stages.

Demosaicking. If the input is mosaicked, we demo-
saick the input at this stage. To our knowledge, most cam-
eras use more advanced algorithms, such as the Adaptive
Homogeneity-Directed (AHD) algorithm [17]. We provide
a Python adaptation of the reference AHD algorithm and
an algorithm developed by Kodak Inc. [16] implemented
in high performance language Halide [23]. We provide

bilinear demosaicking as well because it has been widely
used in the recent camera simulation literature [5, 25, 13].
Hot/Dead pixel correction and white balance also occur
here.

Cellphone Denoising. Demosaicking noisy images
tends to result in long-grained artifacts (as Fig. 2 shows).
Our third stage applies denoising to the image. We in-
clude three denoising algorithms–bilateral filters [30], me-
dian filters [18], and wavelet coring [10]–with the option
to turn each algortihm on/off as well as reorder them. Per-
forming tonemapping prior to denoising can be beneficial
for denoising different intensity ranges because it can non-
linearly compress a particular range of the intensity leading
to a more smoothing effect. We include a pre-tonemapping
operator, which can be a gamma or an s-shape tone curve.

Tonemapping and Post-processing. The last stage per-
forms postprocessing that aims to generally improve the
aesthetics of the image. We include saturation adjustment,
tonemapping for additional tone/contrast enhancement, un-
sharp mask for detail enhancement, and JPEG compression
for JPEG compression artifacts simulation.

We build our pipeline largely on top of the PyTorch pack-
age [24]. This allows us to readily integrate it into learn-
ing frameworks. Because some of the software used does
not support differentiation [31], we do not utilize the dif-
ferentiability of our pipeline. While we believe that our
pipeline is realistic and rich in features, it is by no means
a comprehensive set of operations implemented by camera
manufacturers. In particular, we do not consider automatic
adjustments such as auto-exposure and auto white-balance.
These modules will become crucial in automatic processing
of cellphone images. Nonetheless, we demonstrate in sec-
tion 3.1 that our pipeline can emulate cellphone processing,
given an appropriate set of parameters.

3.1. Camera Simulation Evaluation

We show that our pipeline is expressive enough to per-
form the same image processing as a camera’s image signal
processing (ISP) unit. Fortunately, modern cellphones al-
low RAW and JPEG captures from the same exposure. This
means that if we are able to process the RAW image into
the same, or similar, JPEG image as captured, we will have
successfully emulated the camera’s ISP.

Because our pipeline is missing automatic adjustments
commonly found in a camera ISP, we allow adjustments of
parameters to individual images. In particular, tones and
color balance are adaptively adjusted per image/scene. De-
noising parameters, on the other hand, are held fixed per
camera to reduce the risk of overfitting.

We captured RAW + JPEG images with an iPhone 7,
an iPhone 8, and a Samsung Galaxy S7. We chose these
phones because they are recent enough to allow the cap-
ture of RAW but not too recent as to have superior imaging



Real JPEG Simulated

iPhone 7 (30.6 dB)

iPhone 8 (25.8 dB)

Samsung Galaxy S7 (32.2 dB)

Figure 4: Comparison of our processed RAW and camera
JPEG for iPhone 7, iPhone 8, and Samsung Galaxy S7. The
tone and noise pattern match well. For more results, please
refer to the supplementary material.

sensors. Including both iOS and Android phones demon-
strates the versatility of our pipeline because they are likely
to have different processings and imaging sensors. We cap-
tured approximately 10 scenes on each phone. We focus on
low-light scenes so that the noise pattern is visible, allowing
us to evaluate the similarity of the processing results of our
pipeline.

To find the best parameters for each image, we per-
formed grid search of tone and color parameters, using L2
loss on the luminance and chrominance channels respec-
tively. We then hand-tuned each parameter to obtain the
final result.

3.2. Evaluation Result

Fig. 4 shows the comparison of our pipeline processing
and the camera JPEG. Our simulation obtains an average
PSNR of 28.9dB - 30.8dB and SSIM of 0.873 - 0.888 across
the three phones. In addition to these metrics, we visually

Real JPEG Simulated

iPhone 7 (31.5 dB)

Samsung Galaxy S7 (26.0 dB)

Figure 5: Some examples where we do not match the ap-
pearance well. The PSNR for the top picture is high because
while we are able to match the tone well, but the noise pat-
tern is over-smoothed.

inspect the noise pattern in both the camera JPEG and our
processed RAW, and we find them to be subjectively similar.

While our pipeline can achieve good PSNR and SSIM
numbers, these metrics tend to over-emphasize tones and
low-frequency image content. We find some visible differ-
ences in the level of smoothing across intensity levels that
may require per-image denoising parameter tuning to re-
move (see Fig. 5). Nonetheless, the level of smoothing is
satisfacory overall, and we show that this pipeline can be
used to improve end-to-end denoising task in Section 4.

4. Denoising Experiment
We demonstrate that our pipeline can be used for gener-

ating training data for real image denoising. Denoising is a
well-studied topic, yet, few works have attempted to model
realistic noise correlation. We show that the lack of realistic
noise can be detrimental to denoising performance.

We synthetically generate our datasets using the camera
simulation pipeline described in Section 3. Using different
sets of parameters, we seek to answer two important ques-
tions: does having a realistic noise model matter, and if so,
how realistic does the noise model have to be?

Many works on denoising are shifting towards denois-
ing RAW images, where noise is easier to model [12, 5, 7].
We focus on denoising JPEG images for two reasons. First,
most image reconstruction algorithms deal primarily with
JPEG images. But for these methods, using an additive



white Gaussian noise model with JPEG images can lead to
inferior results [4] . Second, many photographs taken are
in JPEG format because it is often easier to work with and
uses less storage. Therefore, any algorithm that aims to be
widely adopted must be able to deal with the degradation
present in the JPEG images.

We primarily focus on learning-based approaches, for
which synthetic data generation is useful for training. Meth-
ods that do not require training data may still find it useful
to generate realistic test data as an alternative to collecting
their own dataset.

4.1. Training Data and Architecture

Our denoising setup aims to denoise RGB images that
have been processed by the camera. Fig. 6 shows our train-
ing setup. It starts from an input JPEG image with gamma
compression. We undo the gamma compression to obtain
a linear image to be degraded by our camera simulation
pipeline (Section 3). The degraded output is then fed into
a denoising CNN. Finally, the denoised image is compared
to the original linear, clean RGB image to provide training
signal to the denoising network.

Choice of Modules in the Camera Pipeline Simula-
tion. Since we focus only on the noise pattern, we turn off
all tonemapping and color operations. This way the denois-
ing network does not have to learn to adjust tones, simpli-
fying the learning problem considerably.

We observe that real cellphone denoising is often a com-
bination of bilateral and median filters, so we use these
two algorithms in our cellphone simulation pipeline. We
find that the Kodak algorithm [16] and AHD [17] perform
roughly the same, so we choose the Kodak algorithm for
which we have a more efficient implementation.

Parameters of the Pipeline. We set the configuration
of our processing pipeline based on the range of values ob-
served during our experiment (see Section 3.2). For sim-
plicity, we randomize each parameter independently. We
choose noise strengths based on measurement data from the
iPhone 7 and the Samsung Galaxy S6 at various ISO [1, 2].
We exaggerate the noise strength to ensure that the network
sees very noisy samples in the training set. Table 1 lists
noise strengths and processing performed on each of our
datasets.

Source Dataset. We use the MIT-Adobe5k dataset [6] as
our input images because it has high-quality photographs.
We use their expert-C retouched images so that the input
and target tones are representative of JPEG images. We
downsample the images by 4x to reduce any remaining
noise and artifacts. We extract 5 patches randomly from
each image in the dataset, resulting in a total of 25k patches
available for training.

Denoising Network. Since the focus of this work is not
the network architecture, we used the author’s implementa-

Table 1: Configuration of Training Datasets

Training Data Gaussian STD Poisson
Mult Factor

Additional
Processing

AWGN 0 - 0.2 0 None
Add-Mult

WGN 0 - 0.1 0 - 0.02 None

Ours 0 - 0.1 0 - 0.02
Demosaicking,

Denoising,
Post-processing

Samsung S7
Measurement

@ ISO800
0.007 0.02 N/A

tion of the Neural Nearest Neighbor network [26], which
has been shown to achieve state of the art result in de-
noising. We follow the author’s training method, using the
Adam optimizer [20] with learning rate of 0.001. The au-
thor also noted that increasing learning rate decay is benefi-
cial, so we decay the learning rate by 10−5 over 100 epochs
(instead of 10−5 over 50 epochs in the original paper) and
train for 100 epochs.

Performance Consideration. Because our dataset is
synthetic, we are able to generate it on-the-fly. This allows
us to rapidly prototype and change configurations with-
out pre-generating the entire dataset. Additionally, each
input patch receives different randomized processing pa-
rameters in each epoch, which increases the complexity of
our dataset. Our pipeline implementation is based largely
on PyTorch modules [24] and uses the high performance
Halide language [23]. While performance varies with the
system and configuration, we are able to largely saturate a
machine with a Tesla P100 GPU and 32 CPU cores (80x80
patch, batch size=32). Training takes roughly 9 hours.

4.2. Testing Data

Because we focus on denoising real JPEG photographs,
real JPEG images are required to measure the denoising per-
formance. This is challenging because we do not have ac-
cess to the blackbox camera processing, and our pipeline
cannot process large amounts of images automatically. Fur-
thermore, some artifacts in the JPEG images cannot be re-
moved by averaging.

Existing datasets do not provide the required clean JPEG
images. [3] and [7] provide only RAW images, while [25]
uses simple processing which may not be realistic. [28] pro-
vides short- and long-exposure image pairs, but they do not
keep exposure levels constant, resulting in large tone shifts
between the ground truth and noisy images. Furthermore,
we find the noise in their long-exposure ground truth im-
ages to still be significant.

Because of these limitations, we use averaged RAW im-
ages from bursts as the target. Noise in RAW images is



Figure 6: Our training setup. We use our pipeline described in Section 3 to generate the data for the denoising network. By
varying configuration of the pipeline, datasets that simulate different noise profiles (AWGN, processed JPEG from cellphones,
etc) can be generated, allowing a comparative study of these noise profiles and their effectiveness.

Table 2: Quantitative comparison of training data between
AWGN vs our pipeline for different cellphone cameras.

Metric Input vs
Ground truth

Training Data
AWGN AMWGN Our Pipeline

iPhone 8
PSNR 32.4 32.3 32.6 35.2
SSIM 0.788 0.788 0.799 0.892

Pixel XL
PSNR 31.2 31.3 31.6 35.1
SSIM 0.760 0.761 0.775 0.881

Samsung Galaxy S7
PSNR 41.1 41.0 41.4 42.5
SSIM 0.933 0.931 0.939 0.954

zero-mean and can be reduced by averaging. However, us-
ing RAW images as the target requires demosaicking and
normalizing the tone. Because PSNR and SSIM are very
sensitive to tone change, we normalize each ground truth
image to the output image at test time by matching their
means and standard deviations per color channel.

We collected test images using the iPhone 8, Pixel XL,
and Samsung Galaxy S7 to test generalization across cam-
era models. For each phone, roughly 20-25 scenes were
captured, and for each scene, one high-ISO image and a
burst of 10 low-ISO images were taken. All images were
captured in the RAW + JPEG format and the exposure were
kept roughly constant. We used sturdy tripods and avoided
moving objects and reflections as much as possible. We also
set a timer and used a shutter cable to avoid any movement
that resulted from interacting with the phones.

5. Denoising Results
In this Section, we report the findings of our denoising

experiments.

5.1. Additive/Multiplicative White Gaussian Noise
(AMWGN) vs Realistic Noise

The network trained on our dataset significantly outper-
forms ones that were trained with additive/multiplicative

Gaussian noise. Table 2 shows denoising results of N3Net
[26] trained with different datasets. On the iPhone 8 and
Pixel XL test sets, the model trained on our dataset achieved
a 3 dB higher PSNR and nearly 0.1 higher SSIM. On the
Samsung Galaxy S7, the improvement is approximately 1.5
dB in PSNR and 0.015 in SSIM. These are significant mar-
gins because many recent denoising works often report im-
provements that are less than 0.5-1 dB [26, 32].

Visual inspection of the resulting denoised patch reveals
that the AMWGN models seem to ignore noise entirely–the
output patch is almost identical to the input patch, as Fig.
7 shows. On the iPhone 8 test data, the PSNR between the
input and output patches are over 50dB, and the SSIM is
over 0.996 (vs 35.7 dB and 0.856 for our model).

To show that our AWGN model works correctly, we pass
the patches with additive Gaussian noise with STD of 0.1
(on a 0-1 scale) to the model. Fig. 8 shows the denoising
results. The AWGN networks are able to properly denoise
the patches with PSNRs of 36.6 dB and 36.0 dB for the ad-
ditive and additive-multiplicative models, respectively. This
suggests that their performance on real images is likely the
result of a mismatch between real test JPEG image and the
additive Gaussian noise training data, and not the faulty im-
plementation of our models.

Denoising Demosaicked RAW. Most image reconstruc-
tion algorithms are designed for RGB images, so when
working with RAW images, demosaicking is often applied
(except for a few works [12, 15]). We demosaick our real
RAW noisy images and use them as test input. We find that
our data outperforms AWGN by 7-9 dB in PSNR and 0.2-
0.3 on SSIM, depending on the demosaicking algorithms
applied (the training always uses Kodak [16]).

5.2. Ablation Study

In order to understand the essential features of our
pipeline, we train additional networks with different com-
ponents of our pipeline turned off. We group the compo-
nents based on stages outlined in Section 3: demosaicking,
denoising, and post-processing.

Denoising and Demosaicking. We find demosaicking



Ground Truth Noisy Input AWGN AMGN Ours

iPhone 8

Pixel XL

Samsung Galaxy S7

Figure 7: Sample output patches from denoising networks trained with AWGN vs our dataset, on iPhone 8, Pixel XL, and
Samsung Galaxy S7 test data. More results in the supplementary material.

and denoising to be important to the smoothing of the im-
age. Fig. 9 shows a sample patch from three different net-
works: ones that are trained without post-processing, with-
out denoising, and without demosaicking. The network

trained without post-processing produces the smoothest
outputs, while the other two retain long-grained artifacts
present in the input image. Table 3 shows the quantitative
result for these networks. While the PSNRs are compara-



Input w/ AWGN added Denoised by
AWGN Network

Denoised by
AMWGN Network

Figure 8: Our AWGN-trained and Add-Mult WGN models
are able to denoise patches with AWGN, suggesting that the
models are working correctly. More result is in the supple-
mentary material.

Table 3: Quantitative comparison of handicapped data gen-
eration by turning one component off at a time (iPhone 8
test data).

Metric Full-Pipeline No Post-
processing

No
Denoising

No
Demosaicking

PSNR 35.2 34.0 34.7 33.9
SSIM 0.892 0.866 0.870 0.846

No Post-Processing No Denoising No Demosaicking

Figure 9: Qualitative evaluation of our ablation datasets
(on the iPhone 8 test data). The network trained without
post-processing is able to smooth the real image, while the
network without denoising and demosaicking shows less
smoothing of the noise.

ble, removing demosaicking suffers the largest reduction in
SSIM, confirming our qualitative observation. For brevity,
we only show results on iPhone 8 test data, but we observe
similar trends on both Pixel XL and Samsung Galaxy S7
test data.

Table 4: Quantitative comparison on the choice of demo-
saicking algorithm (iPhone 8 test data).

Metric Full
Pipeline Kodak [16] AHD[17] Bilinear

PSNR 35.2 33.6 32.9 31.1
SSIM 0.892 0.840 0.821 0.746

Kodak [16] AHD[17] Bilinear

Figure 10: Qualitative evaluation of simulation with differ-
ent demosaicking algorithms (iPhone 8 test data). The net-
works trained with edge-aware demosaicking (Kodak [16],
AHD [17]) were able to smooth images well, while one with
the commonly used bilinear demosaicking retains the most
artifacts. More result is in the supplementary material.

Choice of Demosaicking Algorithm. We further inves-
tigate the choice of demosaciking algorithm used, because
most works that simulate the camera processing pipeline
use bilinear demosaicking [5, 13, 25].

As Fig. 10 shows, network trained with bilinear inter-
polation retains the most JPEG artifacts in their denoising
result. On the other hand, the networks trained with the
other two edge-aware demosaicking algorithms are able to
remove more of these artifacts. Table 4 shows the quanti-
tative results. The AHD [17] and the Kodak algorithm [16]
outperforms bilinear demosaicking by more than 2dB on
PSNR and over 0.07 on SSIM.

6. Conclusion and Future Work

We have proposed a realistic camera pipeline simulation
that is expressive enough to process RAW inputs into JPEG
images that is visually similar to the ones cameras pro-
duce. We use this simulation to generate realistic datasets
for training denoising CNNs and show that it improves the
performance of such networks on real JPEG images by over
3dB. Demosaicking and denoising seem to be the most im-
portant components of our pipeline that enable such im-
provement. Removing either of them leads to a significant
drop in the quality of the denoised output. Using correct
algorithms for these components is also important. The
bilinear demosaicking algorithm commonly used in previ-
ous camera simulation work [5, 13, 25] leads to a signifi-
cant performance drop, while edge-aware algorithms such
as AHD [17] do not.

While we have shown our pipeline is useful and realistic,
it still requires significant manual tuning in order to match
the appearance of the processed JPEG. The ability to auto-
matically match the appearance is an interesting future di-
rection. This will help ensure realism, so that the generated
data can be used for any arbitrary camera models.



Acknowledgments
The authors would like to thank the Toyota Research In-

stitute for their generous support of the projects. We thank
Tzu-Mao Li for his helpful comments, and Luke Anderson
for his help revising this draft.

References
[1] Read noise in dns versus iso setting. http:

//www.photonstophotos.net/Charts/RN_
ADU.htm#Apple%20iPhone%207_12,Samsung%
20Galaxy%20S6(S5K2P2)_10. Accessed: 2018-10-
30. 5

[2] Samsung galaxy s6 edge : Measurements - dxomark.
https://www.dxomark.com/Cameras/Samsung/
Galaxy-S6-Edge---Measurements. Accessed:
2018-10-30. 5

[3] A. Abdelhamed, S. Lin, and M. S. Brown. A high-quality
denoising dataset for smartphone cameras. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1692–1700, 2018. 5

[4] M. Aittala and F. Durand. Burst image deblurring using per-
mutation invariant convolutional neural networks. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 731–747, 2018. 1, 3, 5

[5] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and
J. T. Barron. Unprocessing images for learned raw denoising.
arXiv preprint arXiv:1811.11127, 2018. 1, 2, 3, 4, 8

[6] V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning
photographic global tonal adjustment with a database of in-
put/output image pairs. In CVPR 2011, pages 97–104. IEEE,
2011. 5

[7] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in
the dark. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3291–3300,
2018. 4, 5

[8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image
denoising with block-matching and 3d filtering. In Image
Processing: Algorithms and Systems, Neural Networks, and
Machine Learning, volume 6064, page 606414. International
Society for Optics and Photonics, 2006. 2

[9] J. Dong, J. Pan, D. Sun, Z. Su, and M.-H. Yang. Learning
data terms for non-blind deblurring. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
748–763, 2018. 1

[10] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation
by wavelet shrinkage. biometrika, 81(3):425–455, 1994. 2,
3

[11] J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell. A
simulation tool for evaluating digital camera image quality.
In Image Quality and System Performance, volume 5294,
pages 124–132. International Society for Optics and Photon-
ics, 2003. 2

[12] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint
demosaicking and denoising. ACM Transactions on Graph-
ics (TOG), 35(6):191, 2016. 2, 4, 6

[13] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang. Toward
convolutional blind denoising of real photographs. arXiv
preprint arXiv:1807.04686, 2018. 1, 2, 3, 8

[14] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron,
F. Kainz, J. Chen, and M. Levoy. Burst photography for high
dynamic range and low-light imaging on mobile cameras.
ACM Transactions on Graphics (TOG), 35(6):192, 2016. 2

[15] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajak,
D. Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian,
et al. Flexisp: A flexible camera image processing frame-
work. ACM Transactions on Graphics (TOG), 33(6):231,
2014. 2, 6

[16] R. H. Hibbard. Apparatus and method for adaptively in-
terpolating a full color image utilizing luminance gradients,
Jan. 17 1995. US Patent 5,382,976. 3, 5, 6, 8

[17] K. Hirakawa and T. W. Parks. Adaptive homogeneity-
directed demosaicing algorithm. IEEE Transactions on Im-
age Processing, 14(3):360–369, 2005. 2, 3, 5, 8

[18] T. Huang, G. Yang, and G. Tang. A fast two-dimensional
median filtering algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 27(1):13–18, 1979. 3

[19] H. C. Karaimer and M. S. Brown. A software platform
for manipulating the camera imaging pipeline. In European
Conference on Computer Vision, pages 429–444. Springer,
2016. 2

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 5

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 2

[22] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Kar-
ras, M. Aittala, and T. Aila. Noise2noise: Learning
image restoration without clean data. arXiv preprint
arXiv:1803.04189, 2018. 1

[23] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-
Kelley. Differentiable programming for image processing
and deep learning in halide. ACM Transactions on Graphics
(TOG), 37(4):139, 2018. 3, 5

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NIPS-W, 2017. 3, 5

[25] T. Plotz and S. Roth. Benchmarking denoising algorithms
with real photographs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1586–1595, 2017. 2, 3, 5, 8

[26] T. Plötz and S. Roth. Neural nearest neighbors networks. In
Advances in Neural Information Processing Systems, pages
1095–1106, 2018. 1, 2, 5, 6

[27] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-
celli. Image denoising using scale mixtures of gaussians in
the wavelet domain. IEEE Trans Image Processing, 12(11),
2003. 2

[28] E. Schwartz, R. Giryes, and A. M. Bronstein. Deepisp:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2019. 5

http://www.photonstophotos.net/Charts/RN_ADU.htm#Apple%20iPhone%207_12,Samsung%20Galaxy%20S6(S5K2P2)_10
http://www.photonstophotos.net/Charts/RN_ADU.htm#Apple%20iPhone%207_12,Samsung%20Galaxy%20S6(S5K2P2)_10
http://www.photonstophotos.net/Charts/RN_ADU.htm#Apple%20iPhone%207_12,Samsung%20Galaxy%20S6(S5K2P2)_10
http://www.photonstophotos.net/Charts/RN_ADU.htm#Apple%20iPhone%207_12,Samsung%20Galaxy%20S6(S5K2P2)_10
https://www.dxomark.com/Cameras/Samsung/Galaxy-S6-Edge---Measurements
https://www.dxomark.com/Cameras/Samsung/Galaxy-S6-Edge---Measurements


[29] E. P. Simoncelli and E. H. Adelson. Noise removal via
bayesian wavelet coring. In Proceedings of 3rd IEEE Inter-
national Conference on Image Processing, volume 1, pages
379–382. IEEE, 1996. 2

[30] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In null, page 839. IEEE, 1998. 3

[31] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias,
F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu,
and the scikit-image contributors. scikit-image: image pro-
cessing in Python. PeerJ, 2:e453, 6 2014. 3

[32] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Be-
yond a gaussian denoiser: Residual learning of deep cnn for
image denoising. IEEE Transactions on Image Processing,
26(7):3142–3155, 2017. 1, 2, 6

[33] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast
and flexible solution for cnn-based image denoising. IEEE
Transactions on Image Processing, 27(9):4608–4622, 2018.
1, 2


