Blank Language Models **Tianxiao Shen*** Victor Quach* Regina Barzilay Tommi Jaakkola (*: equal contribution) tianxiao@mit.edu #### Left-to-Right Language Model - ✓ Generate from scratch - X Start with partially specified text - text editing - template filling - text restoration - ... #### Blank Language Model (BLM) Input: They also have ____ which ____. Output: They also have ice cream which is really good. - ✓ Fine-grained control over generation location - Respect preceding and following context - ✓ Variable number of missing tokens - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "____" They also have ____ which ____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "___ w __" - Stop when there is no "____" ____really_____ They also have ____ which ____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" They also have ____ which ____ really ____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" ice _____ They also have _____ which _____ really _____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" They also have ice ____ which ___ really ____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" They also have ice _____ which is really ____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "____" cream They also have ice _____ which is really _____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" good They also have ice cream which is really _____. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "___" They also have ice cream which is really good. - Dynamic canvas where "___" controls where tokens can be placed - At each step, - 1. select a "___" - 2. predict a word w - 3. replace that blank with "w", "___ w", "w ___", or "__ w ___" - Stop when there is no "____" #### Grammar - Nonterminal: ____ - Terminals: $w \in V$ - Production rules: ____? w ___? (dist. depends on model and context) #### Blank Language Model — Likelihood | | | Canvas c | | | Action a | | |-----------|----------|--|------------|----------|-------------------|-------------------| | | Step t | | Location b | Word w | (Left blank l , | Right blank r) | | 1 | 0. | #1 | #1 | 3 have | Yes | Yes | | | 1. | #1 have#2 | #1 | 1 They | No | Yes | | | 2. | They#1 have#2 | #2 | 10. | Yes | No | | rajectory | 3. | They#1 have#2 | #2 | 6 which | Yes | Yes | | 1 | 4. | They#1 have#2 which#3 | #1 | 2 also | No | No | | | 5. | They also have#1 which#2 | #2 | 8 really | Yes | Yes | | | 6. | They also have#1 which#2 really#3 | #1 | 4 ice | No | Yes | | | 7. | They also have ice#1 which#2 really#3 | #2 | 7 is | No | No | | | 8. | They also have ice#1 which is really#2 | #1 | 5 cream | No | No | | | 9. | They also have ice cream which is really#1 | #1 | 9 good | No | No | | ↓ | 10. | They also have ice cream which is really good. | | | -End- | | A sentence x with n words can be realized by n! trajectories, each corresponds to a different word insertion order $$p(x;\theta) = \sum_{\sigma \in S_n} p(x,\sigma;\theta) = \sum_{\sigma \in S_n} \prod_{t=0}^{n-1} p(a_t^{x,\sigma}|c_t^{x,\sigma};\theta)$$ order action, canvas at step t $$\log p(x;\theta) = \log \sum_{\sigma \in S_n} \prod_{t=0}^{n-1} p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta) \quad \text{intractable}$$ $$\log\left(\frac{1}{m}\sum_{i=1}^{m}b_i\right) \ge \frac{1}{m}\sum_{i=1}^{m}\log b_i$$ $$\geq \log(n!) + \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{t=0}^{n-1} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$$ $$\log p(x;\theta) = \log \sum_{\sigma \in S_n} \prod_{t=0}^{n-1} p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta) \quad \text{intractable}$$ $$\log\left(\frac{1}{m}\sum_{i=1}^{m}b_i\right) \ge \frac{1}{m}\sum_{i=1}^{m}\log b_i$$ $$\geq \log(n!) + \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{t=0}^{n-1} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$$ - 1. Uniformly sample σ from S_n - 2. Uniformly sample t from 0 to n-1 - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) n \cdot \log p(a_t^{x,\sigma}|c_t^{x,\sigma};\theta)$ one action loss per pass :($c_t^{x,\sigma}$ only depends on $\sigma_{1:t}$ \rightarrow combine losses of trajectories with the same first t steps and different (t+1)-th step $$\geq \log(n!) + \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{t=0}^{n-1} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$$ $c_t^{x,\sigma}$ only depends on $\sigma_{1:t}$ \rightarrow combine losses of trajectories with the same first t steps and different (t+1)-th step $$\geq \log(n!) + \sum_{t=0}^{n-1} \frac{1}{n!} \sum_{\sigma \in S_n} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$$ $$= \log(n!) + n \cdot \mathbb{E}_t \mathbb{E}_{\sigma_{1:t}} \mathbb{E}_{\sigma_{t+1}} \mathbb{E}_{\sigma_{t+2:n}} \left[\log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta) \right]$$ $$= \log(n!) + \mathbb{E}_t \mathbb{E}_{\sigma_{1:t}} \left[\frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta) \right]$$ 1. Uniformly sample t from 0 to n-1 n/2 action losses per pass:) - 2. Uniformly sample $\sigma_{1:t}$ - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ $$= \log(n!) + \mathbb{E}_t \mathbb{E}_{\sigma_{1:t}} \left[\frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta) \right]$$ 1. Uniformly sample t from 0 to n-1 n/2 action losses per pass:) - 2. Uniformly sample $\sigma_{1:t}$ - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ 1 2 3 4 5 6 7 8 9 10 $x=\ { m They}\ { m also}\ { m have}\ { m ice}\ { m cream}\ { m which}\ { m is}\ { m really}\ { m good}\ .$ n = 10 - 1. Uniformly sample t from 0 to n-1 n/2 action losses per pass:) - 2. Uniformly sample $\sigma_{1:t}$ - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ 1 2 3 4 5 6 7 8 9 10 $x=\ { m They}\ { m also}\ { m have}\ { m ice}\ { m cream}\ { m which}\ { m is}\ { m really}\ { m good}\ .$ $$n = 10$$ t = 5 1. Uniformly sample t from 0 to n-1 n/2 action losses per pass:) - ▶ 2. Uniformly sample $\sigma_{1:t}$ - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ 1 2 3 4 5 6 7 8 9 10 x= They also have ice cream which is really good . $$n = 10$$ $$t = 5$$ $$\sigma_{1:t} = (6, 2, 1, 3, 10)$$ 1. Uniformly sample t from 0 to n-1 n/2 action losses per pass:) - 2. Uniformly sample $\sigma_{1:t}$ - \longrightarrow 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ 1 2 3 4 5 6 7 8 9 10 $x={\sf They\ also\ have\ ice\ cream\ which\ is\ really\ good\ .}$ $$n = 10$$ $$t=5$$ $$\sigma_{1:t} = (6, 2, 1, 3, 10)$$ $$c_t^{x,\sigma}$$ They also have ____ which ____ - 1. Uniformly sample t from 0 to n-1 - 2. Uniformly sample $\sigma_{1:t}$ - 3. Construct canvas $c_t^{x,\sigma}$ - 4. Compute estimated loss $-\log(n!) \frac{n}{n-t} \sum_{\sigma_{t+1}} \log p(a_t^{x,\sigma} | c_t^{x,\sigma}; \theta)$ 1 2 3 4 5 6 7 8 9 10 x= They also have ice cream which is really good . n=10 t=5 $\sigma_{1:t}=(6,2,1,3,10)$ n/2 action losses per pass :) #### Blank Language Model — Inference ✓ Simple greedy decoding or beam search to fill in the blanks in input # Experiments — Overview | Text Infilling | Input: They also have which Output: They also have <u>ice cream</u> which <u>is really good</u> . | |--------------------------|--| | Ancient Text Restoration | Input: τε εγγονον εισαι <u>???????</u> σοφιαι
Output: τε εγγονον εισαι <u>ου του</u> σοφιαι | | | | | Sentiment Transfer | Input: The employees were super nice and efficient ! Output: The employees were <u>rude</u> and <u>unprofessional</u> ! | ### Text Infilling — Dataset - Yahoo Answers dataset (100K documents, max length 200 words) - Randomly mask tokens with different ratios - Contiguous masked tokens → "___" | Mask Ratio | when time files, | where does | s it go : to | the center of the | e universe to be i | recycled and r | made into new tim | ie. | |------------|------------------------|--------------------|--------------|--|---------------------------|-----------------------|--------------------------|-----| | 10% | when time flies, | does | it go? | the center of | the to be re | cycledn | made into new tim | e. | Mask Ratio | when time flies | , where doe | s it go?to | o the center of t | the universe to be | e recycled and | l made into new t | im | # Text Infilling — Metrics - Accuracy: BLEU score against original document - Fluency: perplexity evaluated by a pre-trained left-to-right LM | Mask Ratio | when time flies | , where doe | es it go ? to t | the center of the | e universe to be i | recycled and m | nade into new tim | e. | |------------|-------------------------|-------------------|------------------------|-------------------------------|---------------------------|-----------------------|--------------------------|-----| | 10% | when time flies | , does | sit go? | the center of | the to be re | cycled m | nade into new time | e. | Mask Ratio | when time flie s | s where do | es it go?to | the center of t | the universe to be | e recycled and | made into new t i | ime | #### Text Infilling — Baselines - Seq2seq-fill [Donahue et al., 2020] - output tokens to fill in the blanks, separated by "|" - Seq2seq-full [Donahue et al., 2020] - output full document from input ### Text Infilling — Results ### Text Infilling — Baselines - BERT+LM - feed BERT representation of each blank to left-to-right LM that learns to generate tokens in that blank - at test time, fill in the blanks one by one ### Text Infilling — Baselines - BERT+LM - Masked Language Model (MLM) with oracle length - replace blanks with the target number of masks - fill the masks autoregressively by most-confident-first heuristic ### Text Infilling — Baselines - BERT+LM - Masked Language Model (MLM) with oracle length - Insertion Transformer [Stern et al., 2019] - cannot specify insertion position - force it to generate at valid locations ## Text Infilling — Results ### Text Infilling — Results # Text Infilling — Examples | Original
Blanked | when time flies, where does it go? to the center of the universe to be recycled and made into new time. when time flies, does it go? the center of the to be recycled made into new time. | | | |---------------------|---|--|--| | BERT+LM | when time flies, <u>where</u> does it go? <u>to</u> the center of the <u>earth</u> to be recycled <u>came</u> made into new time. | | | | MLM (oracle len) | when time flies, where does it go? from the center of the earth to be recycled converted made into new time. | | | | InsT | when time flies, <u>where</u> does it go? <u>for</u> the center of the <u>earth has</u> to be recycled <u>and</u> made into new time. | | | | BLM | when time flies, <u>where</u> does it go? <u>for</u> the center of the <u>earth</u> to be recycled <u>and</u> made into new time. | | | Mask Ratio 10% # Text Infilling — Examples | Original
Blanked | when time flies , where does it go ? to the center of the universe to be recycled and made into new time . when time, where? the of universe to recycled made into | | | | | | | |---------------------|--|--|--|--|--|--|--| | BERT+LM | when time <u>is</u> , where <u>to</u> ? <u>i need to find</u> the <u>way</u> of <u>the</u> universe to <u>be</u> recycled <u>and</u> made into <u>a lot</u> . | | | | | | | | MLM (oracle len) | when time <u>is</u> , where <u>is the universe</u> ? <u>from</u> the <u>creation</u> of <u>the</u> universe to <u>be</u> recycled <u>and</u> made into <u>the universe</u> . | | | | | | | | InsT | when time <u>was created</u> , where <u>was it</u> ? <u>what was</u> the <u>name</u> of <u>the</u> universe to <u>be</u> recycled <u>and</u> made into <u>space</u> . | | | | | | | | BLM | when time <u>was created</u> , where <u>did it come from? it was</u> the <u>first part</u> of <u>the</u> universe to <u>be</u> recycled <u>and</u> made into <u>space</u> . | | | | | | | Mask Ratio 50% ### **Ancient Text Restoration — Setup** Ancient Greek Inscriptions dataset (18M characters / 3M words) [Assael et al., 2019] number of characters to recover is assumed to be known Length-aware BLM (L-BLM) • $$[t] \rightarrow [k] w [t-1-k]$$ - Pythia: character-level seq2seq model to fill in one slot at a time - Pythia-word: use both character and word representations #### **Ancient Text Restoration — Results** ### Sentiment Transfer — Approach - 1. Remove expressions of high polarity - train a sentiment classifier and mask words with attention weight above average - 2. Complete the partial sentence with expressions of the target sentiment - train two instances of BLM, one for each sentiment ### Sentiment Transfer — Results | Input
BLM | everyone that i spoke with was very helpful and kind . everyone that i spoke with was rude and unprofessional . | |--------------|--| | Input
BLM | there is definitely not enough room in that part of the venue. there is always enough parking in that part of the venue. | | Input
BLM | it is n't terrible , but it is n't very good either.
it is n't fancy , but it is still very good either. | Yelp Reviews Dataset ### Language Modeling — Estimation Monte-Carlo sampling $$p(x;\theta) = \sum_{\sigma \in S_n} p(x,\sigma;\theta) \leftarrow \frac{n!}{m} \sum_{i=1}^m p(x,\sigma_i;\theta)$$ - estimated perplexity is likely to be higher than actual perplexity - as m increases, it converges to actual perplexity ### Language Modeling — Results Datasets: Penn Treebank (1M tokens), WikiText-2 (2M), WikiText-103 (103M) | | PTB | WT2 | WT103 | |-----------------------------------|------|------|-------| | LSTM (Grave et al., 2016) | 82.3 | 99.3 | 48.7 | | TCN (Bai et al., 2018) | 88.7 | - | 45.2 | | AWD-LSTM (Merity et al., 2017) | 57.3 | 65.8 | - | | Transformer (Dai et al., 2019) | - | - | 30.1 | | Adaptive (Baevski and Auli, 2018) | - | - | 18.7 | | Transformer-XL (Dai et al., 2019) | 54.5 | - | 18.3 | | InsT (our implementation) | 77.3 | 91.4 | 39.4 | | BLM | 69.2 | 81.2 | 42.5 | Room for improvements! ### Summary Input: They also have _____ which _____. https://github.com/Varal7/blank_language_model Thank you! Output: They also have ice cream which is really good. - Dynamically create and fill in blanks - Effective on text infilling, ancient text restoration, style transfer #### **More Applications** - Template filling, information fusion, assisting human writing... - Rewrite to mitigate toxicity and bias - Representation learning #### **Extensions** - Add representation for blanks - Conditional BLM: edit and refine machine translation, dialogue system...