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Different Language Styles

King James Bible

e oo In the beginning God created the heaven and the earth.
‘;' And God saw the light, that it was good:
and God divided the light from the darkness.

Bible in basic English

B;ble.in At the first God made the heaven and the earth.
asic

English And God, looking on the light, saw that it was good:
N and God made a division between the light and the dark.

Simplicity, formality, politeness, personal styles...



Language Style Transfer

King James Bible

In the beginning God created the heaven and the earth.
And God saw the light, that it was good:
and God divided the light from the darkness.

Bible in basic English

B;ble.in At the first God made the heaven and the earth.
asic

English And God, looking on the light, saw that it was good:
N and God made a division between the light and the dark.

- Towards real language understanding
- Personalized chatbots, appropriately convey a message according to
different social contexts...



Parallel Translation
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Parallel Translation
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To collect parallel data is very costly or even
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Non-Parallel Transfer

To be, or not to be, that is
the question:

Whether ‘tis nobler in the
mind to suffer

The slings and arrows of
outrageous fortune,

Or to take Arms against a
Sea of troubles,

And by opposing end
them: to die, to sleep

. Donald J. Trump &
@realDonaldTrump

They're bringing drugs,
they're bringing crime,
they're rapists, and some,

[ assume, are good people

Obama, and all others,
have been so weak,

and so politically correct,
that terror groups are
forming and getting
stronger! Shame.



Image Style Transfer

photograph artwork after transfer
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Cezanne

[Zhu et al. 2017]



Challenges in Language Style Transfer

e Style and content interact in subtle ways

* Content must be preserved

e Discreteness



Our Approach

e Style and content interact in subtle ways

* Content must be preserved

e Discreteness

~

- Map between sentences and continuous latent representations
- Decompose latent representations into style and content

- Modify the latent style component to realize style transfer

—




Generative Assumption

a latent style variable Yy ~ p(y)
a latent content variable 2z ~ p(z)

a sentence I ~~ p(x\y, Z)

We observe two corpora in different styles:
X1 = {37(1) ,:1:§”)} consisting of samp

X9 = {a:(l) ,a:gm)} consisting of samp
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Model Overview

Encoder F/ : X x YV — Z

to infer the content for a given sentence and style

Generator G : YV X Z - X
to generate a sentence from a given style and content

X

bland c%inese food
and horrible service

excellent éhinese food

. chinese food, service
and superb service

11



Model Overview

F and @G form an auto-encoder when applying to the same style

G(yh ) © E('vyl) — iXm G(y27 ) O E('ﬁyZ) — idXQ

X

bland c%inese food
and horrible service

excellent chinese food
and superb service

chinese food, service

12



Model Overview

F and @G form an auto-encoder when applying to the same style
G(yh ) © E('vyl) — iXm G(y% ) O E(a y2) — idXQ
F and G form a transfer model when applying to different styles

G(y2,) o E(y1) : X1 = Ao G(y1,7) o E(y2) : Ao = &Y

X

bland c%inese food
and horrible service

excellent chinese food
and superb service

chinese food, service

13



Model Architecture

Encoder F : X x Y — Z

to infer the content for a given sentence and style
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Model Architecture

Generator G: Y x Z2 —- X
to generate a sentence from a given style and content
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Reconstruction Loss

F and @G form an auto-encoder when applying to the same style

G(yh ) © E('ayl) — iXm G(y27 ) O E('ayZ) — idXQ

Lrec(HEa QG) — <I1£15‘1NX1 :_ 1ngG($1 Y1, E(‘/Elv yl))
g~ X o :— 10gPG(5’32 Y2, E(%, yz))
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Good to Go?

F and G form a transfer model when applying to different styles

G(y2,) o E(y1) : X1 = Ao G(y1,7) o E(y2) : Ao = &Y

E(-. 1 G(ys, -
excellent chinese food (1) > (Y2 ), o

and superb service

17



Just Copy, No Transfer

F and G form a transfer model when applying to different styles

G(y2,) o E(y1) : X1 = Ao G(y1,7) o E(y2) : Ao = &Y

E(- 1 G(ys, - _
excellent chinese food (5 91) . (2 )> excellent chinese food

and superb service and superb service

18



Just Copy, No Transfer

E(':iyl){?\fE('ayz) &
e D
G(y1,-) ~— G(ys, )

X
<
E(- 1 G(ys, - _
excellent chinese food (5 91) > (2 )> excellent chinese 7_‘ood
and superb service and superb service
E('vyl/yQ) Zl XQ
Reality: E(,y1/y2)
G(y1/y2, )

Xl 22 G(yl/y27 )

O reconstruction loss
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Shared Content Distribution

Constrained optimization problem:

-

S.t.

0" = argmin Lec(0g,0q)
0

d
E(xlayl) — E($272U2) £y ~ X17x2 ~ X2

20




Aligned Auto-Encoder

0" = argmin Lec(0g,0q)
0

d

S.t. E($1ay1) E($2,y2) x1 ~ X1,2T2 ~ Xo

-

Introduce D to distinguish Z; and Zs:

Loav(0E,0p) = Egpiox, [—log D(E(x1,y1))] +
EZUQNXQ [_ 1Og(1 T D(E(m% y2)))]

/1 4 Z> when they’re indistinguishable to D

Overall training objective: [%1161;1 max Lrec — )\Eadvj

21



Aligned Auto-Encoder

Results:

great !
horrible !

mediocre dim sum if you 're from southern california .
dim sum if you can not choose from california .

| would n't bother .
| would n't bother .

I would never go back for the food .
I would definitely go back for the food .

- 48.3% sentiment accuracy as measured by a classifier @

22



Aligned Auto-Encoder

w1 (100 <e0Ss>
oo dl
<go> w1 W+

z1 and 22’s initial misalignment could propagate through the
recurrent generating process

As a result the transferred sentence may end up somewhere
far from the target domain

23



Cross Alignment

Transferred sentences from one style should match example
sentence from the other style as a population

Introduce two discriminators:
D tries to distinguish x1 and transferred o2

D5 tries to distinguish 2 and transferred 1

. rec_)\ adv adv
[ %171311;1’11’31%(25 (Ladv, + Ladvs,) ]

24



Cross Alignment

25



Cross Alignment

discrete sampling process
hinders gradients back-propagation

20



Continuous Relaxation

output logits

AN
U1 (%) Ut

Generator G: |y, 2] —»I—»I—» —»I

T
; 1

v
<go> softmax(vy /) softmax(vy_1/7)
N
temperature
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Professor Forcing

Match hidden states instead of output words
- contain all the information, smoothly distributed

output logits

AN
U1 (%) Ut

T ‘ )
s N
g .
A\ .
A Y
+ Y
+ Y
+ Y
A 1}
v '
A Y
v Y
ﬂ EEE ﬂ
s 1
' 1
S '
J 1
] 1
i 1
1 1
| |
1 1
n 1
' 1

T
; 3

.
.
.
.
.
Y
)
Y
Y
)
'
'
—i
L
)
)
)
1

'

]
1
1
1

T
Generator G: |y, z] ——
T

v
<go> softmax(vy/7) softmax(vy_1/7)
N
temperature

[Lamb et al. 2016]
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Cross-Aligned Auto-Encoder

teacher-forced

. y1,2:] 5h° — B' — h* — -+ —> h!

reconstruction T T T l
T / w1 wo- w1

E G D1

l \ V1 Vo V¢

soft generation Y1, 2] = ;’io — ﬁl _}, 52 —i _,, f,f I

with modified style .
I B o
<go> softmax (v /7v) softmax(vs_1/7)

Cross-aligning between x; and transferred xz-

Enhances aligned auto-encoder, where only the first hidden states
z1 and zo are aligned

29



Cross-Aligned Auto-Encoder

Training procedure:

Take two mini-batches {z{"}*_, from X, and {z{"}", from X,
e Encode with E — 2{") 2{"
e Unroll G from (y1,2§i)),(y2,z§i)) — hﬁ""),hg)

(reconstruction, teacher-forced by (")

e Unroll G from (y2,2."), (y1,25")) —— 1) 1)

(style transfer, self-fed by previous output logits)

Update D, (and symmetrically Dg) by gradient descent on loss:

Ladv, = ——Zlong (hi") - Zlog (1— Dy (AS))

1=1

Update E, G by gradient descent on loss Lrec — A(Ladv, + Ladv,)

30



Cross-Aligned Auto-Encoder

Results:

great !
horrible !

mediocre dim sum if you 're from southern california .
good dim sum if you have korean friends .

| would n't bother .
| would recommend !

I would never go back for the food .
I would definitely go back for the food .

- 78.4% sentiment accuracy as measured by a classifier

31



Variational Auto-Encoder

Impose a prior p(z) ~ N (0,1)

Maximize variational lower bound of data likelihood —(£Lrec + £Lk1.)

Lxr(0r) = Eu~x, [Dru(pe(zlz1, y1)llp(2))] +
EZIZQNX2 [DKL (pE(Z‘ng, y2) H]?(Z))]

Align both posteriors to the prior

[Kingma and Welling 2013]
32



Variational Auto-Encoder

33



Variational Auto-Encoder

fast rude

U 1 XQ
UZ 9 ) .

slow

. . ? . .
Distributional alignment —— instance-level matching

Limiting 2 to a simple and even distribution is detrimental to content
preservation

34



Sentiment Transfer Results

Model Evaluation

Human Evaluation

Method accuracy
Hu et al. (2017) 83.5
Variational auto-encoder 23.2
Aligned auto-encoder 48.3
Cross-aligned auto-encoder 78.4
Method sentiment  fluency | overall transfer
Hu et al. (2017) 70.8 3.2 41.0
Cross-align 62.6 2.8 41.5

“Is the transferred sentence semantically equivalent to the source
sentence with an opposite sentiment?”

Development of appropriate evaluation measures is crucial



Sentiment Transfer Results

consistently slow .
consistently good .
consistently fast .

my goodness it was So gross .
my husband 's steak was phenomenal .
my goodness was so awesome .

| love the ladies here !

| avoid all the time !

| hate the doctors here !

came here with my wife and her grandmother !

came here with my wife and hated her !
came here with my wife and her son .

first line—input, second—Hu et al. (2017), third—Cross-align

36



Non-parallel transfer

Decipherment

Access only to the cipher text, want to transfer it into plain text

Keep the meaning, vary its style

74
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Word Substitution Decipherment

Map every word to a cipher token according to a 1-to-1 substitution key

cipher text plain text
eht azzip saw ton doog the pizza was not good
ew lliw ton eb kcab _> we will not be back
doog remotsuc ecivres good customer service
OS ytsan SO nasty
ym ssendoog ti saw 0s Ssorg my goodness it was So gross

ym etirovaf azzip my favorite pizza

38



Word Substitution Decipherment

Non-parallel training, parallel evaluation

Method

Substitution decipher

20% 40% 60% 80% 100%
No transfer (copy) 564 214 6.3 4.5 0
Unigram matching 743 48.1 17.8 10.7 1.2
Variational auto-encoder 79.8 59.6 446 344 09
Aligned auto-encoder 81.0 689 50.7 456 7.2
Cross-aligned auto-encoder | 83.8 79.1 74.7 66.1 574
Parallel translation 99.0 989 982 985 972

Bleu score between plain text and transferred cipher text

39



Word Ordering

Randomly shuffle a sentence, recover its original word order

bag of words grammatical sentence

I . !'impressed i 'm so impressed !
m e

el

was it f
ca even how _

gross handle n't

| ca n't even handle
how gross it was .

really . IS \ypjch they
also '°€ specials cream

they also have daily specials and
ice cream which is really good .

40



Word Ordering

Non-parallel training, parallel evaluation

Method Order recover
No transfer (copy) 5.1
Variational auto-encoder 5.3
Aligned auto-encoder 5.2
Cross-aligned auto-encoder 26.1
Parallel translation 64.6

Bleu score between grammatical sentences and transferred shuffled sentences

41



Conclusion

Non-parallel style transfer
keep the content, vary the style

Cross-aligned auto-encoder

transferred sentences from one
style should match example sentence from the other style

T . ? .
Distributional alignment —— instance-level matching

Applications
sentiment transfer, decipherment, word ordering
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Future Work

e Real language style transfer

critic «—= general audience movie reviews

Shakespeare<«— Trump, CNN <« Fox news

e Evaluation

how to measure the transferred sentence preserves the content?
how to measure it has the target style?

e Better model

attention, specific constraints...

Paper: Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style
Transfer from Non-Parallel Text by Cross-Alignment. NIPS 2017.

Code & data: https://github.com/shentianxiao/language-style-transfer
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