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Abstract

The discrete version of Green’s Theorem and bivariate difference calculus provide a general and
unifying framework for the description and generation of incremental algorithms. It may be used to
compute various statistics about regions bounded by a finite and closed polygonal path. More specif-
ically, we illustrate its use for designing algorithms computing many statistics about polyominoes,
regions whose boundary is encoded by four letter words: area, coordinates of the center of gravity,
moment of inertia, set characteristic function, the intersection with a given set of pixels, hook-lengths,
higher order moments and alsoq-statistics for projections.
© 2005 Published by Elsevier B.V.
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1. Introduction

The classical Green’s Theorem may be seen as a generalization of the Fundamental
Theorem of Calculus and links surface integrals to contour integrals. More precisely, for
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Fig. 1. (a) A typical polyomino; (b) a closed curve but not a polyomino.

any convenient closed region� of the plane with boundary�(�) we have∫ ∫
�

(
�Q

�x
− �P

�y

)
dx dy =

∫
�(�)

P (x, y)dx +Q(x, y)dy.

This is particularly true for regions defined on regular lattices such as square, hexagonal
or triangular lattices of the plane. On the other hand, many basic parameters associated
with closed regions are represented by surface integrals. For instance, the area A(�), center
of gravity CG(�), moment of inertia I(�), of a closed region� are defined by the double
integrals

A(�) =
∫ ∫

�
dx dy, CG(�) = (x̄, ȳ) =

(∫∫
� x dx dy

A(�)
,

∫∫
� y dx dy

A(�)

)
,

I(�)=
∫ ∫

�
((x − x̄)2+(y − ȳ)2)dx dy=

∫ ∫
�
(x2+y2)dx dy − (x̄2 + ȳ2)A(�).

In this paper we restrict the study to regions that are commonly used in discrete geometry,
namely the polyominos, but one should keep in mind that a more general formulation could
be presented. A polyominoP is a finite union of closed cells in the unit lattice square
(pixels) of the plane whose boundary�(P) consists of a simple closed polygonal path (see
Fig.1(a)). In particular, our polyominoes are simply connected (contain no holes), and have
no multiple points (see Fig. 1(b)). The polygonal path� (contour) of a polyomino is encoded
by an ordered pair (s, w) wheres is a lattice point belonging to� andw is a word over the
4-letter alphabet

A = {r ,u, l,d} = {r :→ u :↑ l :← d :↓}
also known as the Freeman chain code[9,10], where the letters correspond to the unit
translations in the lattice directions: right, up, left and down. The wordw represents the
perimeter of the polyomino read in a counterclockwise way starting from the points. The
use ofsmay be avoided in the encodings by assuming thats is always the lowest left most
point of the polyomino and thats = (0,0) by using a suitable translation. In this way, the
polyomino of Fig. 1(a) is encoded by the single word

w = rrddrurruurdruururullldluululldddldldd.
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Center of gravity = (3.65, 1.54)

Area= 26

Horizontal projections = (1,2,3,4,5,5,3,2,1)

Vertical projections = (1,2,4,9,6,3,1)

Moment of inertia = 152.68

Fig. 2. Some parameters for polyominoes.

Since polyominoes are given by words describing their contours, it is natural to use Green’s
Theorem for the construction of our first general algorithms in order to compute not only
some basic statistics such as the area, center of gravity, moment of inertia, projections (see
Fig. 2) but the boolean operations on the underlying sets as well.

In Section 2, we introduce the notion of incremental algorithm for polyominoes given
by their contour and show how Green’s Theorem can be used to generate families of such
algorithms. In Section 3, we drop the continuity conditions of Green’s Theorem and deal
with general additive incremental algorithms for which the output associated with the sum
of two polyominoes is the sum of the outputs associated to each polyomino.

More general algorithms are then obtained by the use of weight functionsW : Z × Z −
→ A. In particular, ifW is the boolean valued characteristic function of a point, then
the output of the algorithm is boolean valued and decides if a given pixel belongs to a
given polyomino. This result extends to sets of pixels, providing the computation of the
set characteristic function and some particular instances such as the size of hook-lengths.
Higher order moments are also obtained in this way when the weight function involves
Stirling numbers of the second kind. WhenA is a ring of formal Laurent power series, the
use ofq-analogues yields the simultaneous computation of both the horizontal and vertical
projections.

The power and effectiveness of Green’s Theorem already appeared in the literature.
More precisely, it is useful for region filling (see for example [15]) and also for the efficient
computation of the moments of closed regions [14,17,18]. Our present approach is similar
to the one given in [14,17,18], but differs by the choice of the Stirling numbers instead of
the Bernouilli numbers. For a general presentation of polyominoes and their properties see
[11]. A survey of enumerative results concerning polyominoes can be found in [16] (see
also [2,4,7]). The core of the third author’s Master thesis [12] contains in full detail—but is
not limited to—the results presented here with numerous examples.

2. Green’s Theorem and incremental algorithms

The following version of Green’s Theorem [13] is sufficient to start our analysis.

Theorem 1. LetP(x, y), Q(x, y) be two continuously differentiable functions on an open
set containing a simply connected region� bounded by a simple piecewise continuously
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differentiable positively oriented curve�. Then∫ ∫
�

(
�Q

�x
− �P

�y

)
dx dy =

∫
�
P(x, y)dx +Q(x, y)dy.

Since the above parameters involve integrals of the form∫ ∫
�
f (x, y)dx dy,

where� will be a polyomino, our next step is to chooseP(x, y) andQ(x, y), in Green’s
Theorem, such that(�Q/�x−�P/�y) = f . There are many ways to achieve this and three
solutions are provided in the following useful lemma.

Lemma 2. LetP be a polyomino with contour�, and letf (x, y) be aR-valued continuous
function. Then,∫ ∫

P
f (x, y)dx dy =

∫
�
f1(x, y)dy (1)

=−
∫
�
f2(x, y)dx (2)

=
∫
�
F(x, y)(x dy − y dx), (3)

where

f1(x, y)=
∫ x

f (u, y)du, f2(x, y) =
∫ y

f (x, v)dv,

F (x, y) =
∫ 1

0
f (sx, sy)s ds.

The notation
∫
� denotes a line integral along� while

∫ t dt means indefinite integration.

Proof. For (1), takeP = 0,Q = f1 in Green’s Theorem. For (2), takeP = −f2, Q = 0.
Formula (3) is more delicate and can be established as follows. Take, in Green’s Theorem,
P(x, y) = −yF(x, y) andQ(x, y) = xF(x, y). We must show that(�Q/�x − �P/�y) =
f . In order to do this, note first that(

�Q

�x
− �P

�y

)
= 2F + x

�F

�x
+ y

�F

�y
.

Next, consider an extra variableu such that 0< u�1. Then,

u2F(ux, uy)= u2
∫ 1

0
f (sux, suy)s ds

=
∫ u

0
f (�x, �y)� d� (via � = su).

Differentiating with respect tou gives

2uF(ux, uy)+ u2�F

�x
(ux, uy)x + u2�F

�y
(ux, uy)y = uf (ux, uy).
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Fig. 3. A positive and a negative triangle.

Finally, takingu = 1, one obtains the desired equality

2F + x
�F

�x
+ y

�F

�y
= f. �

Remark 3. The above proof of (3) uses Green’s Theorem but it is more algebraic than
geometric. An alternate geometric proof of (3), not using Green’s Theorem, is provided
now. Its advantage relies on the fact that it may be adapted to any piecewise continuously
differentiable curve�.

Alternate geometric proof of(3): Let v0, v1, . . . , vn be the successive vertices of the
contour� of P. For any two successive verticesvi andvi+1 on �, consider the triangle
Ti whose vertices are 0, vi andvi+1 taken in this order. The triangleTi is considered to
be positive if the angle defined by the vectorsvi andvi+1 is positive andTi is negative
otherwise (see Fig.3).

We obviously have,∫ ∫
P
f (x, y)dx dy =

n−1∑
i=0

∫ ∫
Ti

f (x, y)dx dy.

Now letvi = (xi, yi) andvi+1 = (xi+1, yi+1) = (xi+�xi, yi+�yi) and take the following
parametrization for the triangleTi :

x = x(s, t) = s(xi + t�xi), y = y(s, t) = s(yi + t�yi),

where 0�s�1 and 0� t�1. The Jacobian of this transformation is
�(x, y)

�(s, t)
= s(xi�yi − yi�xi).

By the change of variables for double integrals, we have, fori = 0,1, . . . , n− 1 :∫ ∫
Ti

f (x, y)dx dy =
∫ 1

0

∫ 1

0
f (x(s, t), y(s, t))

�(x, y)

�(s, t)
ds dt

=
∫ 1

0

∫ 1

0
f (s(xi + t�xi), s(yi + t�yi))s(xi�yi − yi�xi)ds dt

=
∫ 1

0
F(xi + t�xi, yi + t�yi)(xi�yi − yi�xi)dt

=
∫
[vi ,vi+1]

F(x, y)(x dy − y dx). �
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2.1. Incremental algorithms

The evaluation of each line integral (1)–(3) of Lemma 2 can be broken into simpler
integrals over successive unit (horizontal or vertical) line segments forming�:∫

�
� =

n−1∑
i=0

∫
[vi ,vi+1]

�,

wherevi = (xi, yi), i = 0, . . . , n − 1, denote the successive vertices of the contour ofP,
and satisfyvn = v0, vi+1 = vi + �vi = (xi + �xi, yi + �yi).

Since polyominoes are coded by(s, w) wheres ∈ Z × Z is the starting point andw is a
word over the alphabetA = {r, u, l, d}, the translation into incremental algorithms follows
easily:

start from the source pointsand traverse the contour�(P ) = � by readingw letter by
letter. At each step, the performed action depends only on the current position on�(P )

and on the letter read.
More precisely, consider four vectors identified with the letters ofA

r = (1,0), u = (0,1), l = (−1,0), d = (0,−1)

and take four functions indexed byA,

�r (x, y), �u(x, y), �l (x, y), �d(x, y).

Now read the wordw = w1w2 . . . wn sequentially from the left, cumulating the partial
sums as follows, wherewi is the vector corresponding to the letterwi :

v := (x0, y0); S := 0;
for i := 1 to n do

S := S + �wi
(v); v := v + wi

end for
return S.

Hereafter an incremental algorithm is denoted by• = 〈 �d ,�h ,�g ,�b 〉and the following
suggestive notation represents its output:

Output(•,P) = ∑
→

�r (xi, yi)+ ∑
↑

�u(xi, yi)+ ∑
←

�l (xi, yi)+ ∑
↓

�d(xi, yi).

The formulas (1), (2) and (3) of Lemma2 yield the corresponding incremental algorithms
called, respectively,V-algorithm, H-algorithmandVH-algorithm, where the lettersV and
H stand for the vertical and horizontal directions: in aV-algorithm(resp.H-algorithm) only
vertical (resp. horizontal) sides of the polyomino are used, while in aVH-algorithmboth
vertical and horizontal sides are used.

Proposition 4 (Green’s type algorithms). Let P = (s, w)andf (x, y)be continuous.Then,∫ ∫
P
f (x, y)dx dy = ∑

→
�r (xi, yi)+ ∑

↑
�u(xi, yi)+ ∑

←
�l (xi, yi)+ ∑

↓
�d(xi, yi),
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where the functions�r , �u, �l , �d are taken from any of the following three sets of
possibilities:
V-algo. �r = 0, �u = ∫ 1

0 f1(x, y + t)dt, �l = 0, �d = − ∫ 1
0 f1(x, y − t)dt .

H-algo. �r = − ∫ 1
0 f2(x + t, y)dt, �u = 0, �l =

∫ 1
0 f2(x − t, y)dt, �d = 0.

VH-algo. �r = −y
∫ 1

0 F(x + t, y)dt , �u = x
∫ 1

0 F(x, y + t)dt,

�l = y
∫ 1

0 F(x − t, y)dt , �d = −x
∫ 1

0 F(x, y − t)dt ,

wheref1(x, y), f2(x, y) andF(x, y) are defined by Lemma2.

Proof. Let � be any one of the three differential forms

f1(x, y)dy, −f2(x, y)dx, F (x, y)(x dy − y dx)

appearing in the line integrals (1), (2), (3) of Lemma2. Then,∫ ∫
P
f (x, y)dx dy =

∫
�
� =

n−1∑
i=0

∫
[vi ,vi+1]

�,

wherev0, v1, . . . , vn−1, vn(= v0) are the vertices of the contour� of P. Now if (s, w)

encodesP, with the starting point(x0, y0) and the 4-letter wordw = w1w2 . . . wn, then the
side[vi , vi+1] of the contour� is parametrized by(x, y) = (x(t), y(t)), 0� t�1, where

x = x(t) = xi + t, y = y(t) = yi (dx = dtdy = 0) if wi+1 = r,

x = x(t) = xi, y = y(t) = yi + t (dx = 0dy = dt) if wi+1 = u,

x = x(t) = xi − t, y = y(t) = yi (dx = −dt,dy = 0) if wi+1 = l,

x = x(t) = xi, y = y(t) = yi − t (dx = 0,dy = −dt) if wi+1 = d.

We conclude by evaluating the line integrals (1), (2), (3) of Lemma2 using the corresponding
parametrizations. �

2.2. Elementary applications and examples

The tables below contain elementary instances of these algorithms for the computation
of

∫∫
P f (x, y)dx dy and some computations are carried out on the simple polyominow =

rrdrrululululddd ands = (0,0):

Below are listed the algorithms for the area (Table1), wheref (x, y) = 1; for the center
of gravity (Table 2), wheref (x, y) = x andf (x, y) = y; and for the moment of inertia
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Table 1
Area

Algorithm �r �u �l �d

V 0 x 0 −x

H −y 0 y 0
VH −y/2 x/2 y/2 −x/2

(Table3), wheref (x, y) = x2 + y2.
• V-algofor the area:

∑
→0+ ∑

↑xi +
∑

←0+ ∑
↓ − xi ,∫ ∫

P

1 dx dy = 0+ 0− x3 + 0+ 0+ x5 + 0+ x7 + 0+ x9 + 0+ x11

+0− x13 − x14 − x15

=−2+ 4+ 3+ 2+ 1− 0− 0− 0 = 8.

• VH-algofor the area:
∑

→ − yi/2+ ∑
↑xi/2+ ∑

←yi/2+ ∑
↓ − xi/2,∫ ∫

P

1 dx dy =−y0/2−y1/2−x2/2− y3/2− y4/2+ x5/2+ y6/2− y7/2+ y8/2

−x9/2+ y10/2+ x11/2+ y12/2− x13/2− x14/2− x15/2

=−1+ 1/2+ 1/2+ 2+ 3/2+ 1/2+ 1+ 1+ 1/2+ 3/2 = 8.

• V-algofor x̄ of the center of gravity:
∑

→0+ ∑
↑x2

i /2+ ∑
←0+ ∑

↓ − x2
i /2,

∫ ∫
P

x dx dy = 0+ 0− x2
2/2+ 0+ 0+ x2

5/2+ 0+ x2
7/2+ 0+ x2

9/2+ 0

+ x2
11/2+ 0− x2

13/2− x2
14/2− x2

15/2

= (−22 + 42 + 32 + 22 + 12)/2 = 26/2 = 13.

• V-algofor the integral involved in the moment of inertia:∫ ∫
P

(x2 + y2)dx dy =∑
↑
x3
i /3+ xiy

2
i + xiyi + xi/3

+∑
↓

− x3
i /3− xiy

2
i + xiyi − xi/3 = 425/24.

• We compute now the probability that a random point(x, y) ∈ R × R, under a normal
bivariate probability distribution,f (x, y) = (1/�)exp(−x2− y2), falls in a given poly-
ominoP. In this case theVH-algorithmis complicated and only theV andH-algorithms
are given (Table4). Discrete probability distributions (such as uniform distributions over
rectangles) will be considered in the next section.

Due to its formulation, theVH-algorithm is in general more complicated than the corre-
spondingV andH-algorithms. There is, however, an important class of functions for which
theVH-algorithmis generally preferable: the class ofhomogeneous functions, i.e. functions
f (x, y), satisfying a functional equation of the formf (sx, sy) = skf (x, y) for a constant
k, called thedegree of homogeneity. TheVH-algorithmis given now.
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Table 2
Center of gravity

Algorithm �r �u �l �d

V (num x̄) 0 x2/2 0 −x2/2
(num ȳ) 0 x/2+ xy 0 x/2− xy

H (num x̄) −y/2− xy 0 −y/2+ xy 0
(num ȳ) −y2/2 0 y2/2 0

VH (num x̄) −xy/3− y/6 x2/3 xy/3− y/6 −x2/3
(num ȳ) −y2/3 xy/3+ x/6 y2/3 −xy/3+ x/6

Table 3
Moment of inertia

V �r = 0 �u = x/3+ xy + x3/3+ xy2

�l = 0 �d = −x/3+ xy − x3/3− xy2

H �r = −y/3− xy − x2y − y3/3 �u = 0
�l = y/3− xy + x2y + y3/3 �d = 0

VH �r = −y/12− xy/4− x2y/4− y3/4 �u = x/12+ xy/4+ x3/4+ xy2/4
�l = y/12− xy/4+ x2y/4+ y3/4 �d = −x/12+ xy/4− x3/4− xy2/4

Table 4
f (x, y) = (1/�)exp(−x2 − y2), erf(x) = (2/

√
�)

∫ x
0 exp(−t2)dt

V �r = 0 �u = 1
4erf(x)(erf(y + 1)− erf(y))

�l = 0 �d = 1
4erf(x)(erf(y − 1)− erf(y))

H �r = − 1
4erf(y)(erf(x + 1)− erf(x)) �u = 0

�l = − 1
4erf(y)(erf(x − 1)− erf(x)) �d = 0

Corollary 5. Letf (x, y) be continuous and homogeneous of degreek > −2.Assume that

�r = − y

k + 2
(f1(x + 1, y)− f1(x, y)), �u = x

k + 2
(f2(x, y + 1)− f2(x, y)),

�l = − y

k + 2
(f1(x − 1, y)− f1(x, y)), �d = x

k + 2
(f2(x, y − 1)− f2(x, y)),

wheref1(x, y) andf2(x, y) are defined in Lemma2. Then the corresponding incremental
VH-algorithm computes

∫∫
P f (x, y)dx dy, for any polyominoP.

Proof. Let f (x, y) be homogeneous of degreek. Then the functionF(x, y) of Proposition
4 takes the very simple form

F(x, y) =
∫ 1

0
f (sx, sy)s ds =

∫ 1

0
sk+1f (x, y)ds = 1

k + 2
f (x, y).
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Hence, for the correspondingVH-algorithm, we have,

�r (x, y)=−
∫ 1

0
F(x + t, y)y dt = − y

k + 2

∫ 1

0
f (x + t, y)dt

=− y

k + 2

∫ x+1

x

f (x, y)dx = − y

k + 2
(f1(x + 1, y)− f1(x, y)),

by definition off1(x, y). The verification of the formulas for�u, �l and�d is left to the
reader. �

A typical illustration of Corollary5, for which theVH-algorithm is simpler than the
correspondingV or H-algorithms, is provided by the computation of the average euclidean
distance from a given point(a, b) ∈ Z × Z to a random point in a polyominoP is given by
the formula∫∫

P

√
(x − a)2 + (y − b)2 dx dy

A(P)
,

where A(P) is computed by some of our previous algorithms. We only need to compute
the integral

∫∫
P f (x, y)dx dy. This is achieved easily by replacing the starting points =

(x0, y0) by s− (a, b) = (x0−a, y0−b). It corresponds to the choicef (x, y) = √
x2 + y2

andk = 1 in Corollary5. In this case, the functionsf1(x, y) andf2(x, y) are given by the
formulas

f1(x, y) =
{ 1

2x|x| if y = 0,

1
2x

√
x2 + y2 + 1

2y
2 ln(x + √

x2 + y2) otherwise,

f2(x, y) =
{ 1

2y|y| if x = 0,

1
2y

√
x2 + y2 + 1

2x
2 ln(y + √

x2 + y2) otherwise.

Note thatf1(0,0) = f2(0,0) = 0 by taking limits.

3. Additive incremental algorithms and applications

In the foreseen examples, the functionf (x, y) was assumed to be continuous. Never-
theless this much restrictive condition may be dropped by assuming, for example, thatf is
piecewise continuous in each variable, and we still may use Proposition4 as a guideline for
producing corresponding algorithms. Indeed, algorithms for the computation of horizon-
tal and vertical projections of a polyomino can be found in this way: fix an integer� and
definef by

f (x, y) = 	(��x < � + 1),

where	 denotes the characteristic function. Then,
∫∫

P f (x, y)dx dy is clearly the�-vertical
projection of the polyominoP:∫ ∫

P
f (x, y)dx dy = #{
 ∈ Z|Pix�,
 ⊆ P} = v�(P),
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where Pix�,
 denotes the unit pixel of the plane having the point(�, 
) ∈ Z×Z as its lowest
left corner, that is:

Pix�,
 = {(x, y) ∈ R × R|��x < � + 1, 
�y < 
 + 1},

and its closure (with conditionx��+1, y�
+1) is denotedPix�,
. In this case, following
Proposition4, we find that

f1(x, y) =
∫ x

	(��x < � + 1)dx =


0 if x < �,
x − � if ��x < � + 1,
1 if � + 1�x.

This gives the following algorithm as the reader can easily check:
V-algorithm for the vertical projectionv�(P):

�r = 0, �u = 	(x�� + 1), �l = 0, �d = −	(x�� + 1).

Similarly, takingf (x, y) = 	(
�y < 
 + 1), the
-horizontal projection ofP

#{� ∈ Z | Pix�,
 ⊆ P} = h
(P),

is computed by the following algorithm:
H-Algorithm for the horizontal projectionh
(P):

�r = −	(y�
 + 1), �u = 0, �l = 	(y�
 + 1), �d = 0.

These algorithms for the projections are special instances of the general notion of additive
incremental algorithm which we now define.

Definition 6. An incremental algorithm• = 〈 �r ,�u ,�l ,�d 〉 is additive if, whenever
P = P1 ∪ P2 with disjoint interiors (see Fig.4), we have

Output(•,P) = Output(•,P1 ∪ P2) = Output(•,P1)+ Output(•,P2).

An example of a nonadditive incremental algorithm is given by the computation of a
polyomino’s perimeter in which case�r = �u = �l = �d = 1.

Proposition 7. An incremental algorithm• = 〈�r ,�u,�l ,�d〉, where the�’s are R-
valued(or more generallyA-valued whereA is a ring) is additive if and only if

�l (x, y) = −�r (x − 1, y) and �d(x, y) = −�u(x, y − 1). (4)
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Fig. 4.P = P1 ∪ P2 with disjoint interiors.

(         )
(x,y)(x-1,y)

x,y(     )

(x,y-1)
x    ,y+1x,y(     )

P1

P2

(a) (b) (c)

P1 P2

x,y(         )+1 +1x    ,y+1(              )

Fig. 5. (a) Vertical domino, (b) horizontal domino, (c) a pixel Pixx,y .

Moreover, the output of an additive incremental algorithm•, on a polyominoP is given by

Output(•,P) = ∑
Pix�,
⊆P

�x�u(�, 
)− �y�r (�, 
), (5)

where�x�(x, y) = �(x + 1, y)− �(x, y) and�y�(x, y) = �(x, y + 1)− �(x, y).

Proof. Since any polyominoP can be written as a finite union of the closurePix�,
 of its
pixels

P = ⋃
Pix�,
⊆P

Pix�,
,

the output of an additive incremental algorithm satisfies

Output(•,P) = ∑
Pix�,
⊆P

Output(•,Pix�,
).

In particular, ifP1,P2 are both single pixels andP is a vertical domino as in Fig.5(a), then,

Output(•,P) = Output(•,P1 ∪ P2) = Output(•,P1)+ Output(•,P2).

Hence

�l (x, y) = −�r (x − 1, y)

in order to cancel the contribution of the common horizontal edge of the dominoP.A similar
argument (see Fig.5(b)) shows that using an horizontal domino

�d(x, y) = −�u(x, y − 1).

This shows that the stated conditions are necessary for additivity. Their sufficiency follows
from the automatic cancellation of the common boundaries ofP1 and P2 (see Fig.5)
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for general polyominoes with disjoint interiors such thatP = P1 ∪ P2. The formula for
Output(•,P) also follows from these conditions since for any closed pixelPix�,
, we must
have (see Fig.5(c)), for any additive incremental algorithm,

Output(•,Pix�,
)=�r (�, 
)+ �u(� + 1, 
)+ �l (� + 1, 
 + 1)+ �d(�, 
 + 1)

=�r (�, 
)+ �u(� + 1, 
)− �r (�, 
 + 1)− �u(�, 
)

=�x�u(�, 
)− �y�r (�, 
). �

Proposition 7 may be used for proving, for instance, that a given additive incremental
algorithm is actually correct. Indeed, one can check by using it, that the above algorithms
for the projectionv�(P) andh
(P) are valid. The validity of the boolean valued additive
incremental algorithms in the next sections can also be checked with it. Another use of this
proposition is to produce new algorithms starting first from an arbitrary choice of functions
�r (x, y),�u(x, y); secondly, by defining the associated functions�l (x, y),�d(x, y) from
(4); and, finally, by computing the corresponding output using (5). See Section 3.4 for such
an example.

The next corollary may be considered as an inverse of Proposition 7. It shows how to find
�r (x, y), �u(x, y),�l (x, y), �d(x, y) starting from the desired output. It also describes a
close connection between general additive incremental algorithms and the bivariate calculus
of finite differences.

Corollary 8. Let A be a ring andW : Z × Z → A be a weight function associated
with each pixelPixx,y in the plane. Then, the most general additive incremental algorithm,
• = 〈�r ,�u,�l ,�d〉 having the output∑

Pixx,y⊆P
W(x, y) ∈ A,

for each polyominoP, is of the form

�r (x, y) = V 0(x, y)+ �(x, y − 1)− �(x − 1, y − 1),

�u(x, y) = U0(x, y)+ �(x − 1, y)− �(x − 1, y − 1),

�l (x, y) = −�r (x − 1, y),

�d(x, y) = −�u(x, y − 1),

where(U0(x, y), V 0(x, y)) is a particular solution of the difference equation

�xU(x, y)− �yV (x, y) = W(x, y)

and� : Z × Z → A is arbitrary.

Proof. Since the difference equation is linear, it is sufficient to show (see Proposition7)
that the general solution of the associated homogeneous equation

�xU(x, y)− �yV (x, y) = 0 (6)
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is given by

U(x, y) = �(x − 1, y)− �(x − 1, y − 1), (7)

V (x, y) = �(x, y − 1)− �(x − 1, y − 1), (8)

where�(x, y) is arbitrary. Indeed, substituting (7) in (6) gives

�xU − �yV = [(�(x, y)− �(x, y − 1))− (�(x − 1, y)− �(x − 1, y − 1))]
−[(�(x, y)− �(x − 1, y))− (�(x, y − 1)− �(x − 1, y − 1))]

= 0.

Conversely, in order to show that for any solution(U, V ) of the homogeneous equation
there corresponds a function�, we introduce two auxiliary summation operators,�x

1 and
�y

1, defined on functionsg : Z × Z → A, by

�x
1g(x, y) =


∑x

k=1g(k, y) if x > 0,

0 if x = 0,

−∑−x−1
k=0 g(−k, y) if x < 0,

and similarly for�y
1g(x, y). The reader can check that, for any function
(x, y), we have,

∇x
(x, y) = 
(x, y)−
(x − 1, y) = g(x, y) ⇐⇒ 
(x, y) = 
(0, y)+�x
1g(x, y),

∇y
(x, y) = 
(x, y)−
(x, y − 1) = g(x, y) ⇐⇒ 
(x, y) = 
(x,0)+�y
1g(x, y),

and that the required function�(x, y) can be taken as

�(x, y) = c + �y
1U(1, y)+ �x

1V (x, y + 1),

wherec is an arbitrary constant (c = �(0,0), in fact). �

There exist many ways to find a particular solution(U0, V 0) of the equation�xU −
�yV = W . One way is to forceV 0 (resp.U0) to be 0 and takeU0 (resp.V 0) to be a
particular solution of the simpler difference equation

�xU(x, y) = W(x, y) (resp.− �yV (x, y) = W(x, y)),

with particular solution

U0 = �x
1W(x − 1, y), V 0 = 0 (resp. U0 = 0, V 0 = −�y

1W(x, y − 1)).

This method provides a particularV-algorithm (resp.H-algorithm). Formal power series
may also be used: letz1 andz2 be formal variables and consider the formal Laurent series

Ũ (z1, z2) = ∑
x,y

U(x, y)zx1z
y
2,

Ṽ (z1, z2) = ∑
x,y

V (x, y)zx1z
y
2,

W̃ (z1, z2) = ∑
x,y

W(x, y)zx1z
y
2.
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Then the difference equation

�xU(x, y)− �yV (x, y) = W(x, y)

rewrites as

(1− z1)z2Ũ (z1, z2)− (1− z2)z1Ṽ (z1, z2) = z1z2W̃ (z1, z2),

which is solved forŨ (z1, z2) and Ṽ (z1, z2) by using algebraic manipulations. In fact,
we used this method to find the general solution of the homogeneous equation appearing
in the proof of Corollary8. Another way to find solutions to the difference equation of
Corollary 8 is to express, if possible,W(x, y) in the basisx(i)y(j), i, j �0, wheret (k) =
t (t − 1) . . . (t − k + 1) is thekth falling factorial power oft. Since�t t

(k) = kt(k−1), this
basis is well adapted to difference equations. This method is illustrated in Section 3.4 below
for the computation of higher moments of a polyomino.

3.1. Deciding if a polyomino contains a given pixel

Let (�, 
) ∈ Z × Z and consider the following boolean-valued function

W�,
(x, y) = 	(x = �)	(y = 
).

Since ∑
Pixx,y⊆P

W�,
(x, y) = 	(Pix�,
 ⊆ P) =
{

1 if Pix�,
 ⊆ P,
0 otherwise,

then, the following additive incremental algorithms can be used to decide whether the pixel
determined by(�, 
) belongs or not to a polyominoP.
V-algorithm: �r = 0, �u = 	(x�� + 1)	(y = 
),

�l = 0, �d = −	(x�� + 1)	(y = 
 + 1).
H-algorithm: �r = −	(x = �)	(y�
 + 1), �u = 0,

�l = 	(x = � + 1)	(y�
 + 1), �d = 0.
For example, theV-algorithmapplied to Fig.6(a) with(�, 
) = (3,2) gives (only nonzero
terms are listed):

	(Pix3,2 ⊆ P)= 	(x14�4)	(y14 = 2)− 	(x16�4)	(y16 = 3)

+	(x26�4)	(y26 = 2)

= 1− 1+ 1 = 1 (since, Pix3,2 ⊆ P)

and to Fig. 6(b) with(�, 
) = (6,0)

	(Pix6,0 ⊆ P)=−	(x18�7)	(y18 = 1)+ 	(x24�7)	(y24 = 0)

=−1+ 1 = 0 (since, Pix6,0 �⊆ P).

Of course, from Corollary 8, there is an uncountable family of algorithms〈��,

r ,��,


u ,

��,

l ,��,


d 〉 from which one can compute	(Pix�,
 ⊆ P).
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(a) (b)

Fig. 6. (a) Pixel Pix3,2 in the polyomino (b) pixel Pix6,0 not in the polyomino.

(d)

vi′ vj′′

vi′ vj′′

vi′

vj′′

vj′′

vi′

(a) (b) (c)

Fig. 7. Matching pairs.

3.2. Boolean operations

From the characteristic function	, it is now straightforward to define formulas for the
boolean operators on polyominoes. However, better results may be achieved with a bit of
care. LetP1 andP2 be two polyominoes whose contours are given respectively byv′i =
(x′i , y′i ), for i = 0,1, . . . , n1 − 1, andv

′′
j = (x

′′
j , y

′′
j ) for j = 0,1, . . . , n2 − 1.

Proposition 9. The number of pixels inP1 ∩ P2 is given by

#(P1 ∩ P2) = A(P1 ∩ P2) = ∑
0� i<n1,0� j<n2

i,j, matching

min(x′i , x
′′
j )�y

′
i�y

′′
j ,

where the sum is extended to all the ordered pairs(i, j) of indices that match in the following
sense:

(i, j) match⇐⇒



y′i = y
′′
j and �y′i = �y

′′
j (= ±1) (Fig. 7(a), (b)),

or
y′i = y

′′
j − 1 and �y′i = 1, �y

′′
j = −1 (Fig. 7(c)),

or
y′i = y

′′
j + 1 and �y′i = −1, �y

′′
j = 1 (Fig. (d)).

Proof. The number of pixels in common betweenP1 andP2 is given by

#(P1 ∩ P2) = ∑
(p,q)∈Z×Z

	(Pixp,q ⊆ P1)	(Pixp,q ⊆ P2).
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Using now theV-algorithmdescribed in Section3.1, we can write

	(Pixp,q ⊆ P) = ∑
i

�p,q(vi ,�vi ),

where�p,q(v,�v) = 	(x�p + 1)	(y = q + (1− �y)/2)�y, since�y ∈ {−1,0,1}. Let
M (resp.N) be a lower bound for all thex′i andx

′′
j (resp.y′i andy

′′
j ). Then,

#(P1 ∩ P2)= ∑
p�M,q�N

∑
i,j

�p,q(v′i ,�v′i )�p,q(v
′′
j ,�v

′′
j )

=∑
i,j

�(v′i ,�v′i , v
′′
j ,�v

′′
j ),

where

�(v′i ,�v′i , v
′′
j ,�v

′′
j )=

∑
p�M,q�N

�p,q(v′i ,�v′i )�p,q(v
′′
j ,�v

′′
j )

= ∑
p�M

	(x′i �p + 1)	(xj
′′�p + 1

× ∑
q�N

	(y′j = q + (1− �y′j )/2)	(y
′′
j = q + (1− �y

′′
j )/2)

= (min(x′i , x
′′
j )−M)�(y′i ,�y′i , y

′′
j ,�y

′′
j )

and where,

�(y′i ,�y′i , y
′′
j ,�y

′′
j ) =


1 if y′i = y

′′
j and �y′i = �y

′′
j (= ±1),

−1 if y′i , y′i = y
′′
j − 1, �y′i = 1, �y

′′
j = −1,

−1 if y
′′
j , y′i = y

′′
j + 1, �y′i = −1, �y

′′
j = 1,

0 otherwise.

Hence,

#(P1 ∩ P2) = ∑
0� i<n1, 0� j<n2

i,j, matching

(min(x′i , x
′′
j )−M)�y′i�y

′′
j ,

and since the left-hand side is independent ofM, the result follows by replacingM by
M − 1. �

Using the de Morgan set formulas, the number of pixels in the union and difference of
two polyominoes is computed by

#(P1 ∪ P2) = #(P1)+ #(P2)− #(P1 ∩ P2),

#(P1 \ P2) = #(P1)− #(P1 ∩ P2).

Intersection between a polyomino and a given set: Let Sbe a finite or infinite union of
pixels and let〈�p,q

r ,�p,q
u ,�p,q

l ,�p,q
d 〉 be algorithms for the computation of

	(Pixp,q ⊆ P) (p, q) ∈ Z × Z.
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Fig. 8. There are 21 pixels inP to the north-east of(�,
).

The number #(S ∩ P) of pixels in common betweenSandP can be computed by taking
〈�S

r ,�
S
u,�

S
l ,�

S
d 〉, where

�S
r (x, y) =

∑
Pixp,q⊆S

�p,q
r (x, y), �S

u(x, y) =
∑

Pixp,q⊆S

�p,q
u (x, y),

�S
l (x, y) =

∑
Pixp,q⊆S

�p,q
l (x, y), �S

d (x, y) =
∑

Pixp,q⊆S

�p,q
d (x, y).

In particular, to decide if a polyominoP intersects interior ofS, one simply checks if the
output of this algorithm is> 0.

Computation of hook-lengths: Consider the north-east corner in theR×R plane associated
with a given lattice point(�, 
) ∈ Z × Z

NE�,
 = {(x, y) ∈ R × R|��x, 
�y} = [�,∞)× [
,∞).

Then the reader can check that the following algorithms can be used to compute, for a
polyominoP, the number of pixels inP∩ NE�,
. That is, the number of pixels ofP which
are to the north-east of(�, 
)(see Fig.8):
V-algorithm: �r = 0, �u = (x − �)	(x�� + 1)	(y�
),

�l = 0, �d = −(x − �)	(x�� + 1)	(y�
 + 1).
H-algorithm: �r = −(y − 
)	(x��)	(y�
 + 1), �u = 0,

�l = (y − 
)	(x�� + 1)	(y�
 + 1), �d = 0.

Definition 10. Let (�, 
) ∈ Z × Z andP be a polyomino. The hook-length hook�,
(P) is
the number of pixels in the setP ∩ Hook�,
 where Hook�,
 = NE�,
\NE�+1,
+1.

In other words it is simply the number of pixels ofP which are in the L-shaped hook
Hook�,
 determined by(�, 
) (see Fig.9).

Replacing(�, 
) by (� + 1, 
 + 1) in the above algorithms and subtracting gives corre-
sponding algorithms for the computation of hook-lengths.
V-algorithm: (for the number of pixels inP∩ Hook�,
)

�r = 0, �l = 0,

�u = (x − �)	(x�� + 1)	(y�
)− (x − � − 1)	(x�� + 2)	(y�
 + 1),

�d = −(x − �)	(x�� + 1)	(y�
 + 1)+ (x − � − 1)	(x�� + 2)	(y�
 + 2).
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Fig. 9. There are 11 pixels ofP in the Hook�,
.

H-algorithm: (for the number of pixels inP∩ Hook�,
)

�u = 0, �d = 0,

�r = −(y − 
)	(x��)	(y�
 + 1)+ (y − 
 − 1)	(x�� + 1)	(y�
 + 2),

�l = (y − 
)	(x�� + 1)	(y�
 + 1)− (y − 
 + 1)	(x�� + 2)	(y�
 + 2).

3.3. Computation of higher order moments

Our approach for the computation of higher order moments uses Stirling numbers. It is
essentially equivalent to the one given byYang andAlbregsten in[17,18] who uses Bernoulli
numbers. It runs as follows.

Consider two integersm, n�0 and a point(a, b) ∈ Z × Z. By definition, the(m, n)-
moment of a polyominoP relative to the point(a, b) is given by the integral∫ ∫

P
(x − a)m(y − b)n dx dy.

By a simple translation, the computation of such higher order moments can be reduced to
central ones:∫ ∫

P
xmyn dx dy.

In this case,

W(x, y) =
∫ ∫

P
xmyn dx dy = (x + 1)m+1 − (x)m+1

m+ 1

(y + 1)n+1 − (y)n+1

n+ 1

= 1

(m+ 1)(n+ 1)
�xx

m+1�yy
n+1.

Now, it is well-known (see[5]) thattk = ∑k
v=0S

k
v t

(v), whereSkv denotes the Stirling numbers

of the second kind andt (v) = t (t − 1) . . . (t − v + 1). Since�t t
(v) = vt(v−1), it follows

that,

W(x, y) = ∑
0� i�m,0� j �n

wi,j x
(i)y(j), wi,j = (i + 1)(j + 1)

(m+ 1)(n+ 1)
Sm+1
i+1 Sn+1

j+1.



S. Brlek et al. / Theoretical Computer Science 346 (2005) 200–225 219

To find solutions(U, V ) of the difference equation of Corollary8, let

U(x, y) = ∑
ui,j x

(i)y(j), V (x, y) = ∑
vi,j x

(i)y(j).

Then, we have

�xU − �xV = ∑
((i + 1)ui+1,j − (j + 1)vi,j+1)x

(i)y(j),

and the problem is reduced to solve the linear system

(i + 1)ui+1,j − (j + 1)vi,j+1 = wi,j , i, j �0.

Of course, many choices are possible for theui,j ’s, vi,j ’s and the same kind of approach
can be used for otherwi,j ’s.

Example. Letm = 3, n = 2. Then,

W(x, y)= (x + 1)4 − x4

4

(y + 1)3 − y3

3

= 4x3 + 6x2 + 4x + 1

4

3y2 + 3y + 1

3
.

On the other hand, we have,

x3 = x(3) + 3x(2)+x(1), x2 = x(2)+x(1), x = x(1), y2 = y(2) + y(1), y = y(1).

Multiplying, we find,

W(x, y)= 4x(3) + 18x(2) + 14x(1) + 1

4

3y(2) + 6y(1) + 1

3

= x(3)y(2) + 2x(3)y(1) + 1

3
x(3) + 9

2
x(2)y(2) + 9x(2)y(1) + 3

2
x(2)

+7

2
x(1)y(2) + 7x(1)y(1) + 7

6
x(1) + 1

4
y(2) + 1

2
y(1) + 1

12

=+ · · · + wi,j x
(i)y(j) + · · ·

wherewi,j = (i + 1)ui+1,j − (j + 1)vi,j+1. For example, takingvi,j = 0, for all i, j , we
havewi,j = (i + 1)ui+1,j . Hence,ui+1,j = wi,j /(i + 1) with the normalizing condition
u0,j = 0. In this way we can find allui,j . Then,

U0(x, y)=∑
ui,j x

(i)y(j)

= 1

4
x(4)y(2) + 1

4
x(4)y(1) + 1

12
x(4) + 3

2
x(3)y(2) + 3x(3)y(1) + 1

3
x(3)

+7

2
x(2)y(2) + 7

2
x(2)y(1) + 7

12
x(2) + 1

2
x(1)y(1) + 1

12
x(1)

= 1

12
x(2)(x + 1)(2)(3y(2) + 3y + 1),

andV 0 = 0.
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The corresponding values for�d , �h, �g, �b, are obtained by using the formulas of
Corollary8 taking, for example,�(x, y) = 0.

3.4. Computation of families of projections

We now give an example where the weights of pixels are taken in the ringA = R((q)) of
formal Laurent power series inq. In analogy to theV-algorithmfor the area given in Table
1, consider the algorithm associated to the functions

〈�r (x, y) = 0, �u(x, y) = [x]q, �l (x, y) = 0, �d(x, y) = −[x]q〉,
where

[x]q = 1− qx

1− q
, x ∈ Z,

denotes theq-analogue ofx (q = 1 corresponds to area). In this case,

�x�u = [x + 1]q − [x]q = 1− qx+1

1− q
− 1− qx

1− q
= qx,

�y�r = 0.

So that, in view of Proposition7, the output of this algorithm onP is

Output(•,P) = ∑
Pix�,
⊆P

�x�u(�, 
)− �y�r (�, 
) = ∑
Pix�,
⊆P

q� = ∑
�∈Z

v�(P)q�.

This is the generating Laurent series of the family of all vertical projectionsv�(P), � ∈ Z,
and also aq-analogue of area. A similar approach can be used for the familyh
(P), 
 ∈ Z,
of all horizontal projections. Factoring out(1 − q) (resp.(1 − t)), the reader can easily
check that the following holds:

Corollary 11. Let q and t be formal variables andP be a polyomino. Then,
(a) for theV-algorithm• = 〈�r = 0,�u = −qx,�l = 0,�d = qx〉, we have

∑
�∈Z

v�(P)q� = Output(•,P)
1− q

,

(b) for theH-algorithm• = 〈�r = ty,�u = 0,�l = −ty,�d = 0〉, we have

∑

∈Z

h�(P)t
 = Output(•,P)
1− t

,

wherev�(P), � ∈ Z, and h
(P), 
 ∈ Z, denote the families of vertical and horizontal
projections of the polyominoP.

We illustrate this corollary with the polyomino of Fig.10.
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 5 2  5  3  3  2  1

Fig. 10. Family of vertical projections.

The computation using theV-algorithmgives

Output(•,P)
= 0− qx1 + 0− qx3 + 0+ 0+ 0− qx7 + 0− qx9 + 0− qx11 + 0+ qx13 + 0

−qx15 + 0− qx17 + 0+ qx19 + 0+ qx21 + qx22 + 0+ qx24 + qx25 + 0+ qx27

= −q1 − q2 − q5 − q4−q3 + q2 − q1 − q0 + q−1 + q−2 + q−2

+ q−1 + q−1+q0

= 2q−2 + 3q−1 − 2q1 − q3 − q4 − q5

and then,∑
�∈Z

v�(P)q� = Output(•,P)
1− q

= (2q−2 + 3q−1 − 2q1 − q3 − q4 − q5)

(1− q)

= 2q−2 + 5q−1 + 5+ 3q + 3q2 + 2q3 + q4,

where the coefficients of the polynomial correspond to the vertical projections of the poly-
omino (see Fig.10).

4. Conclusion

The Discrete Green Theorem provides a general framework allowing the discovery and
development of new algorithms for the computation of many statistics on polyominoes. Let
us mention, the computation of oblique projections or the computation of various proba-
bilities related to polyominoes. The algorithms described in Corollary 11 or their variants
might be of some help for the study of families of polyominoes defined by their projections
(see [1,8]).

Computations on integer partitions are obtained along the same lines since partitions
are special cases of polyominoes which are encoded by words of the following typew =
ri�dj , where� is a word on{u, l} containingi times the letterl and j times the letteru
(see Fig. 11).

It should also be possible to study salient and reentrant points on polyominoes in the
sense of [6], by extending the concept of incremental algorithm to higher order (where, at
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i

j

Fig. 11. A partition encoded byw = rrrrrrrrrrrulululullulluullulldddddddd.

v1

v2
v0

v3

v4 v5

vi

vi+ 1

00

(b)(a)

Fig. 12. (a) Closed polygonal pathP, (b) triangle with oblique segment [vi , vi+1].

each step, the action made depends on the current position on the boundary and on the next
k letters read).

Since polyominoes are easily encoded by 4-letter words, we can classify polyominoes ac-
cording to the value of various parameters by using the appropriate algorithm. For instance,
given an integern, then-ominoes can be classified according to (weakly) increasing mo-
ments of inertia. If twon-ominoes,P andQ satisfy I(P)� I(Q), we can say thatP is rounder
thanQ. We give in the Appendix the output of a simple Maple program implementing some
of the algorithms on a polyomino having perimeter 44, and also a classification according to
roundness for smalln-ominoes,n�5 (roundest first). It turns out that the roundestn-omino
is not necessarily unique.

Note also that their complexity is (time and space) linear in the boundary size of a
polyomino: indeed the Freeman chain code of a polyomino is its perimeter, whose size
determines the number of iterations in the incremental algorithms. The careful reader
has certainly noticed that the algorithms carried out can be straightforwardly adapted to
more general objects: for a polyomino with holes it suffices to subtract the holes; need-
less to say that they can also be extended to planar objects coded by a closed polygonal
paths (self-intersecting or not). The alternate proof of Lemma2 can be adapted to create
such algorithms using triangles of the form#0vivi+1 where the segment [vi , vi+1] can
be oblique (see Fig. 12). The resulting algorithms for closed polygonal pathsP will have
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the form

Output(•,P) =
n−1∑
i=0

�(vi ,�vi ) =
n−1∑
i=0

�(xi, yi,�xi,�yi)

for suitable functions�(v,�v) = �(x, y,�x,�y).
In particular, when the�vi are restricted to be in a finite set{�1, �2, . . . , �m}, then the

corresponding algorithm takes the form

Output(•,P) =
n−1∑
i=0

m∑
j=1

��j (xi, yi),

where the

��j (xi, yi) =
{

�(xi, yi,�xi,�yi) if �vi = �j ,
0 otherwise.

For example, algorithms for paths on hexagonal lattices in the complex plane can be
analyzed by taking the�k ’s to be the complex 6th roots of unity.

5. Uncited reference

[3].
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Appendix

It is easy to implement in Maple the incremental algorithms developed above. Here is
the output of a program on the human-like polyomino (see Fig. 14) described by the word
w = rruuurddrrrulluuuurrrulllluldllulddrrdddddld :

font=tir at 6pt

Area: 27.
Center of gravity: [47/18,239/54], [2.611111111,4.425925926].
Moment of inertia: 11719/54,217.0185185.
Vertical projections: 2q−1 + 2+ 7q + 5q2 + 6q3 + 2q4 + 2q5 + q6.
Horizontal projections: 2+ 4t + 2t2 + 3t3 + 3t4 + 3t5 + 8t6 + 2t7.

In Fig. 13, we classifyn-ominoes according to weakly increasing moment of inertia (for
n = 1,2, . . . ,5). In this figure,P�Q means that I(P)� I(Q) or, equivalently, thatP is
rounder thanQ. Equality of roundness is possible for distinctn-ominoes. The roundest
n-omino is not always unique (seen = 5). We leave open the problem of the explicit
geometrical description of the roundestn-omino(es) as a function ofn.



224 S. Brlek et al. / Theoretical Computer Science 346 (2005) 200–225

< < < <

1-omino

2-ominoes

3-ominoes

4-ominoes

5-ominoes

<

=

= =

<<

< < <

=< <

(a)

(c)

(d)

(e)

(b)

Fig. 13. Polyominoes of given area classified according to decreasing roundness.

(0,0)

Fig. 14. Human-like polyomino.
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