A Fast Thinking Connect Four Machine!

6.846 Final Project
Presented by Tina Wen

Goal

Write a fast connect k game on m by n grid from scratch

Small m and n: exhaustive search

Big m and n: search to a good depth

Basic Idea

Negamax search (recursively call expand and combine)

Approaches

- 1. Sequential exhaustive search
- 2. One dynamic queue in shared memory (TSP)

3. Master-Slave Message Passing

Approaches

4. Master-Slave Individually allocated shared memory (no mutex)

Where to get work

Heuristic

• Search for 4 in a row in 4 different orientations

 Count only rows that consist of one color and space (either red or black == 0)

If we are red

• If one color has 4 in a row, then score = 🛨 (infinity + spaces)

Heuristic

score

$$9 + 4 + 1 = 14$$

$$9 + 4 + 4 = 17$$

Performance of connect 3 on 4x4 grid

Purple: sequential no pruning

Performance of connect 3 on 4x4 grid

Purple: sequential no pruning Red: dynamic queue

Performance of connect 3 on 4x4 grid

Purple: sequential no pruning Upper Red: dynamic queue Lower Red: message passing

Performance of connect 3 on 4x4 grid

Purple: sequential no pruning Upper Red: dynamic queue

Lower Red: message passing

Blue: individually allocated shared memory

Number of processors (P)

Performance of connect 4 on 4x4 grid

Purple: sequential no pruning

Performance of connect 4 on 4x4 grid

Purple: sequential no pruning

Red: dynamic queue

Performance of connect 4 on 4x4 grid

Purple: sequential no pruning Upper Red: dynamic queue Lower Red: message passing

Performance of connect 4 on 4x4 grid

Purple: sequential no pruning Upper Red: dynamic queue Lower Red: message passing

Blue: individually allocated shared memory

Number of processors (P)

Performance of connect 4 on 4x4 grid

Blue: individually allocated shared memory

Red: message passing

Load Balancing

Sequential Pruning

ME: MAX

OPPO: MIN

ME: MAX

Number of cycles	Sequential pruning	Individually allocated shared memory (min)
3x3 connect 3	0.157 billion	3 billion
3x3 connect 4	0.162 billion	23 billion

Final Version

Tile 0

Other tiles: sequential pruning

Pros: Take advantage of both dynamic queue for load balancing and pruning

Cons: Can't do pruning between processors

Number of cycles	Sequential pruning	Individually allocated shared memory (min)	Final Version (min)
3x3 connect 3	0.157 billion	3 billion (P=50)	0.069 billion (P=20)
3x3 connect 4	0.162 billion	23 billion (P=50)	0.14 billion(P=20)

Interactive Mode

Welcome to the Connect-4 game! If you want to play first, key '0'; If you want me to play first, key '1'. Press ENTER to confirm My turn now. Thinking score = -5 nextPos = 5
time it took for first compute is 2710034100 It's your turn now. Please place your disc You chose to place your disc in column 3
In combine, My turn now. Thinking score = -6 nextPos = 3
time it took for first compute is 7954251028 It's your turn now. Please place your disc You chose to place your disc in column 2
In combine, My turn now. Thinking score = -3 nextPos = 1
time it took for first compute is 19558239870 It's your turn now. Please place your disc You chose to place your disc in column 3
<pre>In combine, My turn now. Thinking score = -1 nextPos = 3 </pre>

Conclusion

By using

- Pruning
- Master slave structure
- Individually allocated shared memory

My connect four

- searches fast
- has a good heuristic

