Where do you look on these images?

The squares shows where |5 observers looked
in eye tracking experiments



Understanding and predicting
where people look in images

Tilke Judd

with advisors Frédo Durand and Antonio Torralba
committee Aude Oliva and Bill Freeman
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What is common to both these situations?

need to prioritize the visual information
and decide what is most important



These are applications of research we do in

Saliency and Visual Attention



Understanding and predicting
where people look in images

Tilke Judd

with advisors Frédo Durand and Antonio Torralba
and collaborators Krista Ehinger and Aude Oliva



Understanding attention enables applications in
computer graphics & vision, design

® image cropping / thumbnailing
® image and video compression
® non photorealistic rendering
® scene understanding

® advertising and package design

® web usability

localization / recognition
object detection
navigational assistance
robot active vision
surveillance systems

assistive technology for blind or
low-vision people



Human visual system has developed
selective attention through evolution

Anstis 1998 Fixations and saccades of an
example scanpath



VWhere we move our eyes is dictated
by two mechanisms
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Where we move our eyes is dictated
by two mechanisms

® Bottom-up mechanisms




VWhere we move our eyes is dictated
by two mechanisms

® Bottom-up mechanisms

® Jop-down mechanisms



Find the pedestrian
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There is no pedestrian



you
likely
looked

here




this is
where
someone
else looked
in an
experiment

[Torralba et al. 2006]
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we look here because of our top-down semantic understanding
of the scene: humans are on the ground




VWhere we move our eyes is dictated
by two mechanisms

® Bottom-up mechanisms

® Jop-down mechanisms
- semantic understanding
- Mmemories, state

= task



Researchers create computational models of
visual attention to predict where people look




Common models of saliency based on
bottom up features

input image _-

|
Linear filtering

based on biologically — T
. cobhwrs ‘L//intensity _/,/ _~~ orientations //
plausible filters ——— _— _——
mimic the human Center-surround differences and normalization
visual system L L b
E Feature E Maps :U
. . =~ =~ =~
measure |nten5|ty, \I/
illumination, contrast Linear combinations

|
saliency map Q’c

several parameters Winmerfakeal ] |imiviin

need tuning I of return

Attended lacation

Itti and Koch model



People do not always look where
bottom up models predict

THRL

AN e g | |

(@) Original image (b) Itti and Koch Saliency Map (c) eye tracking locations



Many models of saliency have been

introduced
Biologically Inspired Mathematically Inspired Add top-down features
Itti and Koch (1998) Heral et al. (2007) Ehinger et al., (2009)

Graphical Model (search task)
Cerf et al. (2007)

Avraham and Lindenbaum (2009)  Oliva et al. (2003)

Hou and Zhang (2007) Esaliency
Torralba et al. (2006)
Rosenholtz (1999) Bruce and Tsotsos (2009)
Information theoretic approach Zhang et al. (2008)

Itti and Baldi (2006)

Kienzle et al., (2007) Kanan et al. (2009)
Le Meur et al. (2006)

Gao and Vasconulos (2005)
Seo & Milanfar (2009)

Itti and Baldi (2006)
Zhang & Cottrell (2008) “Surprise” mode]
SUN model

Navalpakkam and Itti (2005)
Goferman et al. (2009)

Elazary and Itti (2010)
Achanta (2010)



Which one is the best!?

Biologically Inspired Mathematically Inspired Add top-down features
Itti and Koch (1998) Heral et al. (2007) Ehinger et al., (2009)
Graphical Model (search task)
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Avraham and Lindenbaum (2009)  Oliva et al. (2003)

Hou and Zhang (2007) Esaliency
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Which one is the best?

Biologically Inspired
Itti and Koch (1998)

Cerf et al. (2007)

Le Meur et al. (2006)

SUN model
Goferman et al. (2009)

Achanta (2010)

hang (2007)
Bené
tti and Baldi (2
Gao and Vasconulos 5)
Seo & Milanfar (2
- aetded

Mathematically Inspired Add top-down features

Heral et al. (2007) Ehinger et al., (2009)
Graphical Model (search task)

Avraham and Lindenbaum (2009)  Oliva et al. (2003)

Esalienc
a
SOl 09
thi-efappih ch t (200

Kanan et al. (2009)

Kienzle et al., (2007)

Navalpakkam and Itti (2005)

Elazary and Itti (2010)
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Issues with the state of the art:

Models have too many parameters
top-down information not well integrated

Too many models, nho good comparison

We do not understand human visual
attention under different styles of
Images



This thesis offers the following contributions

Models have too many parameters
top-down information not well integrated

model using machine learning

Too many models, nho good comparison

benchmark

We do not understand human visual
attention under different styles of

images study of fixations on
low-res images



How do we do this!?

Go back to ground truth eye tracking data
Use data to learn a model

Use data to evaluate success metrics for
models

Use data to compare human fixations on
variations of images



Understanding and predicting
where people look

Introduction Conclusion

Benchmarking Fixations on low-
models of saliency  resolution images

Learning a model



Our goal is to learn where people look
directly from eye tracking data

® Step |:collect eye tracking data set

® Step 2:learn the model



We collected 1003 natural images

Natural images of objects and scenes downloaded from Flickr and LabelMe



We run eye tracking experiments

[Photo Credit: Jason Dorfman CSAIL website]



We run eye tracking experiments

user rests head in chin rest [Photo Credit: Jason Dorfman CSAIL website]



We run eye tracking experiments
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eye tracker
measures location
of eye fixation
several times a
second.
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user rests head in chin rest [Photo Credit: Jason Dorfman CSAIL website]
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We run eye tracking experiments

eye tracker
measures location
of eye fixation
several times a
second.

‘
)

user rests head in chin rest [Photo Credit: Jason Dorfman CSAIL website]



We run eye tracking experiments

eye tracker
measures location
of eye fixation
several times a
second.

\
)

user rests head in chin rest [Photo Credit: Jason Dorfman CSAIL website]



We run eye tracking experiments

screen resolution

1280x 1024

each image shown
for 3 seconds

eye tracker
measures location
of eye fixation
several times a
second.

‘
)

user rests head in chin rest [Photo Credit: Jason Dorfman CSAIL website]



Fixations for one observer

o i , < R
" "

"’5 N AT J&’A‘ ]




ixations from |5 observers

g |

A

"}?"' )
s J\,“n)

" ﬂ)‘;' J




Fixation map created from gaussian
convolution over fixations

Fixation map



You do the experiment



‘( Look here
Shine pointer here
















You will see a series of images
Look closely at each one
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You have completed the experiment
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We have data from |5 observers
on 1003 images

[MIT 2009 data set]



Fixation consistency depends on the
Image content

High entropy saliency maps



Average human fixations are
biased towards the center

70% of fixations

Avg of all saliency maps



Why are fixations center biased!?

® photographer bias

® viewing strategy

Bruce and Tsotsos 2005 Judd 2009 udd 201 |




We use a Receiver Operating Characteristic
(ROC) curve to measure performance

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We calculate the percentage of fixations
that lie within the salient portion of the map



We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
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Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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ROC curve always starts at 0
ends at |



We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

Thresholded Center Map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the
performance of a saliency map

< Receiver Operating Characteristic curve
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We use an ROC curve to measure the

performance of a saliency map

Receiver Operating Characteristic curve

Percent Salient (False positives)

Random Noise map



We use an ROC curve to measure the
performance of a saliency map

Random Noise map

% of human fixations (True positives)
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We use an ROC curve to measure the
performance of a saliency map

Perfect saliency map

; Best performance

o o o
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% of human fixations (True positives)
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Humans are good predictors of
where other humans will look

Human performance
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Our goal is to learn where people look
directly from eye tracking data

® Step |:collect eye tracking data set

® Step 2:learn the model



We compute low and high level
image features for each image...
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We compute low level image features

Use subbands of the steerable pyramid filters
(Simoncelli and Freeman [995)

4 orientations

Simple saliency map
from Torralba based
on steerable filters

3 scales




We compute low level image features

Color Orientation Intensity




We compute low level image features

Color Orientation Intensity

As calculated by Itti and Koch’s saliency method



We compute low level image features

Red

Green

Blue

Color channels

Probability of colors

Compute probability
of colors from 3D
color histograms at
different scales



We compute high level image features

Distance
Horizon Faces People Cars to center




We compute high level image features

we train a
horizon detector
from gist features

} Distance
Horizon Faces People Cars to center




We compute high level image features

we train a
horizon detector
from gist features

Distance
Horizon Faces People Cars to center

il
10 1\l

Viola Jones Face detector

4l



We compute high level image features

Felzenszwalb
person and car
detectors

we train a
horizon detector
from gist features

Distance
to center

Horizon

Viola Jones Face detector



We compute high level image features

Felzenszwalb
person and car
detectors

we train a
horizon detector
from gist features

Distance
to center

Horizon

T

to account for
natural human
biases

Viola Jones Face detector



Each image had a stack of 33 features

Image Features

b N

aR%y Subbands of the steerable

Blue Probability of colors |




We learn several models of saliency

33 features
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We learn several models of saliency

33 features

EEEE R
Sty Ja ..-:.-'
EEELEER
EREERE e
: 71-f 1ok
b I BT
EEECTE
-

o PP

|0 salient samples from

top 20%

Labels

Support

Vector
Machine

learns weights for
each feature that
best predict labels

Model



We learn several models of saliency
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We learn several models of saliency

33 features Labels
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Model



We learn several models of saliency

33 features
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We learn several models of saliency
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We learn several models of saliency

33 features
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We learn several models of saliency

33 features

Itti channels

Labels

Support

Vector
Machine

|0 salient samples from learns weights for
top 20% each feature that
|0 non-salient samples best predict labels

from bottom 70%

from each of 900
training images

Model



We learn several models of saliency

33 features Labels
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We learn several models of saliency

33 features
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test
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Machine

learns weights for
each feature that
best predict labels



ROC curve shows performance O
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ROC curve shows performance
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ROC curve shows performance
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Some example saliency maps

This is where people actually looked.



Some example sdlie
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We demonstrate an application for
non-photorealistic rendering

input image

our saliency map Rendering of image with more detail at salient locations

based on technique by DeCarlo and Santella [2002]



Summary of learning work

® Have large collection of eye tracking data

® | earned a model of saliency

Weights learned from ground truth data, not tuned

Found center feature to be surprisingly high -- strongest feature
Subbands and Color features next strongest. Objects useful
Our model reaches 88% way to human performance

® Future work

Enhance model by trying other features, text detector



Understanding and predicting
where people look

Introduction Conclusion

Benchmarking Fixations on low-
models of saliency  resolution images

Learning a model



Many saliency models,
hard to compare them

® Fach model introduced with different goal

mimic the human visual system
correlate with human fixations
segment a salient object from the background

tell the story of the image

® Each evaluated on different data sets

possibly few images, few observers
compared against a few (1-3) other models

® Use different metrics of evaluation

ROC curve, Similarity, Earth movers distance, etc
Ability to align with human annotated bounding boxes



We contribute a benchmark

® Compare |0 modern models

all have code available online
made in last 5 years

® Evaluated on ability to predict human fixations
oh new data set

300 images, 20 observers

® Use 3 metrics of evaluation

ROC curve, Similarity, Earth movers distance



Benchmark data set:
300 images seen by 20 people

[MIT benchmark data set]



Benchmark 10 different saliency models

Original Image Human Fixations Human Fixation Map
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Achanta Bruce & Tsotsos Context Aware GBVS Hao&Zhang

Itti & Koch Itti & Koch?2 Torralba



Equalize the amount of salient pixels in
each map via histogram matching

This is for visualization
purposes only-- it does not
affect ROC performance

Orlglnal Image Human leat|ons Human Fixation Map

Achanta Bruce & Tsotsos Context Aware Hao&Zhang

Itti & Koch Itti & Koch?2 Torralba SUN



We compare to the performance of
baselines
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Orlglnal Image Human F|xat|ons Human Fixation Map Chance baseline Center baseline

Achanta Bruce & Tsotsos Context Aware GBVS Hao&Zhang

Itti & Koch Itti & Koch?2 Torralba SUN Judd



Performance of each model measured
by the area under the ROC curve

SaliencyMap with fixations to be predicted Area under ROC curve: 0.87401
1 ,




Area under the ROC curve

Performance of each model measured
by the area under the ROC curve

Performance scores for models (Area under ROC)
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Models perform better than other if

® they have better features
® they have more center bias

® model is blurrier



Itti & Koch

Increasing blurriness improves
performance for some models

Image Fixations

AUR= 0.563 AUR=0.659 AUR=0.721 AUR=0.717

increasing blurriness




Similarity matrix shows similarity
between models

Similarity Matrix

- Fixation Map
- Judd
- GBVS |
- Center
- Itti&Koch2
AIM
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Plotting models in higher dimensional
space shows relationships

Multidimensional Scaling of saliency models in 2D
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We provide an online benchmark to
evaluate future models

saliency benchmark

Which model of saliency best predicts where people look?

There are many computatonal models of visual atlention created from a wide variety of
different approaches that aim 10 predict where people 100X in images. Since each model is
ntroduced by demonstrating performances on new images, we can not make immediate
cbjective comparnsons between the models. To alleviate this peoblem, we propose a W m f m
paenchmark data set, containing 300 natural images with eye tracking data from 20 viewers, e eas u re P e r O r a n C e
10 compare the periormance of many available models. For each madel of saliency, we

caiculate each model's periormance at predicting ground truth fixations using three

;/.:l,.:-rr:[;?::'\:r‘f‘ :nr:e;:;:Lmurﬁe%s::»;p::ss:'u stic, a similarity metric, and the Earth u n d e r’ two Oth e r m etrics
images and find similar results

mages anc maps in

put compar

model performances

Model Name Related | |, 1 code Area under g, sarity ilr";rs
: ? paper 0 ROC curve | oty
gistance
Humans* code 0.80 ~0.65 ~1.55
Judd ode 0.78 0.466 1.404
Graph Based Visua B o S
Sallency (GBVS) 0.772 i 1466
Conter* ode 0.745 0412 1.714 R
’ code from Neil Bruce. | ., A A o4 h d I
AM sy ke T8 0378 1649 | €y send us sallenc
. s R\
maKoch2 Da‘;ga?‘;” the GBVS 1574 0388 [1.670 f h
e maps, we test tor them
Context-Aware : nR n 277 R4D )
saliency code 0699 0.377 1.6842
Torralba 0628 0319 1644
Hao & Zhang 0.627 0.308 1.855

yele ‘rom L nq.'_‘n

SUN saliency b Bl 0.615 0321 1691
7hang's site
Achama code 0.453 0221 2202
Chance"* cod 0.44 0.307 1.714
. B .
maKoch om the 0215 0177 12181

Sallency Toolbox
* Baseline modeis that we compare against

submit a new model




Summary of benchmark

® Provide a consistent way to measure models
against each other

® Currently Judd and GBVS models work best

® There is still a gap between models and
human performance

® Want to optimize blur for each model and
then compare models



Understanding and predicting
where people look

Introduction Conclusion

Benchmarking Fixations on low-
models of saliency  resolution images

Learning a model



Motivation

® Most eyetracking studies on high res images

® TJorralba showed images understood as early as 32px

[Torralba 2009 How many pixels make an image?]

® Faces can be recognized as low as |6x16px
[Harmon & Jules 1973, Bachmann 1991, Schyns&Oliva 1997, Sinha et al 2006]




Motivating questions

® How does image resolution affect fixations!?

® Are fixation patterns the same as you
reduce resolution? how far can you go!

® Need for computational efficiency

® Models use high frequency features.
s this really necessary!?



|68 images were shown at
8 different resolutions
64 observers (8 per resolution)

pixels of resolution

512

4 8 |6 32 64 |28 256
' - ‘QI . ‘QI ! ‘QI i
‘QI . ‘l] . ,ql i

1/8 cpd cycles per degree 16 cpd

[Low-res data set]



























As resolution decreases
there are fewer fixations

Average Number of fixations per resolution
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As resolution decreases
fixations are more centered

Resolutlon plxels

Entropy = 4.98 ------

Average fixation map for |68 natural images at each resolution



We measure how well fixations of one
image predict fixations of another image

Image 1 (64px) Image 2 (512px)

Fixations from both imgs Fixation Map of Image 1 Area under ROC curve: 0.947
_O- 1
5
» i
Ve S
o ¢ g
8

2 0.4 0.6 0.8 1
percent map considered salient



Prediction matrices show how consistent

fixations are across resolutions

Average Prediction Matrix for all 168 Natural Images (4 fixations)
resolution

512 256 128 64 32 16 8 4

512 091 089 087 084 081
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Fixations on low res images can predict
fixations on highest res images

Average Prediction Matrix for all 168 Natural Images (4 fixations)
resolution

512 256 128 64 32 16 8 4

1 1 1 ] 1
512 091 089 087 084 081
256 H . s o - 0 95
128 090 089 086 082
- 1
64 ! 090 088 084| [ 109
32 087 0.88 089 085
' 10.85
16 085 0.86 090 0.86
8 084 087 089 090 090 0.87
. 0.8
4 - 081 083 08 087 08 087
Center Prior D 084 08 08 08 09 091 091 089 0.75
Chance -

0.7



Fixation consistency depends on
image complexity




Clap when you are pretty sure you
know what is in the following image


















28









Hypothesis: fixations become consistent
when people understand the image

32px



Hypothesis: fixations consistent on blurrier
images because resolution eye can resolve
in periphery is same

high-res image with low-res image has same
simulated visual falloff cycles/deg in periphery



Main takeaways

® Fixations on images of ~64px (2cpd) and above
provide very good predictions of fixations on high-

res images

® Depending on your application, you can use images
of lower resolution...>512px not necessary.

- depends on image complexity and

- number of fixations you want to model



In the thesis we also show

® Human fixations are equally consistent with
each other at all resolutions above | 6px

is higher for easy images “a
than for hard images
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® Prediction and consistency performance £
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® There is very little consistency among
fixations on noisy images PR %



Introduction

Contributions

Benchmarking Fixations on low-
models of saliency  resolution images

Learning a model

Conclusion



Conclusions

Humans are best predictors of where others will look

Many features correlate with where people look. Using them
together gets more power.

Saw surprisingly high performance of the center model.
High weight on center feature.

Face, person, object detectors useful but need to be used with
other features

High frequency features might not be as important. Blurrier models
better, and fixations are in the same locations on blurry images

Computational systems can gain efficiency by using low resolution
images



Open questions

® Better ways of integrating
top-down information

® Better features

(Devi Parikh show features more important than amount of training data).

® Better data sets

(Are they good enough, diverse enough! What biases do they have?
Torralba and Efros 201 | and Pinto 2008 show data sets often biased).

® Better understanding of human vision

(Understand effects of image retargeting, image warping,
image compression and degradation, image size)
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Do males and females look at different
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,’

Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner,
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008
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locations?
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Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner,
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008

“Participants were exposed to 30 pictures
of 15 male and |5 female models in casual clothing.



Do males and females look at different
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,’

Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner,
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008

“Participants were exposed to 30 pictures
of 15 male and |5 female models in casual clothing.

The results show that both male and female observers
primarily gaze at people’s face.



Do males and females look at different
locations?

)

Gender Differences for Specific Body Regions When Looking at Men and Women,
Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner,
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008

“Participants were exposed to 30 pictures
of 15 male and |5 female models in casual clothing.

The results show that both male and female observers
primarily gaze at people’s face.

Only after this initial face-scan, men look significantly earlier and longer at
women’s breasts, while women look earlier at men’s legs.”



Do males and females look at different
locations?

men

“Men tend to focus on private
anatomy as well as the face. For
the women, the face is the only
place they viewed”.

Online Journalism Review
(2007)

Evetracking points the way to
effective news article design

http://www.ojr.org/ojr/stories/070312ruel/
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Does cropping an image affect the center
bias of fixations!
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Does cropping an image affect the center
bias of fixations!

s iinll

Crop Reference

All crops have some center bias, but in addition...

e RS

fixations lean fixations lean
to the right to the left




Is there less center bias if you do not put
the cross hair in the center?

The tendency to look near the center may be
reinforced during the eye tracking experiments.
Indeed each trial began with a centrally located
fixation marker. This marker could be randomly
positioned.

However, studies which did not use a central
fixation marker (Canosa, Pelz, Mennie, and Peak,
2003) have also shown a central fixation bias.

Center bias is also not reduced with increased
viewing time as shown by Le Meur et al [2006]
who showed images at 2s, 8s and |4s.



Prediction Performance (area under the ROC curve)

Fixation consistency depends on
image complexity

Predict Fixations on High Res Imgs
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Yarbus (1967) was the first to show
that task influences fixation locations

“They did not expect him” by Repin



Yarbus (1967) was the first to show
that task influences fixation locations

Estimate material circumstances
of the family

Surmise what the Remember the clothes o
been doing before the arrival worn by the people.
of the unexpected visitor.

3 min. recordings
of the same
subject

Remember positions of people and Estimate how long the visitor had
objects in the room. been away from the family.

“They did not expect him” by Repin



Fixations on low-res images can predict
fixations on high-res images

Predict Fixations on High Res Imgs

Predict fixations on 512px image (168 Natural Imgs)
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It is possible to see the fixations online

Fixations on Low-Resolution Images
Tike Judd, Fredo Durand, Antonio Tormalba

Here are all the images from our low-resolution experiment, arranged as tiny thumbnaills. Cick on a thumbnail and the larger
image will appear. Press Play to examine the fixation data that was recorded for that image. The related paper is under review.
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http://people.csail.mit.edu/tjudd/LowRes/seeFixations.html
http://people.csail.mit.edu/tjudd/LowRes/seeFixations.html
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