
The squares shows where 15 observers looked 
in eye tracking experiments
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need to prioritize the visual information 
and decide what is most important

What is common to both these situations?



These are applications of research we do in

Saliency and Visual Attention
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Understanding attention enables applications in 
computer graphics & vision, design

• image cropping / thumbnailing

• image and video compression

• non photorealistic rendering 

• scene understanding

• advertising and package design

• web usability

• localization / recognition

• object detection 

• navigational assistance

• robot active vision

• surveillance systems

• assistive technology for blind or 
low-vision people



Human visual system has developed 
selective attention through evolution

Anstis 1998 Fixations and saccades of an 
example scanpath 
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Find the pedestrian





There is no pedestrian



you 
likely 

looked 
here



this is 
where 

someone 
else looked 

in an 
experiment

[Torralba et al. 2006]



we look here because of our top-down semantic understanding 
of the scene: humans are on the ground



Where we move our eyes is dictated 
by two mechanisms

• Bottom-up mechanisms 

• Top-down mechanisms

- semantic understanding

- memories, state

- task



Researchers create computational models of 
visual attention to predict where people look 

Image Saliency Map



• based on biologically 
plausible filters 

• mimic the human 
visual system

• measure intensity, 
illumination, contrast

• several parameters 
need tuning

Common models of saliency based on 
bottom up features

colors

Itti and Koch model

Linear filtering

Center-surround  differences and normalization

Linear combinations

input image

saliency map

intensity orientations

Feature Maps



People do not always look where 
bottom up models predict



Many models of saliency have been 
introduced
Biologically Inspired Mathematically Inspired Add top-down features

Itti and Koch (1998)

Cerf et al. (2007)

Hou and Zhang (2007)

Rosenholtz (1999)

Itti and Baldi (2006)

Le Meur et al. (2006)

Seo & Milanfar (2009)

Zhang & Cottrell (2008) 
SUN model

Goferman et al. (2009)

Achanta (2010)

Heral et al.  (2007) 
Graphical Model

Avraham and Lindenbaum (2009)
Esaliency

Bruce and Tsotsos (2009) 
Information theoretic approach

Kienzle et al., (2007)

Gao and Vasconulos (2005)

Itti and Baldi (2006)
“Surprise” model

Navalpakkam and Itti (2005)

Elazary and Itti (2010)

Ehinger et al., (2009)
(search task)

Oliva et al. (2003)

Torralba et al. (2006)

Zhang et al. (2008)

Kanan et al. (2009)
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Benchmark
needed
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This thesis offers the following contributions

model using machine learning

benchmark

study of fixations on 
low-res images

Models have too many parameters
top-down information not well integrated

Too many models, no good comparison

We do not understand human visual 
attention under different styles of 
images



How do we do this?

• Go back to ground truth eye tracking data

• Use data to learn a model 

• Use data to evaluate success metrics for 
models

• Use data to compare human fixations on 
variations of images



Fixations on low-
resolution images

Benchmarking 
models of saliency

ConclusionIntroduction

Learning a model

Understanding and predicting 
where people look 



• Step 1: collect eye tracking data set

• Step 2: learn the model

Our goal is to learn where people look 
directly from eye tracking data



Natural images of objects and scenes downloaded from Flickr and LabelMe

We collected 1003 natural images



We run eye tracking experiments

[Photo Credit: Jason Dorfman CSAIL website]
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We run eye tracking experiments

[Photo Credit: Jason Dorfman CSAIL website]user rests head in chin rest

~2ft
19in

screen resolution 
1280x1024

each image shown 
for 3 seconds

eye tracker 
measures location 
of eye fixation 
several times a 
second.



Fixations for one observer



Fixations from 15 observers



Fixation map

Fixation map created from gaussian 
convolution over fixations



You do the experiment



Look here
Shine pointer here











You will see a series of images
Look closely at each one



+





+





+





+





You have completed the experiment



















We have data from 15 observers 
on 1003 images

[MIT 2009 data set]



Fixation consistency depends on the 
image content



Average human fixations are 
biased towards the center

40%

70% of fixations



Why are fixations center biased?

• photographer bias

• viewing strategy 

Bruce and Tsotsos 2005 Judd 2009 Judd 2011



We use a Receiver Operating Characteristic 
(ROC) curve to measure performance
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We use an ROC curve to measure the 
performance of a saliency map

Receiver Operating Characteristic curve
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We use an ROC curve to measure the 
performance of a saliency map

Percent Salient (False positives)

Receiver Operating Characteristic curve

Thresholded Saliency Map

#
 o

f h
um

an
 fi

xa
tio

ns
 (

Tr
ue

 p
os

iti
ve

s)
#

 o
f h

um
an

 fi
xa

tio
ns

 (
Tr

ue
 p

os
iti

ve
s)

Percent Salient (False positives)

%
 o

f h
um

an
 fi

xa
tio

ns
 (

Tr
ue

 p
os

iti
ve

s)

We calculate the percentage of fixations 
that lie within the salient portion of the map



We use an ROC curve to measure the 
performance of a saliency map
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We use an ROC curve to measure the 
performance of a saliency map
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We use an ROC curve to measure the 
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We use an ROC curve to measure the 
performance of a saliency map

Percent Salient (False positives)

Receiver Operating Characteristic curve
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We use an ROC curve to measure the 
performance of a saliency map
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We use an ROC curve to measure the 
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We use an ROC curve to measure the 
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We use an ROC curve to measure the 
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We use an ROC curve to measure the 
performance of a saliency map
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We use an ROC curve to measure the 
performance of a saliency map
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Humans are good predictors of 
where other humans will look

Human performance

Center performance

Chance performance



• Step 1: collect eye tracking data set

• Step 2: learn the model

Our goal is to learn where people look 
directly from eye tracking data



We compute low and high level 
image features for each image...



Use subbands of the steerable pyramid filters 
(Simoncelli and Freeman 1995)

We compute low level image features

4 orientations

3 
sc

al
es

Simple saliency map 
from Torralba based 
on steerable filters



Color Orientation Intensity

We compute low level image features



Color Orientation Intensity

We compute low level image features

As calculated by Itti and Koch’s saliency method



Probability of colors

Red Green Blue

We compute low level image features

Color channels

Compute probability
of colors from 3D 
color histograms at 
different scales 



Horizon PeopleFaces Cars
Distance 
to center

We compute high level image features



Horizon PeopleFaces Cars
Distance 
to center

we train a 
horizon detector 
from gist features

We compute high level image features



Horizon PeopleFaces Cars
Distance 
to center

Viola Jones Face detector

we train a 
horizon detector 
from gist features

We compute high level image features



Horizon PeopleFaces Cars
Distance 
to center

Viola Jones Face detector

Felzenszwalb 
person and car
detectors

we train a 
horizon detector 
from gist features

We compute high level image features



Horizon PeopleFaces Cars
Distance 
to center

Viola Jones Face detector

Felzenszwalb 
person and car
detectors

we train a 
horizon detector 
from gist features

to account for 
natural human 
biases

We compute high level image features



Each image had a stack of 33 features

Subbands of the steerable pyramid

Itti and Koch color, orientation and intensity

Probability of colors

Horizon

People

Faces

Cars

Red Green

Blue

FeaturesImage



Support 
Vector 

Machine

learns weights for 
each feature that 
best predict labels

33 features Labels

+

We learn several models of saliency

Model
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Support 
Vector 

Machine

learns weights for 
each feature that 
best predict labels

33 features Labels
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We learn several models of saliency

Model
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from each of 900 
training images 

10 non-salient samples 
from bottom 70% 
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Itti channels

10 salient samples from 
top 20% 

from each of 900 
training images 

10 non-salient samples 
from bottom 70% 



Support 
Vector 

Machine

learns weights for 
each feature that 
best predict labels

33 features Labels

+

We learn several models of saliency

Model

10 salient samples from 
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Support 
Vector 

Machine

learns weights for 
each feature that 
best predict labels

33 features Labels

+

We learn several models of saliency

Model

10 salient samples from 
top 20% 

from each of 900 
training images 

10 non-salient samples 
from bottom 70% 

test 
performance 
on remaining 
100 images



Image

Human ground 
truth and fixation 
locations

All Features

All Features
without center

Center

Objects

Colors

Subbands

Torralba

Horizon

Itti and Koch 
features

Chance

ROC curve shows performance



Image

Human ground 
truth and fixation 
locations

All Features

All Features
without center

Center

Objects

Colors

Subbands

Torralba

Horizon

Itti and Koch 
features

Chance

ROC curve shows performance



Image

Human ground 
truth and fixation 
locations

All Features

All Features
without center

Center

Objects

Colors

Subbands

Torralba

Horizon

Itti and Koch 
features

Chance

ROC curve shows performance



Image

Human ground 
truth and fixation 
locations

All Features

All Features
without center

Center

Objects

Colors

Subbands

Torralba

Horizon

Itti and Koch 
features

Chance

ROC curve shows performance



This is where people actually looked.

This is where our model predicts people will look.

Some example saliency maps



This is where people actually looked.

This is where our model predicts people will look.

Some example saliency maps



We demonstrate an application for 
non-photorealistic rendering

our saliency map

input image

Rendering of image with more detail at salient locations

based on technique by DeCarlo and Santella [2002]



• Have large collection of eye tracking data

• Learned a model of saliency
Weights learned from ground truth data, not tuned
Found center feature to be surprisingly high -- strongest feature
Subbands and Color features next strongest.  Objects useful
Our model reaches 88% way to human performance

• Future work
Enhance model by trying other features, text detector

Summary of learning work



Fixations on low-
resolution images

Benchmarking 
models of saliency

ConclusionIntroduction

Understanding and predicting 
where people look 

Learning a model



Many saliency models, 
hard to compare them

• Each model introduced with different goal 
mimic the human visual system
correlate with human fixations
segment a salient object from the background
tell the story of the image

• Each evaluated on different data sets 
possibly few images, few observers
compared against a few (1-3) other models

• Use different metrics of evaluation
ROC curve, Similarity, Earth movers distance, etc
Ability to align with human annotated bounding boxes

 



We contribute a benchmark

• Compare 10 modern models
all have code available online
made in last 5 years

• Evaluated on ability to predict human fixations 
on new data set
300 images, 20 observers

• Use 3 metrics of evaluation
ROC curve, Similarity, Earth movers distance



Benchmark data set:
300 images seen by 20 people

[MIT benchmark data set]



Benchmark 10 different saliency models

Achanta Bruce & Tsotsos Context Aware GBVS Hao&Zhang

Itti & Koch JuddSUNTorralbaItti & Koch2

Original Image Human Fixations Human Fixation Map



Equalize the amount of salient pixels in 
each map via histogram matching

Achanta Bruce & Tsotsos Context Aware GBVS Hao&Zhang

Itti & Koch JuddSUNTorralbaItti & Koch2

Original Image Human Fixations Human Fixation Map

This is for visualization 
purposes only-- it does not 
affect ROC performance



We compare to the performance of 
baselines

Achanta Bruce & Tsotsos Context Aware GBVS Hao&Zhang

Itti & Koch JuddSUNTorralbaItti & Koch2

Original Image Human Fixation Map Chance baseline Center baselineHuman Fixations



Performance of each model measured 
by the area under the ROC curve

SaliencyMap with fixations to be predicted
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Area under ROC curve: 0.87401
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• they have better features

• they have more center bias

• model is blurrier

Models perform better than other if



Increasing blurriness improves 
performance for some models
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Similarity matrix shows similarity 
between models
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We provide an online benchmark to 
evaluate future models

We measure performance 
under two other metrics 
and find similar results

They send us saliency 
maps, we test for them



Summary of benchmark

• Provide a consistent way to measure models 
against each other

• Currently Judd and GBVS models work best

• There is still a gap between models and 
human performance

• Want to optimize blur for each model and 
then compare models



Fixations on low-
resolution images

Benchmarking 
models of saliency

ConclusionIntroduction

Understanding and predicting 
where people look 

Learning a model



Motivation

• Most eyetracking studies on high res images

• Torralba showed images understood as early as 32px
[Torralba 2009 How many pixels make an image?]

• Faces can be recognized as low as 16x16px
[Harmon & Jules 1973, Bachmann 1991, Schyns&Oliva 1997, Sinha et al 2006]

even though the effective resolution in that region is very
limited. Recognition performance changes only slightly
after obscuring the gait or body, but is affected dramatically
when the face is hidden, as illustrated in Fig. 2. This does
not appear to be a skill that can be acquired through general
experience; even police officers with extensive forensic
experience perform poorly unless they are familiar with the
target individuals. The fundamental question this finding,
and others like it [49], [66], bring up is the following: How
does the facial representation and matching strategy used
by the visual system change with increasing familiarity, so
as to yield greater tolerance to degradations? We do not yet
know exactly what aspect of the increased experience with
a given individual leads to an increase in the robustness of
the encoding; is it the greater number of views seen or is
the robustness an epiphenomenon related to some bio-
logical limitations such as slow memory consolidation
rates? Notwithstanding our limited understanding, some
implications for computer vision are already evident. In

considering which aspects of human performance to take
as benchmarks, we ought to draw a distinction between
familiar and unfamiliar face recognition. The latter may
end up being a much more modest goal than the former
and might constitute a false goal towards which to strive.
The appropriate benchmark for evaluating machine-based
face recognition systems is human performance with
familiar faces.

3) Result 3: High-Frequency Information by Itself Does Not
Lead to Good Face Recognition Performance: We have long
been enamored of edge maps as a powerful initial repre-
sentation for visual inputs. The belief is that edges capture
the most important aspects of images (the discontinuities)
while being largely invariant to shallow shading gradients
that are often the result of illumination variations. In the
context of human vision as well, line drawings appear to be
sufficient for recognition purposes. Caricatures and quick
pen portraits are often highly recognizable. Do these
observations mean that high spatial frequencies are
critical, or at least sufficient, for face recognition? Several
researchers have examined the contribution of different
spatial frequency bands to face recognition [14], [21].
Their findings suggest that high spatial frequencies might
not be too important for face perception. In the particular
domain of line drawings, Graham Davies and his col-
leagues have reported [16] that images which contain
exclusively contour information are very difficult to re-
cognize (specifically, they found that subjects could recog-
nize only 47% of the line drawings compared to 90% of the
original photographs; see Fig. 3). How can we reconcile
such findings with the observed recognizability of line
drawings in everyday experience? Bruce and colleagues
[6], [7] have convincingly argued that such depictions do,
in fact, contain significant photometric cues and that the
contours included in such a depiction by an accomplished
artist correspond not just to a low-level edge map, but in

Fig. 2. Frames from video-sequences used in Burton et al. [10] study.

(a) Original input. (b) Body obscured. (c) Face obscured. Based on

results from such manipulations, researchers concluded that

recognition of familiar individuals in low-resolution video is based

largely on facial information.

Fig. 1. Unlike current machine-based systems, human observers are able to handle significant degradations in face images. For instance,

subjects are able to recognize more than half of all familiar faces shown to them at the resolution depicted here. Individuals shown in

order are: Michael Jordan, Woody Allen, Goldie Hawn, Bill Clinton, Tom Hanks, Saddam Hussein, Elvis Presley, Jay Leno,

Dustin Hoffman, Prince Charles, Cher, and Richard Nixon.

Sinha et al. : Face Recognition by Humans: Nineteen Results Researchers Should Know About

1950 Proceedings of the IEEE | Vol. 94, No. 11, November 2006



• How does image resolution affect fixations?

• Are fixation patterns the same as you 
reduce resolution? how far can you go?

• Need for computational efficiency

• Models use high frequency features.  
Is this really necessary?

Motivating questions



168 images were shown at 
8 different resolutions
64 observers (8 per resolution)

[Low-res data set]

16 cpd1/8 cpd cycles per degree

51225612864321684
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As resolution decreases
fixations are more centered

Natural 

(168 imgs)

Hard (56)
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Medium (56)

Noise (25)
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Figure 5 Average Fixation Maps The first row shows the average fixation maps for all 168 natural images for each 

resolution.  In general, as the resolution decreases the fixations become more concentrated at the center.  The next 

three rows show the trend for the easy, medium, and hard subsets of the natural images.  The overall trends are the 

same for each subset.  Lastly, the fixation maps for the noise images indicate that fixations are equally biased towards 

the center independent of the resolution.  The entropy of the intensity image for each fixation map is shown in the lower 

left corner.

Entropy = 4.98   4.99                   5.05                    5.57                   6.02                    6.59                   6.77                   6.94

5.23                   5.02                   4.83                    4.71                   4.87                    5.18                   5.12                    5.35

4.82                   4.92                    4.95                   5.24                    5.77                    6.27                   6.39                   6.68

5.02                    4.91                   5.02                    5.58                   6.03                    6.60                   6.73                    7.00

5.16                   5.09                   5.13                   5.65                    6.11                    6.61                   6.80                    6.83

           

Average fixation map for 168 natural images at each resolution



We measure how well fixations of one 
image predict fixations of another image
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Figure 6 Calculating prediction performance. We use an ROC curve to measure how well a fixation map for an image created from 

the fixations of several users predict the fixations of a different user on the same image at either the same or a different resolution.

Fixations from both imgs

percent map considered salient

p
e

rc
e

n
t 

fi
x
a

ti
o

n
s
 i
n

c
lu

d
e

d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Area under ROC curve: 0.947Image 2 (512px)Image 1 (64px) Fixation Map of Image 1

Figure 6 Calculating prediction performance. We use an ROC curve to measure how well a fixation map for an image created from 

the fixations of several users predict the fixations of a different user on the same image at either the same or a different resolution.
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Prediction matrices show how consistent 
fixations are across resolutions



Fixations on low res images can predict 
fixations on highest res images



Fixation consistency depends on 
image complexity



Clap when you are pretty sure you 
know what is in the following image
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Hypothesis: fixations become consistent 
when people understand the image
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Hypothesis: fixations consistent on blurrier 
images because resolution eye can resolve 
in periphery is same
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where acuity is normalized to 1 in the fovea.
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Figure 17 Modeling visual acuity falloff The images on the right simulate the acuity falloff of the human visual 

system given a fixation at the center of the image. They have high resolution (512px or 16 cycles per deg)

at the center and low resolution (64px or 2 cycles per deg) on the edge. They should be seen so that they extend 

30 degrees of visual angle.  If they are printed on a paper at 3in wide, they should be viewed about 6in away.  

high-res image with 
simulated visual falloff

low-res image has same 
cycles/deg in periphery



Main takeaways

• Fixations on images of ~64px (2cpd) and above 
provide very good predictions of fixations on high-
res images

• Depending on your application, you can use images 
of lower resolution...>512px not necessary.  

- depends on image complexity and 

- number of fixations you want to model



• Human fixations are equally consistent with 
each other at all resolutions above 16px 

• Prediction and consistency performance
is higher for easy images 
than for hard images

• There is very little consistency among 
fixations on noisy images

In the thesis we also show

Figure 11 Performance on easy, medium and hard images. Here we see the all-fixation trend line separated for different 

types of images: easy, medium and difficult images to understand.  When images are “easy”, consistency between different 

resolutions and consistency on a given resolution are much higher than for “hard” images.  In addition, consistency peaks and 

then declines more strongly for the hard images as resolution increases.  In this case, fixations are consistent at low resolution 

and then become less consistent as the small, complex details of the hard images become visible.  
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Fixations on low-
resolution images

Benchmarking 
models of saliency

ConclusionIntroduction

Learning a model

Contributions



Conclusions
• Humans are best predictors of where others will look 

• Many features correlate with where people look.  Using them 
together gets more power.

• Saw surprisingly high performance of the center model.  
High weight on center feature.  

• Face, person, object detectors useful but need to be used with 
other features

• High frequency features might not be as important.  Blurrier models 
better, and fixations are in the same locations on blurry images

• Computational systems can gain efficiency by using low resolution 
images



Open questions

• Better ways of integrating 
top-down information

• Better features 
(Devi Parikh show features more important than amount of training data).

• Better data sets 

(Are they good enough, diverse enough?  What biases do they have?  
Torralba and Efros 2011 and Pinto 2008 show data sets often biased).

• Better understanding of human vision
(Understand effects of image retargeting, image warping, 
image compression and degradation, image size)
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Do males and females look at different 
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,” 
Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner, 
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008



“Participants were exposed to 30 pictures 
of 15 male and 15 female models in casual clothing.

Do males and females look at different 
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,” 
Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner, 
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008



“Participants were exposed to 30 pictures 
of 15 male and 15 female models in casual clothing.

Do males and females look at different 
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,” 
Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner, 
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008

The results show that both male and female observers 
primarily gaze at people’s face. 



“Participants were exposed to 30 pictures 
of 15 male and 15 female models in casual clothing.

Do males and females look at different 
locations?

Gender Differences for Specific Body Regions When Looking at Men and Women,” 
Johannes Hewig, Ralf H. Trippe, Holger Hecht, Thomas Straube and Wolfgang H.R. Miltner, 
Journal of Nonverbal Behavior, vol. 32, no. 2, June 2008

Only after this initial face-scan, men look significantly earlier and longer at 
women’s breasts, while women look earlier at men’s legs.”

The results show that both male and female observers 
primarily gaze at people’s face. 



http://www.ojr.org/ojr/stories/070312ruel/

Do males and females look at different 
locations?

Online Journalism Review 
(2007) 
Eyetracking points the way to 
effective news article design

“Men tend to focus on private 
anatomy as well as the face. For 
the women, the face is the only 
place they viewed”.

http://www.ojr.org/ojr/stories/070312ruel/
http://www.ojr.org/ojr/stories/070312ruel/
http://www.ojr.org/ojr/stories/070312ruel/
http://www.ojr.org/ojr/stories/070312ruel/
http://www.ojr.org/ojr/stories/070312ruel/
http://www.ojr.org/ojr/stories/070312ruel/


Does cropping an image affect the center 
bias of fixations?

Crop Reference



Crop Reference

fixations lean 
to the right

fixations lean 
to the left

All crops have some center bias, but in addition...

Does cropping an image affect the center 
bias of fixations?



The tendency to look near the center may be 
reinforced during the eye tracking experiments.  
Indeed each trial began with a centrally located 
fixation marker.   This marker could be randomly 
positioned.

However, studies which did not use a central 
fixation marker (Canosa, Pelz, Mennie, and Peak, 
2003) have also shown a central fixation bias.

Center bias is also not reduced with increased 
viewing time as shown by Le Meur et al [2006] 
who showed images at 2s, 8s and 14s.  

Is there less center bias if you do not put 
the cross hair in the center?



Figure 11 Performance on easy, medium and hard images. Here we see the all-fixation trend line separated for different 

types of images: easy, medium and difficult images to understand.  When images are “easy”, consistency between different 

resolutions and consistency on a given resolution are much higher than for “hard” images.  In addition, consistency peaks and 

then declines more strongly for the hard images as resolution increases.  In this case, fixations are consistent at low resolution 

and then become less consistent as the small, complex details of the hard images become visible.  
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Yarbus (1967) was the first to show
that task influences fixation locations

“They did not expect him” by Repin



Yarbus (1967) was the first to show
that task influences fixation locations

“They did not expect him” by Repin



Consistency of Fixations per resolution
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Figure 9(a) Performance on natural images. The graph on the left shows how well the fixations of each resolution predict the fixations on 

the high resolution images.  This is compared to how well the gaussian center (thin line) predicts high resolution images.  In general, 

fixations on images of 16px and above outperform the gaussian center.  Performance increases with resolution, and the rate of improvement 

slows after 64px; after 64px resolution, you obtain ~85% of the range of accuracy available. 

For visualization purposes, we have shown the fixations from all 8 viewers per image.  The ROC performance is calculated as the average 

of 64 instances of 7 viewers! fixations predicting the remaining 1 viewer!s fixations.

Figure 9(b) Performance on natural images. The graph on the left shows how consistent fixations on images of each resolution are; it 

shows how well fixations from a given image predict fixations of other viewers on the same image.  This is compared to how well the 

gaussian center (thin line) predicts fixations at each resolution.  After 16px of resolution, human fixations outperform the gaussian center.  

Human performance increases from 4-32px and after that it either plateaus (when considering the first fixations) or declines (when consider-

ing all fixations).  We believe the plateau happens around the time the image is understood, and the decline happens because viewers look 

at the abundant extra detail of the high resolution images in their later fixations.

For visualization purposes, we have shown the fixations of 7 viewers! fixations predicting the remaining viewer"s fixation.  The overall ROC 

performance per resolution for this image is calculated as the average of the 8 of these possible instances.
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Figure 9(a) Performance on natural images. The graph on the left shows how well the fixations of each resolution predict the fixations on 

the high resolution images.  This is compared to how well the gaussian center (thin line) predicts high resolution images.  In general, 

fixations on images of 16px and above outperform the gaussian center.  Performance increases with resolution, and the rate of improvement 

slows after 64px; after 64px resolution, you obtain ~85% of the range of accuracy available. 

For visualization purposes, we have shown the fixations from all 8 viewers per image.  The ROC performance is calculated as the average 

of 64 instances of 7 viewers! fixations predicting the remaining 1 viewer!s fixations.

Figure 9(b) Performance on natural images. The graph on the left shows how consistent fixations on images of each resolution are; it 

shows how well fixations from a given image predict fixations of other viewers on the same image.  This is compared to how well the 

gaussian center (thin line) predicts fixations at each resolution.  After 16px of resolution, human fixations outperform the gaussian center.  

Human performance increases from 4-32px and after that it either plateaus (when considering the first fixations) or declines (when consider-

ing all fixations).  We believe the plateau happens around the time the image is understood, and the decline happens because viewers look 

at the abundant extra detail of the high resolution images in their later fixations.

For visualization purposes, we have shown the fixations of 7 viewers! fixations predicting the remaining viewer"s fixation.  The overall ROC 

performance per resolution for this image is calculated as the average of the 8 of these possible instances.

5
1
2

Fixations on low-res images can predict 
fixations on high-res images





It is possible to see the fixations online

http://people.csail.mit.edu/tjudd/LowRes/seeFixations.html
http://people.csail.mit.edu/tjudd/LowRes/seeFixations.html
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