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Abstract. We present an exact method for the global minimum energy
conformation (GMEC) search of protein side-chains. Our method con-
sists of a branch-and-bound (B&B) framework and a new subproblem-
pruning scheme. The pruning scheme consists of upper/lower-bounding
methods and problem-size reduction techniques. We explore a way of
using the tree-reweighted max-product algorithm for computing lower-
bounds of the GMEC energy. The problem-size reduction techniques are
necessary when the size of the subproblem is too large to rely on more ac-
curate yet expensive bounding methods. The experimental results show
our pruning scheme is effective and our B&B method exactly solves pro-
tein sequence design cases that are very hard to solve with the dead-end
elimination.

1 Introduction

A computational approach to the protein structure prediction problem is to
solve the “inverse folding problem”: to find a sequence or conformation that
will fold to the target structure [3]. In this approach, the search of the minimum
energy conformation is an important computational challenge. Two major appli-
cations where finding the minimum energy conformation is useful and necessary
are the conformation modeling (homology modeling) problem [17] and the se-
quence design problem [9]. In finding the minimum energy conformation, the
problem is discretized and simplified by computing the interaction energies only
for some finite number of fixed side-chain conformations of each residue type [10].
These conformations are chosen by their statistical significance and are called
rotamers. With the rotamer model, the energy function of a protein sequence
folded into a specific template structure can be described in terms of [2]: (1)
Etemplate – the self-energy of a backbone template, (2) E(ir) – the interaction
energy between the backbone and rotamer conformation r at ith position, (3)
E(irjs) – the interaction energy between rotamer conformation r at position i
and rotamer conformation s at position j, i 6= j. Then, the energy of a protein
sequence in a specific template structure and conformation C = {ir} is writ-
ten as E(C) = Etemplate +

∑

i E(ir) +
∑

i

∑

j>i E(irjs). Note that Etemplate is
constant by definition, and therefore can be ignored when minimizing E(C). A
conformation that minimizes E(C) is often called the global minimum energy
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conformation (GMEC). In this work, we call the problem of finding the GMEC
for a given set of rotamers and energy terms as the “GMEC problem”.

The GMEC problem is a strongly NP -hard optimization problem. Despite
the theoretical hardness, one finds that many instances of the GMEC problem
are easily solved by the exact method of dead-end elimination (DEE) [2]. Pop-
ularly used elimination procedures such as Goldstein’s conditions [6] combined
with splitting [16], the magic bullet heuristic [7], and unification [6] are often able
to reduce the problem size dramatically, while demanding only reasonable com-
putational resources. However, we still find sequence design cases where DEE
requires impractical amount of time and space. Other than DEE, there exist
various exact approaches for the GMEC problem. Gordon and Mayo [8] used
a variant of the branch-and-bound (B&B) method. Althaus et al. [1], Eriksson
et al. [5], and Kingsford et al. [12] present integer linear programming (ILP)
approaches. Leaver-Fay et al. [15] and Xu [20] describe methods based on tree-
decomposition. Xie and Sahinidis [19] describes several residue-reduction and
rotamer-reduction techniques. Each approach has advantages depending on the
characteristics of the data, but most of them have not attempted to solve hard
protein design cases, where there exist interactions between all possible pairs of
positions and a large number of similar rotamers are allowed for each position.
There also exist approximate approaches such as Yanover and Weiss [21] who
used belief-propagation methods to solve side-chain placement problems.

In this work, we present an alternative exact solution method for the GMEC
problem. Figure 1 illustrates the method. Our method consists of a B&B frame-
work and a new subproblem-pruning scheme. The pruning scheme consists of
upper/lower-bounding methods and problem-size reduction techniques. The ba-
sis for our upper/lower-bounding method is approximate maximum-a-priori (MAP)
estimation. Particularly, we explore a way of using the tree-reweighted max-
product algorithm (TRMP) [18]. The problem-size reduction techniques are
necessary when TRMP can only compute weak bounds but the size of the sub-
problem is too large to rely on more accurate yet expensive bounding meth-
ods. Through an iterative use of several reduction techniques, we can obtain a
problem of reasonable size that can be effectively lower-bounded. Such reduc-
tion techniques guarantee that the given subproblem can be pruned against an
upper-bound U if the reduced subproblem can be pruned against U . On the
other hand, if we are lucky, a subproblem can be also quickly solved using DEE
only. The experimental results show that the running time of our pruning scheme
is comparable to linear programming (LP) but our method is more effective in
pruning subproblems than LP. We also find our B&B method exactly solves
sequence design cases that are very hard to solve with DEE.

2 GMEC problem as MAP estimation

Probabilistic inference problems [11] involve a vector of random variables x =
(x1, x2, . . . , xn) characterized by a probability distribution p(x). In this work, the
GMEC problem is formulated as a MAP estimation problem that asks to find the
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2. Pruning scheme
(1) Upper/lower-bounding by TRMP

(2) Problem-size reduction by:
elimination by TRMP lower-bounds,
rotamer-contraction,
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DEE

Fig. 1. An overview of the exact method for the GMEC problem. The method consists
of a branch-and-bound framework and a pruning scheme, which in turn is composed
of bounding by TRMP and a collection of problem-size reduction techniques. Labels
on branches are related to the splitting scheme, and the numbers marked on the nodes
correspond to the order by which the nodes are visited.

maximum a posteriori (MAP) assignment x∗ such that x∗ = argmaxx∈X p(x),
where X is the sample space for x. In the GMEC problem, we number the se-
quence positions by i = 1, . . . , n, and associate with each position i a discrete
random variable xi that ranges over Ri, a set of allowed rotamers at position i.
Then, we can define a probability distribution p(x) over X = R1 × . . . × Rn as

p(x) = exp{−e(x)}/Z, (1)

for a normalization constant Z and e(x) =
∑n

i=1 ei(xi)+
∑n−1

i=1

∑n
j=i+1 eij(xi, xj),

where ei(r) = E(ir) for r ∈ Ri, and eij(r, s) = E(irjs) for (r, s) ∈ Ri × Rj .
Therefore, the GMEC problem for minimizing e(x) is equivalent to the MAP es-
timation problem for p(x). A probability distribution over a random vector can
be related to a graphical model [11]. An undirected graphical model G = (V , E)
consists of a set of vertices V for random variables and a set of edges E con-
necting some pairs of vertices. In the MAP estimation equivalent of our GMEC
problem, the graphical model is generally a complete graph with n vertices.

Wainwright et al. [18] presents an algorithm called tree-reweighted max-
product algorithm that can find a MAP assignment for loopy graphical mod-
els. The basic idea of the tree-reweighted max-product algorithm is to use a set
of spanning-trees T such that every vertex and edge of G are covered by some
T ∈ T . Kolmogorov noted [13] that we may define T as a set of (not necessarily
spanning) trees that cover the graph. In what follows, we will use a variant of
Wainwright et al.’s algorithm that lets us use an arbitrary tree cover, and call
it TRMP without presenting the details of the algorithm. Although TRMP is
not guaranteed to always find the optimal solution, it can be used as an upper-
bounding tool for the GMEC problem in the same way that the conventional
max-product algorithm is used as an upper-bounding tool on loopy graphs [21].
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In addition, it can also provide useful lower-bounds for the GMEC problem,
which will be explained in Section 4.1.

3 General pair-flags

We use general pair-flags to constrain the conformation space X . For example, if
the pair-flag for (ir, js) is set, all conformations in Z = {x ∈ X |(xi, xj) = (r, s)}
are excluded from the search space, i.e. the GMEC problem is solved over X\Z .
However, unlike in DEE, this does not generally imply min{x|(xi,xj)=(r,s)} e(x) >
minx e(x). We will denote the set of pair-flags for the given GMEC problem as
P̃ (possibly empty) and define pair-flag functions from P̃ as g̃ij(r, s, P̃ ) = 1 if

(ir, js) ∈ P̃ , and 0 otherwise. We also let g̃(x, P̃ ) =
∑

i,j∈V,i6=j g̃ij(xi, xj , P̃ ).

By defining P ({e}, U)
def
= {(ir, js) | min{x|(xi,xj)=(r,s)} e(x) > U}, we have the

following lemma regarding minimization under pair-flag constraints:

Lemma 1. For any P̃ and P̃ ′ such that P̃ ⊂ P̃ ′ and P̃ ′\P̃ ⊂ P ({e}, U),
min{x|g̃(x,P̃ ′)=0} e(x) is either infeasible or greater than U if and only if

min{x|g̃(x,P̃ )=0} e(x) is either infeasible or greater than U .

The implication of Lemma 1 is that given a subproblem min{x|g̃(x,P̃ )=0} e(x)
in the B&B-tree, the subproblem can be pruned if and only if the modified
subproblem min{x|g̃(x,P̃ ′)=0} e(x) can be pruned. In addition, we can also show

min{x|g̃(x,P̃ ′)=0} e(x) = min{x|g̃(x,P̃ )=0} e(x) if min{x|g̃(x,P̃ )=0} e(x) ≤ U .
In what follows, when we need to mention pair-flag information, we will

implicitly assume we have some P̃ , and use the notation g̃(x) instead of g̃(x, P̃ )
where specifying P̃ is not particularly necessary. The following condition on pair-
flags can be maintained without loss of generality and will be used in Section 4:

Condition 1 For all r ∈ Ri and i ∈ V, there exists s ∈ Rj for each j ∈ V , j 6= i

such that (ir, js) /∈ P̃ .

4 Problem-size reduction techniques

4.1 Elimination by TRMP lower-bounds

We can exploit the properties of TRMP in computing a lower-bound of the min-
imum conformation energy for some given set of conformations. If such a lower-
bound is greater than U , we can eliminate corresponding conformations from
the problem while conserving the inequality relation between min{x|g̃(x)=0} e(x)
and U . In addition, if min{x|g̃(x)=0} e(x) ≤ U , the elimination does not change
the optimal value. In this section, we first review the key properties of Wain-
wright et al.’s algorithm – ρ-reparameterization and tree-consistency of pseudo-
max-marginals, before presenting how to compute the lower-bounds. Note that
TRMP shares these properties.

Single max-marginals µi [18] are defined as the maximum of p(x) when one
of the variable xi is fixed, i.e. µi(xi) = κi max{x′|x′

i=xi} p(x′). Similarly, pairwise
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max-marginals µij are defined as µij(xi, xj) = κij max{x′|(x′

i,x
′

j)=(xi,xj)} p(x′).

Note that κi and κij are constants that can vary depending on i or j. It is known
that any tree-distribution p(x) can be factored in terms of its max-marginals

as p(x) ∝
∏

i∈V µi(xi)
∏

(i,j)∈E
µij (xi,xj)

µi(xi)µj(xj)
. Max-marginals for tree-distributions

can be exactly computed by the conventional max-product algorithm. Wain-
wright et al. [18] use the notion of pseudo-max-marginals. By construction,
pseudo-max-marginals ν = {νi, νij} from the tree-reweighted max-product algo-
rithm satisfy ρ-reparameterization, i.e.

p(x) ∝
∏

T∈T





∏

i∈V(T )

νi(xi)
∏

(i,j)∈E(T )

νij(xi, xj)

νi(xi)νj(xj)





ρ(T )

, (2)

where ρ(T ) = |{T∈T }|
|T | . A tree-distribution pT (x; ν) for given pseudo-max-marginals

can be defined as

pT (x; ν)
def
=

∏

i∈V(T ) νi(xi)
∏

(i,j)∈E(T )
νij (xi,xj)

νi(xi)νj(xj)
.

Then, we have p(x) ∝
∏

T∈T {p
T (x; ν)}ρ(T ) from (2). On the other hand, pseudo-

max-marginals ν∗ at convergence of the tree-reweighted max-product algorithm
satisfy tree-consistency condition with respect to every spanning tree T ∈ T .
More precisely, ν∗ is tree-consistent with respect to a spanning tree T if it sat-
isfies ν∗

i (xi) ∝ maxxj∈Rj
ν∗

ij(xi, xj) for all xi ∈ Ri and (i, j) ∈ E(T ).
In what follows, we assume ν is in a normal form [13], i.e. maxr∈Ri

νi(r) = 1
for all i ∈ V , and max(r,s)∈Ri×Rj

νij(r, s) = 1 for all (i, j) ∈ E . Then, since ν al-
ways satisfies ρ-reparameterization, rearranging the terms of (2) gives, for some
constant νc > 0,

p(x) = νc

∏

i∈V νi(xi)
ρi

∏

(i,j)∈E

(

νij (xi,xj)
νi(xi)νj(xj)

)ρij

,

where ρij = |{T∈T | (i,j)∈E(T )}|
|T | and ρi = |{T∈T | i∈V(T )}|

|T | .

The following lemmas show how we can compute lower-bounds for some sets
of conformations. For example, Lemma 2 combined with (1) can provide rotamer
lower-bounds i.e. a lower-bound of min{x|xζ=r} e(x) for each r ∈ Rζ and ζ ∈ V :

Lemma 2. When ν satisfies the tree-consistency condition, we have, for all r ∈
Rζ , ζ ∈ V, max{x|xζ=r} p(x) ≤ νcνζ(r)

ρζ .

For rotamer-pair lower-bounds, i.e. to lower-bound min{x|(xζ,xη)=(r,s)} e(x),

we use max{x|(xζ,xη)=(r,s)} p(x) ≤ νc

∏

T∈T

[

max{x|(xζ,xη)=(r,s)} pT (x)
]ρ(T )

, where

max{x|(xζ,xη)=(r,s)} pT (x) for each T can be easily solved using Lemma 3 when
we let T = S, a set of stars:

Lemma 3. When ν satisfies the tree-consistency condition, the following in-
equalities hold:

1. if ζ, η /∈ V(T ), then max{x|(xζ,xη)=(r,s)} pT (x) = 1.
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2. if ζ ∈ V(T ) and η /∈ V(T ), then max{x|(xζ,xη)=(r,s)} pT (x) = νζ(r).

3. if (ζ, η) ∈ E(T ), then max{x|(xζ,xη)=(r,s)} pT (x) = νζη(r, s).
4. if ζ, η ∈ V(T ) and (ζ, η) /∈ E(T ) for a star T (let ξ be the center of T ), then

max{x|(xζ,xη)=(r,s)} pT (x) = maxxξ∈Rξ

νξζ(xξ,r)νξη(xξ,s)
νξ(xξ) .

If we use pair-flags, we may improve rotamer lower-bounds by the inequality

max{x|xζ=r,g̃(x)=0} p(x) ≤ νc

∏

T∈T

[

max{x|xζ=r,g̃(x)=0} pT (x)
]ρ(T )

≤ νcνζ(r)
ρζ ,

which holds for tree-consistent ν. Let nrot be the average number of rotamers
per position. If we use a naive search, it takes O(n2

rotn) comparison operations
to exactly solve max{x|xζ=r,g̃(x)=0} pT (x). Therefore, computing an improved
lower-bound for a rotamer takes O(n2

rotn
2) since |T | = O(n).

4.2 Rotamer-contraction

The idea of rotamer contraction is to reduce the number of rotamers at one
selected position by first clustering similar rotamers of the position and replacing
all rotamers in each cluster with one rotamer-aggregate. Let ζ be the position
whose rotamers we partition into a number of clusters C1, . . . , Cl, l < |Rζ |. Then,
we contract all rotamers r ∈ Ck as one rotamer-aggregate ck. The contracted
GMEC problem has a new conformation space X rc, which is same as X except
that Rζ is replaced by {c1, . . . , cl}. Then, we define a new energy function erc(x)

over X rc and the set of pair-flags P̃ rc so that the optimal value of the contracted
problem min{x∈X rc|g̃(x,P̃ rc)=0} erc(x) is a lower-bound of min{x∈X|g̃(x,P̃ )=0} e(x).

One way of choosing erc(x) for a given clustering is given by contract-rotamers in
Algorithm 1. We use notation erc(x, P̃ ) to indicate the function is also defined by
P̃ . A lower-bounding technique similar to rotamer-contraction is used by Koster
et al. [14] for the frequency assignment problem. We have the following lemma
on contract-rotamers :

Lemma 4. For any given clustering of rotamers of ζ ∈ V, if {x ∈ X |g̃(x, P̃ ) =
0} 6= φ, then min{x∈X|g̃(x,P̃ )=0} e(x) ≥ min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃ ).

In rotamer-contraction, how we cluster rotamers of position ζ determines
the quality of resulting lower-bounds. Our approach is a greedy scheme that
keeps placing rotamers in a cluster as long as the decrease in the optimal
value is less than or equal to a specified amount. However, it is hard to ex-
actly know the decrease min{x∈X|g̃(x,P̃ )=0} e(x)−min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃ ).
In addition, it is generally not feasible to bound the decrease since rotamer-
contraction may even turn an infeasible subproblem into a feasible one. We in-

stead upper-bound ∆OPT rc def
= minx∈X e(x) − min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃ ).

Let Urc
∆OPT (P̃ ) = maxk=1,...,l minr∈Ck

∑

j∈Γ (ζ) max{s∈Rj |(ζck
,js)/∈P̃ rc}{eζj(r, s)+

eζ(r)
|Γ (ζ)| − erc

ζj(ck, s, P̃ )}. Then, we have the following lemma:

Lemma 5. For any given clustering of rotamers of ζ ∈ V, we have ∆OPT rc ≤
Urc

∆OPT (P̃ ) ≤ Urc
∆OPT (φ)
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Algorithm 1: contract-rotamers

Data: ζ, C1, . . . , Cl, X , {e}, P̃

Result: X rc, {erc}, P̃ rc

begin
X rc is same with X except Rζ is replaced with {c1, . . . , cl}
P̃ rc ← P̃\{(ζr, js), j ∈ V, j 6= ζ}
foreach Ck, k = 1, . . . , l do

foreach s ∈ Rj, j ∈ V, j 6= ζ do

erc
ζj(ck, s, P̃ )← min{r∈Ck,(ζr ,js)/∈P̃} eζj(r, s) +

eζ(r)

|Γ (ζ)|
,

if (ζr, js) ∈ P̃ for all r ∈ Ck then P̃ rc ← P̃ rc ∪ (ζck
, js)

erc
ζ (ck)← 0.

define erc(x) same as e(x) for other terms
end

Note that U rc
∆OPT (P̃ ) has a finite value due to Condition 1. Lemma 4 and

Lemma 5 suggests rotamer-contraction may benefit from the use of pair-flags
by smaller decrease in the optimal value, and better upper-bounding of the de-
crease. We include a rotamer in a cluster if U rc

∆OPT (P̃ ) from the inclusion is less
than some constant ∆rc. When minx e(x) > U , ∆rc can be allowed to be at
most minx e(x)−U or some fraction of it. Since we do not know the exact value
of minx e(x), ∆rc is heuristically set as a fraction of the difference between an
upper-bound of minx e(x) and U . Both upper-bounds are obtained by TRMP.

4.3 Edge-deletion

In edge-deletion, we first identify a pair of positions (ζ, η) such that the de-
viation in eζη(r, s) for all (r, s) ∈ Rζ × Rη is small, then set all the pairwise
energies of (ζ, η) to the minimum of the pairwise energies. That is, the new en-
ergy function eed(x) will be defined to be the same as e(x) except eed

ζη(r, s) =

min{(r,s)∈Rζ×Rη |(ζr,ηs)/∈P̃} eζη(r, s), for all (r, s) ∈ Rζ × Rη. Since eed
ζη(xζ , xη) is

constant, we can ignore the interaction of (ζ, η) and replace E by E\(ζ, η). The
same idea is explored by Xie and Sahinidis [19] as an approximation procedure.
Some advantages of doing edge-deletion are: (1) when the graph becomes sparse,
we may use direct solution techniques such as dynamic programming. (2) Empir-
ically, being able to cover the graph with fewer trees is favorable for obtaining
tighter lower-bounds from TRMP. (3) Rotamer-contraction may obtain fewer
clusters for the same ∆rc. The pair-flags are kept intact through edge-deletion
even for the edge being deleted. Then, it is straightforward to obtain similar
properties for edge-deletion as Lemma 4 and 5.

5 Branch-and-bound framework

We split a subproblem by dividing rotamers of a position into two groups by
their rotamer lower-bounds. If the conformation space of the current subprob-
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lem F i is defined by rotamer sets {Ri} and we decide to split it into F i,low

(low-subproblem) and F i,high (high-subproblem), we can define the conforma-

tion space for each with {Rlow
i } and {Rhigh

i }, respectively, where Rlow
i and Rhigh

i

are defined the same as Ri except Rlow
ζ ∪ Rhigh

ζ = Rζ , |Rlow
ζ | ≈ |Rhigh

ζ |, and

LB(ζr) ≤ LB(ζs) for all r ∈ Rlow
ζ , s ∈ Rhigh

ζ (LB(ζr) is a rotamer lower-
bound for ζr). The goal of such a splitting scheme is to make the optimal value
of F i,low likely to be less than that of F i,high. We prefer a splitting position
ζ whose difference between maximum and minimum rotamer lower-bounds is
large. Subproblems are selected by a mix of what are called “best-first” and
“depth-first” strategies: (1) follow the depth-first strategy, (2) always dive into
F i,low first when the current subproblem F i is split. The goal is first to find a
good upper-bound by following depth-first through the low-subproblems from
the first series of splittings, then to prune the remaining subproblems using
the upper-bound. Figure 1 shows an example B&B-tree that can result from our
splitting scheme and subproblem-selection strategy, where optimal solution from
node 5 is supposed to provide a near-optimal upper-bound.

6 Experimental Results

In our numerical experiments, a Linux workstation with a 2.2 GHz Intel Xeon
processor and 3.5 GBytes of memory was used. Table 1 shows 12 protein design
cases used in the experiments. DEE on each case was performed with the fol-
lowing options: Goldstein’s singles elimination, splitting with split flags (s = 1),
Goldstein’s pair elimination with one magic bullet, and unification allowing max-
imum 6,000 rotamers per position. E-9 was finished in 4.8 hours but none of
others were solved within 48 hours.

Table 1. Test cases facts. All cases are from antigen-antibody model system. Each case repacks either
the antigen protein or the antibody, or both. Each column represents (1) case name, (2) number of
positions, (3) maximum number of rotamers offered at a position, (4) number of total rotamers, (5)
Pn

i=1
log

10
|Ri|, (6) case composition (’m’ – #positions allowed to mutate, ’n’ – #positions only

wild-types are allowed, ’w’ – #water molecules to be oriented at the interface). In the case names, R
uses the standard rotamer library, and E multiplies each of χ1 and χ2 by a factor of 3 by adding ±10◦.
E-1 were offered only hydrophobic residues while others were offered both hydrophobic and polar
residues. All energies were calculated using the CHARMM package and the parameter set ’param22’

Case n max |Ri|
P

|Ri| log
10

conf Composition Case n max |Ri|
P

|Ri| log
10

conf Composition

R-1 34 125 1422 30.0 34 m E-5 24 1344 9585 49.6 24 m
R-2 30 133 1350 40.2 30 m E-6 36 1984 8543 59.1 4 m, 32 n
E-1 19 617 3675 38.1 19 m E-7 10 2075 5201 21.9 5 m, 3 n, 2 w
E-2 23 1370 9939 52.3 23 m E-8 10 1915 5437 20.7 4 m, 4 n, 2 w
E-3 23 1320 8332 49.1 23 m E-9 15 2091 5700 25.1 3 m, 6 n, 6 w
E-4 15 1361 7467 33.9 15 m E-10 23 1949 9837 42.5 7 m, 7 n, 9 w

We first show an example use of TRMP lower-bounds in eliminating ro-
tamers or rotamer-pairs of subproblems from E-10. In the following, we use
the notation “i-high” to denote the high-subproblem at depth i spawned from
the first depth-first dive along the low-subproblems (root node is at depth 1).
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For example, in Figure 1, node 11 is 2-high and node 6 is 5-high. Table 2
shows lower-bounding results for subproblems at depth 2 to 11. In 2-high, sim-
ple rotamer lower-bounds were able to eliminate 39% of rotamers. However, we
obtain even more elimination when we use rotamer lower-bounds computed us-
ing pair-flags. This is due to massive flagging of rotamer-pairs by rotamer-pair
lower-bounds. Large elimination obtained for subproblems at small depth are
due to our splitting scheme of dividing rotamers by their lower-bounds.

Table 2. TRMP lower-bounding results for subproblems of E-10. The meaning of each column is,
in order: (1) subproblem, (2) number of rotamers, (3) number of rotamer-pairs, (3) median rotamer
lower-bound(lb) when not using pair-flags, (4) number of rotamers such that lb > U , (5) median
rotamer lower-bound when using pair-flags, (5) number of rotamers such that lb > U , (6) median
rotamer-pair lower-bound, (7) number of rotamer-pairs such that lb > U . The value of U is -325.038.
+∞ implies the lower-bounding problem turned out to be infeasible due to pair-flags.

Rot-lb’s w/o pair-flags Rot-lb’s w/ pair-flags Rot-pair lb’s
Subprob. #rots #rot-pairs med. lb #rots lb > U med. lb #rots lb > U med. lb #pairs lb > ub

2-high 3,345 4,769,691 -332.831 1,301 +∞ 2,220 -312.544 4,071,145
3-high 3,022 3,879,787 -315.025 1,134 +∞ 2,141 -313.614 3,328,424
4-high 2,665 3,036,834 -315.689 1,380 +∞ 2,273 -313.276 2,799,272
5-high 2,281 2,299,981 -336.173 81 -336.173 920 -323.780 1,292,520
6-high 2,171 2,071,431 -343.019 0 -343.019 200 -330.363 590,576
7-high 1,964 1,702,980 -342.556 8 -342.556 215 -329.554 508,750
8-high 1,848 1,499,857 -344.865 0 -344.636 42 -335.640 218,324
9-high 1,669 1,223,065 -337.791 0 -337.791 289 -329.037 384,812

To evaluate our pruning scheme, we compared it (call it PbyR: prune-by-
reduction) against linear programming (LP). We used subproblems of various
sizes generated while solving the design cases of Table 1 with our B&B method.
We used the LP formulation given by Wainwright et al. [18] and solved it with
a C++ procedure using CPLEX 8.0 library. In PbyR, we alternated rotamer-
contraction and edge-deletion at every iteration. At every 8th reduction, we
applied DEE to see if we could solve the reduced problem or only to flag more
rotamer/rotamer-pairs. (Note that we adapted DEE to make it compatible with
general pair-flags.) We computed TRMP lower-bounds at every 24th reduction
and flagged rotamers/rotamer-pairs. We allowed at most 300 reductions until we
find a lower-bound greater than U or exactly solve the reduced problem. Figure 6
shows the result for the 156 subproblems remaining after excluding the subprob-
lems that could be solved quickly by DEE alone. The bounding times of the two
methods are comparable although LP is slightly faster in small to medium-
sized subproblems. However, Figure 6 (b) shows that the bounds from PbyR are
greater than LP bounds except for the one data point below the y = x line.
Note that a PbyR bound for a subproblem is not generally a lower-bound of the
subproblem’s optimal value since rotamer/rotamer-pair elimination by TRMP
lower-bounds can also increase the optimal value. However, a PbyR bound is
greater than U only if the original subproblem’s optimal value is greater than
U . Therefore, if we had U equal to the GMEC energy for each design case, we
could immediately prune the subproblems corresponding to the data points over
the horizontal solid line in Figure 6 (b). There was no such case with LP among
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the tested subproblems. Figure 6 (b) suggests that performing reductions more
than 50 times often resulted in lower-bounds that were useless for pruning.
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Fig. 2. Comparison of LP and PbyR in pruning subproblems from B&B. In (b), a
circle represents the PbyR bound was computed using less than 50 reductions. Also
in (b), points such that PbyR bound - GMEC energy ≥ 20 were all clamped at 20

Finally, we used the B&B method of Figure 1 to solve each design case. The
branch-and-bound method was implemented in C++ using the PICO-library [4]
as a sequential B&B framework. At each node of the B&B method, we first
eliminated rotamers using DEE with the same set of options mentioned earlier.
When singles-elimination condition of DEE fails to eliminate any rotamer, we
let TRMP lower-bounds eliminate more rotamers. Then, we used the reduction
techniques iteratively in the same mix as we used for comparison test against LP,
but limited the number of reductions to be at most four times the depth of the
node in the B&B-tree. When branching was necessary, the subproblem located
at the end of the first dive usually had

∑n
i=1 log10 |Ri| ≤ 13 and was exactly

solved by DEE. Table 3 shows the result. We were able to solve six cases at
the root node without branching. Considering DEE couldn’t finish five of them
for 48 hours, rotamer/rotamer-pair elimination using TRMP lower-bounds enor-
mously reduced the solution time. All cases were also solved efficiently except
E-10 where the upper-bounds (from TRMP) of the subproblems were often very
close to the GMEC energy. However, in all cases, the number of total branching is
only moderately larger than that from the first dive. In all cases where branching
was necessary, the upper-bound obtained at the end of the first dive was equal
to the GMEC energy, confirming that our branching scheme and subproblem-
selection strategy meets expectations.
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Table 3. Solving the design cases using our B&B method. Each column represents (1) case name, (2)
number of branches, (3) number of branches from the first depth-first dive along the low-subproblems,
(4) total solution time

Case # Br. #F.D.Br. Time (h) Case # Br. #F.D.Br. Time (h) Case # Br. #F.D.Br. Time (h)

R-1 0 0 1.1 E-3 0 0 6.4 E-7 15 12 6.9
R-2 14 14 2.7 E-4 0 0 4.2 E-8 17 12 13.7
E-1 28 28 9.7 E-5 8 8 27.2 E-9 0 0 3.3
E-2 0 0 6.2 E-6 0 0 5.6 E-10 202 35 139.1

7 Conclusion

In this work, we presented an exact solution method for the GMEC problem. Our
branch-and-bound method using the suggested pruning scheme was able to solve
hard sequence design cases that DEE couldn’t solve within practical resources
levels. There is certainly a decision-making flavor in using our proposed pruning
scheme since a trade-off between the amount of pruning effort and the quality
of the final bound should be considered in deciding when to stop the pruning
attempt and to split the subproblem. Therefore, future work may include a sys-
tematic allocation of pruning effort throughout the B&B-tree for faster solution.
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