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Abstract. This  paper discusses how sparse local measurements 
of positions  and  surface  normals  may  be used to identify  and 
locate  overlapping  objects.  The  objects  are modeled as polyhedra 
(or polygons)  having up to six degrces of freedom  relative  to  the 
seneors.  The  approach  operates by examining all hypotheses  abont 
I,airings betvvxn  sensed  data  and  object  surfaces  and efficiently 
discarding  inconsistent  ones by using  local constraints On: distances 
between faces,  angles between face  normals, and angles  (relative 
to the  surface  normals) of sectors  between  sensed points. The 

described  here is an  extension of a method  for  recognition 
aItd localization of non-overlapping  parts preViOwlY described in 
[Grimson & Lozano--P&rez 84) and  [Gaston 2 LoZano-PCrez 841. 

1. Problem Definition 

The specific problem we consider in this  paper is how to  identify a 
known  object  and  locate it, relative  to  the sensor, using  relatively few 
measurements. We want a recognition  technique  t,hat is applicable 
to a wide range of scnsors, so we make few assumptions  about  the 
sensory  data  availablc. We assume only that  the  sensory  data  can 
be proce~ed  to  obtain  sparse  measurements  of  the  position  and 
surface  orientation of small  planar  patches of object  surfaces in 
some  coordinate  frame defined  relat,ive to the  sensor.  The  measured 
positions  are  assumed  to be within a known  crror  volume  and 
measured  surface  orientations  to be within a  known  error cone. 
Furthermore,  the  object is assumed  to be overlapped  by  other 
nnknown  object,s, so that,  much of t,he data  does  not  arise  from  the 
object of interest. 

If the  object5  have only three  degrees of freedom  relative to 
the  sensor ( two translational  and  one  rotational),  then  the  positions 
and  surface  normals need only be  two-dimensional. If the  objects 
have  more  than  three degrees of freedom  (np  to  three  translational 
and  three  rotational),  the  position  and  orientation  data  must be 
three-dimensional. 

Since the  measured  data  approximate  small  planar  patches of 
the  object’s  surface, we assume that  the  objects  can  be  modeled 
as sets of planar faces. Only  the  individual  plane  equations 
and  dimensions of the model  faces are used for recognition  and 
localization. No face  conncctivity  information is used  or assumed; 
the  model faces do not  wen have to  be  connected.  This is important. 
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I t  is  easy to build polyhedral  approximations  of  moderately  curved 
objects,  but we cannot  expect  these  approximations to bc perfectly 
stable  under sensor variations.  The  connectivity  among  the  faces is 
particularly  vulnerable.  Since our recognition  method  does not use 
face  connectivity, but  only local geometry,  it  can  be  readily  applied 
to curved  objects  approximated by planar  patches. 

Our basic  approach  to  recognition  proceeds in two  steps: 

Generate Feasible Interprrtationa: A set of feasible  interpretations 
of tilr senw  data iu constructed.  interpretations  consist of 
pairings of rach sensed patch  wilh  some  object  surface  on  one 
of the known objccts.  Interprclations  inconsistent  with local 
constraints,  derived  from  the model, on  the sense data  are 
discarded. 

Model  Test: The  feasible  interpretations  are  tested  for  consistency 
with  surface  equations  obtained  from the  object  models. An 
interpretation is  legal if it is possible to solve for a rotation 
and  translation  that would  place each  senscd  patch  on an 
object  surface.  The sensed patch  must lie inside the  object 
face,  not  just on the  surface defined by the  equation. 
There  are  several possible methods of actually  searching  for 

consistent  matches. For example, in Grimson  and Lozano-PCrez [84] 
we chose to structure the  seaich as the  generation  and  exploration 
of an  interpretation  tree.  That is, starting st a root nodk, we 
construct a tree in a depth first fashion,  assigning  mcawred  patches 
to model faces. At  the first level of the  tree, we consider  assigning 
the  first  measured  patch  to all possible.  faces, at the  next level, 
we assign  the  second  measured  patch  to all  possible face$, and 90 
on. The  number of possible interpretations  in  this  tree, given a 
sensed  patches  and n surfaces, is n6. Therefore,  it is not feasible 
to rxplore  the  entire  search  space in order  to  apply a model  test 
t,o all possible interpretations.  Moreover,  since  the  computation of 
coordinate  frame  transformations  tends to be  expensive, we want 
to  apply  this  part of the  technique  only as needed. 

The goal of the  recognition  algorithm is thus to exploit local 
geometric  constraints  to  minimize  the  number of interpretations 
that  necd  testing, while  keeping the  computational  cost of each 
constraint  small. In the case or the  interpretation  tree, we need 
constraints  betwern t,he data  elements  and  the model elements  that 
will allow us t,o remove  entire  subtrees  from corlsideration without 
explicitly  having to search  those  subtrees. In our case, we require 
that  the  distances  and  angles  between a l l  pairs of data  elements 

be consistent  with  the  distanccs  and  anglcs possible  between their 
aysigned  model  elernents. 

The  recognition  algorithm  described is related to several  recent 
approaches  to  reccgnition based on geometric  constraints [Rob 
and  Cain  82, Bolles, Ilorand  and  Hannah 83, Faugeras  and  Hebert 
53, Gaston  and Lozano-Bkrez 84, Grimson  and Lozano-1’L.rez 84, 
Stockman arld Estcva 841. See (Grimson  and  Lozano-Perez 841 for 
a more  thorough discussion of the relevant  literature. 
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In this  paper, we deal  with  two different, but  related, sets of 
geometric  constraints.  The  first  set is a simple  set of constraints 
in which  position  and  orientation  are decoupled. The  simplicity 
leads to  very  efficient implementations,  but  the  decoupling  reduces 
their  pruning  power.  The  second  set  retains  the  natural  coupling 
between  positions  and  orientations.  This  set is  more  powerful, but 
computationally  more  complex.  Both  sets  are  developed first for 
the case of a  single,  isolated  object,  and  then for the case of several 
overlapping  objects. 

2. Decoupled Constraints 

We hegin by deriving  a set of coordinate-frame-independent 
constraints,  which  were  first  presented in [Grimson  and  Lozano-PQrer 
8.11. The  first  question  to ask  is what  types of coordinate-frame- 
independent  constraints  are possible,  given that  the sensory data  are 
sparse  planar  patches,  each  consisting of a position  measurement 
and a unit  surface  normal (see Figure 1). Clearly,  a single patch 
provides no constraint on the  model faces that could consistently 
be matched  to it. Therefore, we consider pairs of patches.  Each 
such  pair  can  be  characterized  by  the  pair of unit  normals, nl and 
na, and  the  separation  vector  between  the  patch  centers  (assuming 
small pakhes)  d, as shown  in  Figure 1. 

Q / ,/ 

Figure 1. The  constraints between pairs of measured surface 
patches. A given pair of sensory points P1,Pz is characterized by the 
conlporlcnts of the vector d between them, in the  direction of each of 
the  surface normals nl,n2 and in the direction of their cross product, 
n l  X nz, and by the angle between the two normals, nl. na. 

2.1. The Constraints 

First  construct  a local coordinate  frame  relative  to  the sensed data; 
we use both  unit  normals as basis  vectors. In Iwo dimensions, 
these define a local system,  except in the  degenerate case of the 
unit  normals  being  (anti-)parallel. In three  dimensions,  the  third 
component of the local coordinate  frame  can be taken as the  unit 
vector in the  direction of the cross product of the  normal vectors. In 
this  frame,  one  set of coordinate-frame-independent  measurements 
is: the  components of the  vector d along  each of the  basis  directions 
and  the  angle  between  the  two  measured  normals. More formally, 

n~ -n2 

d.nr 
d 'n2 

d * u  
where u is a  unit  vector in the  direction of nl X n2. 

These  measurements  are  equivalent,  but  not  identical to the 
set used in [Grimson  and  Lozano-Pkrez 841. In the  earlier  paper, 
we used the  magnitude of d and two of its components;  this is 
equivalent,  up to  a possible  sign ambiguity,  to using the  three 
components of the vector.  This possible ambiguity  was resolved 
using a triple  product  constraint. 

To turn  these  measurements  into  constraints on the  search 
proccss, we must  relate  them  to  measurements  on  the  model 
elcmcnts. Since objects  are  modeled aa sets of planar faces, the 
relationship is straightforward.  Consider  the  first  measurement, 
nl .n2. If this is to correspond to a measurement  between  two faces 
in the  model,  then  the  dot  product of thc model  normals  must  agree 
witah this  measurement. If they  do  not  agree,  then no interpretation 
that  assigns  those  patches  to  these  model faces  need be considered. 
In the  interpretation  tree,  this  corresponds  to  pruning  the  entire 
subtree below the  node  corresponding  to  that  assignment.  The test 
can  be  implemented efficiently by precomputing  the  dot  product 
between  all  pairs of faces in the models. 

Note  that in the easc of pcrfect  data,  this is a very  powerful 
constraint, since it requires that  two data  points  have  a  relative 
orientation  that is identical  to  thc  relative  oricntation of the 
Corresponding  model  faces. In practice,  howevcr,  the  surface  normals 
can only be measurcd to  within  some  cone of error, and  this  implies 
that  the  dot  product  computed  from  the sensory data  is actually 
a  range of values, defined by bounds on the senscd error.  As a 
con9equence, the  constraint is somewhat  weaker, since if the  dot 
product of the face normals lies within  this  rangc,  this is a locally 
consistent  assigument of model  faces to data  points. 

Similar  constraints  can  be derived  for the  components of the 
separation vector in the  directions of the  unit  normals.  Each  pair 
of model  faces  defines  an  irifioitc set of possible separation  vectors, 
each  one  having its head on one face  and  its tail in the  other. We 
can  compute  bounds on the  components of this  set of vectors in the 
dircction of each of the face normals.  Again, for  an assignmmt, of 
patches  to  model faces to be  consistent,  the  measured  value, plus 
some  range of values about it due  to error in the sensor, with  must 
agree  with  the  precomputed  model values. 

Grimson [84] argues  from a combinatorial  analysis that  these 
constraints  are very  powerful, and in the case of data  all  obtained 
from  a  single  object, will converge  quickly to  a small  set of 
interpretations.  The  analysis also  shows that  the  constraints  should 
exhibit a graceful  degradation  with  increasing  sensor noise. The 
performance of the  constraints  has also  been demonstrated by 
simulation;  Grimson  and  Lozano-Perez (841 report on a large  set of 
simulations run  on a series of test  objects, for varying  types of error 
conditions.  The  technique  has also  been applied  to  several different 
typcs of real  data, including sonar, laser rangc  data,  binary  images, 
and  edges  detected  from grey-level images (see  Section 2.4.3). 

2.2. Adding A Model  Teat 

Once the  interpretation  tree  has  been  pruned,  there  are  typically 
only a few  non-symmetric  interpretations of the  data  remaining. 

It is important  to realize, howrvcr,  that  these  constraints  are not 
guarantced  to  reject all  impossihlc irlkrpretstions.  Let d i j  be the 
distanec  between  two sensed patches, Pi and P3. This  measured 
distance  may  be  consistent  with  thc  range of distances  between 
faces fu and f v ,  but  only if the  patches  are  inside of small regions 
on the  candidate  surfaces. NOW consider what  happens when  adding 
another  patch-surface  pairing, ( E $ ,  fw), to  an  interpretation  that 
already  includes (Pi, fu) and (Pj, f"). Our constraints  permit  adding 
thiv pairing only if the  distances d;k and djr  are  consistent  with 
the  range of distances  between fu,fw and f v , f w ,  respectively. In 
doing  this,  however, it uses the  ranges of distances possible  between 
any  pair of points  on  these faces. It does not  take  into  account  the 
fact  that only small regions of f,, and fv  are  actually eligible. 

Because of this  decoupling of the  constraints,  the  fact  that 
all  pairs of patch-surfaces  assignments  are  consistent  does  not 
imply  that  the global assignment is consistent.  To  determine  global 
consistcncy,  we solve  for a  transformation  from  model  coordinates 
to  sensor  coordinates  that  maps  each of the sensed  patches to 
the  interior of the  appropriate face. There are  many  methods for 
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actually  solving  fot  the  transformation,  one is described in [Grimson 
and Lozano-l’krez 841. l h i s  model  test is applied  to  interpretations 
surviving  pruning SO a to guarantee  that all the available geometric 
constraint is satisfied. As a side effect, the model test also  provides 
a solution  to  the  localization  problem. 

2.3. Data from Mult ip le  Objects 

The  method  described So far  assumes  that all the  data comes 
from a single object.  Assume  that  all of the sensed patches,  except 
one,  originate  from  the  same  object.  Let Pi be the  extraneous 
rneasure~nent.  Usually, it will be impossible to find an interpretation 
that  includes  this  measurement.  But,  not all interpretations will 
fail at level i in the  tree;  it  may  require  adding a few  more data  
points to the  interpretation before the  inconsistency is noted. It is 
only  when all possiblr  singlt~  object  interpretations fail that  we are 
certain to have a t  k a t  one extraneous  data  point. 

I t  may  still be possible to find an  interpretation of all the 
data,  including  extraneous  measurements,  that is consistent  with the 
pairwise  constraints. I t  is even  possible, by a fortuitous  alignment 
of the  data,  for  interpretations involving extraneous  data to pass 
the  model  test.  Thrre is nothing  within  the  approach  described 
here to exclude  this possibility. Of course,  the  larger  the  number 
of patch-surface  pairings in the  interpretation,  the less likely this 
is to  happen. In many cases, i t  may  be  necessary to verify the 
interpretation  by  acquiring  more  data.  We will not  pursue this point 
here; we will assume,  instead,  that  the  presence  of  extraneous  points 
will cause all interpretations  to fail either  the local constraints or 
+.he model  test. 

One straightforward  approach  to  handling  extraneous  data 
points is to apply  the  recognition  process  to all subsets of the  data,  
possibly ordered by some  heuristic.  Rut,  of  course,  this  approach 
wastes  much  work  determining  the  feasibility of the  same  partial 
interpretations.  Can we consider all subsets of the  data  without 
w.?sting the work of testing  partial  interpretations?  The  simple way 
we have  done  this is by adding  one  more  branch to each  node of 
the  interpretation  tree, IT .  This  branch  represents t.he possibility 
of discarding  the  sensed  patch as extraneous. Call this  branch  the 
null face. The  remainder of the  process  operates as before  except 
that, when  applying  the local constraints,  the null face  behaves as 
a “wild card”;  assigning a patch to the null face will never  cause 
the  failure of an  interpretation. 

I t  is  easy to see that  if an interpretation is legal, the  process 
described  above will generate all subsets of this  interpretation 
as leaves of the  tree.  This is true of partial  interpretations as 
well as full interpretations  since  every  combination of assignments 
of the  null  face to the sensed patches will still produce a valid 
interpretation. 

Thc sarnr condition that  ensuxy  the validity of this  process 
guarantees its  ineficiency. We do  not  want  to  generatc all subsets 
of a valid interpretation. In general, we want  to  generate  the 
interpretations  that arc consivtcnt  with as much as posyible of the 
sensed data.  The following simple  method  guarantees  that we find 
only the  most  complete  interpretations. 

The I T  is explored in a depth-first  fashion,  with  the null face 
considered  last  when  expanding a node. In addition,  the  model test 
is applied  to any complete  interpretations,  that is, any  that  reach a 
leaf of the IT. Now, assume  an  external  variable, call i t  “, tha t  
keeps  track of the  longest valid interpretation  found SO far  (where 
length is taken  to be the  number of non-null  faces paired  with 
sensed data  by  the  interpretation).  At  any  node  in  the  tree,  let 
denote  the  number of non-null faces in the  partial  match  associated 
with  that  node.  It is only worth  assigning a null  face  to  patch Pi, 
if 8 - k + A4 2 M A X ;  s is the  total  number of sensed  patches. 

Otherwise,  the  length of the  interpretations at all  the leaves  below 
this  node will be less than  that  of the  longest  interpretation  already 
found. If we initialize M A X  to some non-zero value,  then  only 
interpretations of this  length or longer will be  found. As longer 
interpretations  are  found,  the  value of M A X  is incremented,  thus 
ensuring  that we  find the  most  complete  interpretation of the  data. 
Note  that if an  interpretation of length s is found,  then  no  null-face 
assignments will be  considered  after  that  point. 

Looking for the longest  consistent  interpretation  dlows  the 
matching  algorithm to overcome many of the  combinatorial  problems 
of the null-face scheme,  but  it  makes  the  algorithm  susceptible to 
a potentially  serious  problem.  One of the bases of our approach 
to  recognition  has been to avoid any  global  notion of “quality” of 
match. We have  simply defined generous  error  bounds  and  found 
all interpretations  that  did not violate  these  bounds.  Once  all the 
valid interpretations  have been found, a choice between  them  can 
be made 011 a comparative  basis  rather  than  on  some  arbitrary 
quality  measure.  The modified algorithm, however, discards  valid 
interpretations  that  arc  shorter  than  longest valid interpretation. 
Therefore,  a iong interpretation on the  margin of the error bounds 
can  force us to  ignore  a  shorter  interpretation  that  may  be  the 
correct  match. 

w e  know of no  general  solutions  to  this  problem.  Quality 
measures  such as how  well the  transformation  maps  the  measured 
patches  onto  the  faces  [Faugeras  and  Iicbert 831 are useful but  ah0 
susceptible LO error. Our choice  would be  to consider  all the  valid 
interpretations  whose  length is within one or two  of the longest 
interpretation  and which are not subsets of a longer interpretation. 
This is also heuristic.  We  have  avoided  this issue in the  rest of the 
paper  and  simply  coped  with  the  occasional  recognition error. 

2.4. Test ing  

We have  tested  the  extended  method on simulated  data as well as 
on  actual  data  from  three  sensory  modalities. 

2.4.1. Simula t ions  with Two-Dimenaional Data 

We  have  done  extensive  testing of the  algorithm  with  simulated 
two-dimensional data  of the  type  illustrated in Figure 2. A number 
of polygons, representing  the  outlines of parts,  are  overlapped 
at random.  The  position  and  orientation of a  number of data  
patches  are  determined by computing  the  outermost  intersection of 
randomly-chosen  rays  with  the polygon boundaries.  The  position 
and  normal  information is then  corrupt.cd  by  random  errors  designed 
to  simulate  the  effect of imperfect  sensors (see Figure 2, the  small 
circles indicate  the  sensed  patches). 

The  algorithm  performs  quite well in  this  application.  long 
as enough  patches  are  sensed on the  desired  object,  the  algorithm 
can  locate  it.  On  average only one or two legal interpretations 
are  obtained.  Furthermore,  the  time to do  the  recognition  and 
localization is relatively low: on the  order of a few seconds on a 
Symbolics 3600 Lisp Machine.  The  time grows  when the  measurement 

\ w  0 0  

Figure 2. Simulations of overlapping  two  dimensional parts. (a) Set 
of outlines (b) Overlapped outlines, circles indicate positions of sensed 
patches (c) Interpretations. 
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error  grows, in the  manner  illustrated by the  simulations  reported 
in !Crimson  and  Lozano-PCrez 841. 

2.4.2. Simula t ions   wi th   Three-Dimens iona l  Data 

We have  performed similar simulations  with  overlapping  three 
dimensional  objects,  each  with six degrees of freedom, as illustrated 
in  Figure 3. The  average  number of legal interpretations is  only 
slightly  higher than for a single object.  The  computation  time, 
however, is significantly larger: on the  order of tens of seconds as 
opposed to  two or three  seconds for the single object case. 

Figure 3. Simulations of overlapping three dimensional Parts. 
Simulations similar to those shown  in Figure 2 were performed in three 
dimensions, with  overlapping parts such as those Shown here. 

In the  two  dimensional  case,  a  model  transformation W ~ S  

computed  whenever  a leaf of the  tree was  reached.  This  transform 
is  checked to  see if it transforms  the  patches  onto  their  associated 
faces.  This  ensures  that  the cutoff  using MAX will not  exclude 
any  correct  interpretations,  but  it is slow. A faster  but less reliable 
alternative is ti generate  the I T ,  using  the M A X  cutoff as before, 
but  simply collect  all pairwise  consistent  interpretations,  ordered 
by the  number of non-null  matches. We then  apply  the  model test 
find  the longest consistent  interpretations. 

Such a technique is typically  faster  than  applying a model 
test a t  each leaf of  the  tree,  but  it is not  guaranteed  to find 
the  correct  interpretation. In particular,  suppose  that  the  correct 
interpretation is of length m, but  that   the pairwise constraints allow 
an  interpretation  with m + 1 non-null matches to pass through. 
This will cause MAX to be at least m + 1, which  will  cutoff  the 
correct  interpretation. In our simulations of 3D overlapping  parts, 
we  have  applied  this  faster,  but less reliable  technique,  and  recorded 
the  percentage of cases in which no interpretation  was  found.  The 
failure  rate was typically less than  one in twenty. 

2.4.3. Edge   F ragmen t s   f rom  Gray-Leve l  Imagea 

A modified  version of the  algorithm described here  has  been 
applied to locating  a simple object in cluttered scenes,  using edge 
fragments  from  images  obtained by a camera  located  (almost) 
directly  overhead.  The  images are obtained  under  lighting  from 
several  overhead fluorescent  lights. The  camera is a standard vidicon 
located approximately five feet  above  the scene. The  edge  fragments 
are  obtained by linking  edge  points  marked as zero  crossings 
in the  Laplacian of Gaussian-smoothed images. Edge  points  are 
marked only  when the  gradient  at  that  point exceeds a  pre-defined 
threshold;  this is done  to  eliminate  some shallow  edges due to 
shadows.  The  algorithm is applied to  some pre-defined number of 
the  longest  edge  fragments. 

This  application  requires  extensions to  the  general  method. 
One  point  to  notice is that we have  large  edge  fragments  rather  than 
small  patches;  therefore, we can use the  length of the  fragments 
as an  additional local constraint. In our implementation, we do 
not  assign  edge  fragments  to  model  edges  that  are  shorter  than 
the  measured  fragment; we do assign small  edge  fragments to long 
model  edges. More importantly, we could  compute  whole r.mgw 
of measurements  from  the  edge  fragments  (as we do  from  model 
edges) rather  than  the single values  from point-like patches we 
assume elsewhere. The  constraints  would  then  require  that  the 

measured  range be contained in the model  range.  An easy way of 
approximating  these  stronger  constraints is by treating  the  edge aa 
two  small  patches  located a t  endpoints of the edges, but  constraining 
both  patches to be  assigned to  the  same model  edge. Both of these 
approaches  can  be generalized to  three-dimensions. 

The  most difficult problem faced in  this  application is that  
we cannot  tell  which  side of the edge  contains  the  object,  that is, 
the  edge  normals  can be determined only up  to  a sign ambiguity. 
The  algorithm  can  be  modified to keep track of the two  possible 
assignments of sign and to guarantee  that  all  the  pairings  in  an 
interpretation  have  consistent  assignments of sign. This  approach, 
however,  causes a noticeable  degradation in the  performance of the 
algorithm, since it reduces  the  pruning power of the  constraints. 
Fortunately, we can use another  form of the  constraints to reduce 
the  erect of this  ambiguity. 

Figure 4. Two dimensional edge data. (a) Grey level  imagca, (b) 
Eero-crossings, (c) edge fragments, (d) model, and (e] located object. 

As long 12y two edges do not cross or are  not collinear, at  least 
one  edge  must be compirtcly wii,llin one oi the half planes  bounded 
by the  other. This means  that  the  components along one of the  edge 
normals of all  possible separation  vectors will always  have the  same 
sign.  Given a tentative  pairing of two  measured  edge  fragments 
and  two  model edges, we can use this  property  to pick the sign 
of one of the  normals.  The angle constraint  between  normals  can 
then  be  used to consistently  select  the signs for other  edges in that  
interpretation. Of course,  the sign assignment is predicated  on  the 
initial  pairing being correct,  which it may  not  be, so we have lost 
some  pruning power in any case. 

The  algorithm succeeds in locating  the desired object in images 
where  the  edge  data is  very sparse (see Figure 4). The speed of 
performance  under  these  circumstances is not  yet  acceptable  for 
practical  applications; it can take  up  to 20 seconds of elapsed  time 
on a  Symbolics 3600 Lisp Machine to  process an  image  with 50 
edge  fragments.  This is quite  a  bit slower than  the  performance 
of the  algorithm  when  the yign of the  normal is  available. We are 
currently  investigating  extensions of the  algorithm  to  improve  this 
performance. 

2.4.4. R a n g e   D a t a   f r o m  an Ul t rasonic   Senaor  

Michael  Drumheller  [Drumheller 841 has developed  a  modified 
version of the  algorithm described  above and  applied it to  range 
data  obtained  from  an  unmodified  Polaroid  ultrasonic  range  sensor. 
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The  intended  application is navigation of mobile  robots.  The  system 
matches  the  range  data  obtained by circularly  scanning  from the 
robot’s position towards  the walls of the  room.  The  robot  has a 
map of the walls of the  room,  but much of the  data  obtained  arises 
from  objects  on  the walls, such as bookshelves, or between  the 
robot  and  the walls, such as columns. 

The  algorithm first  fits line segments  to  the  range  data  and 
attempts  to  match  these line segments to wall segments. After 
matching,  the  robot  can solve for  its  position in the  room.  The 
data  obtainrd from the smsor is far fronl perfrct. In particx~lar,  the 
bcanl width is approximately 10 degrees, w h ~ c i ~  irads to significant 
errors on the Icngth of data  segments as well as a wide “penumbra” 
around  nearby  obstacles. See [Drunhdler 84j for more  details. 

3. Coupled Constraints 

As we noted  earlier,  the  decoupled  constraints  typically  prune  most 
of  the  non-symmetric  interpretations of the  data,  but  they  are  not 
guaranteed  to  reject all  impossible interpretations,  Consider  Figure 
5, for  example.  Consider  matching  patch P; to face fu, patch Pi 
to  face j,, and  patch I‘k to face fu,. These  assignments  are  pairwise 
consistent,  and  the  sections of the  faces  that  are feasible locations 
for  the  sensed  patches  are  indicated by the  sections  labeled ij, etc. 

Figure 5. The constraints  are decoupled. 

The  assignment is not globally consistent, however, as indicated 
by the  fact  that  the  segments  for  face fu and j,,, do  not overlap. 
Thus,  since  the  patches  are  pairwise  consistent  with  the  candidate 
faces,  they  are  accepted as part of a feasible  interpretation, even 
though clearly they  are  not. Using the  decoupled  constraints,  it 
is  only after  the  model  test is applied to interpretations  surviving 
pruning  that all the available geometric  constraint is exploited. For 
the case  of a single object,  this  merely implies some inefficiency. 
For the  case of multiple,  overlapping  objects, we may  actually 
miss a correct  interpretation. For example, a locally consistent (but 
globally inconsistent)  interpretation of length M will cause us to 
ignore a globally consistent  interpretation of length m < M. We 
would not discover our error until  the  model  test is applied  after 
pruning of the  interpretation  tree. 

One solution is to  interdigitate  the model test  with  the 
tree  generation  stage.  That is, whenever we reach a leaf of the 
interpretation  tree, we apply  the model test  to  ensure  that  the 
interpretation is  globally consistent. If it is, then we update our 
global  counter MAX, and  continue. If it is not,  then we continue 

our  search  with  the  current  value of M A X .  The  problem  with  this 
melhoti is that  it may  be computationally expensive. As we stated, 
the  purpose of finding ekctive local constraints is to enable US 
to avoid applying an  expensive model transformation,  except  when 
necessary. 

An alternative  solution is to find constraints  that  maintain 
global consistency  without  requiring  an  explicit model transfor- 
mation.  One  such  set of constraints is developed  below for the 
t,wo-dimensional case. 

I / 
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Figure 6. The constraints  are recoupled. 

3.1. The Coupled Constraints in Two-Dimensions 

Suppose we consider two  edges  of  an  object,  oriented  arbitrarily  in 
sensor coordinates, X I  shown in Figurc 6. With  each  edge we  will 
n9sociate a base  point, defined by the  vector b;, a unit  tangent 
vector t,,  which  points  along t.he edge  from  the  base  point,  and a 
unit  normal  vector ni, which points  outward  from  the  edge.  Thus, 
the  position of a point PI along  edge f, in this  coordinate  system 
is  given by 

bi + alti a1 E [O, ti] 
where ti is the  length of the  edge.  Similarly, a point P2 on face f j  
can  be  represented by 

bj + a2tj a2 E [O, 4 1 .  
The  vector between two  small  measured  patches is  given by 

dl2 = bi + alt; - bj - aztj. (1) 

As in the  earlier case, we know that  we can  measure d12 and nl,  
thus we know dl2 . nl = m12 up t o  some error  range  that is a 
function of the  bounds on the  sensitivity of the  sensor  [Crimson 
and  Lozano-Perez 841. That is, we know that  the  true value of 
d12 . nl lies  in the  range 

dl2 . nl E Imlz - E, m12 + 4 
where c can  be computed  straightforwardly. 

From (1) we have 

dl2 nl = (bi - bj) . ni - a2(tj . ni). (2) 
The first term is a constant  and is a function of the  object  only, 
independent of its  orientation.  Thus,  equation (2) provides us with 
a constraint  on  the  value of 0 2 .  In particular, if t j  . ni = 0, then 
this  assignment of patches  to faces is consistent only if 

,3 - (bi - bj) n; E [m12 - ~ , m ~ 2  + E]. 

If this is true,  then a2 can  take on any  value in its  current  range. 
If it is false, then  the  assignment of these  patches P1,Pz to these 
faces f%,fj  is inconsistent  and  can  be  discarded. 

,” - 

In the  more common  case,  when tj . n; # 0, we have 

aj E 
[r;j . ni - rn;, - E rij . ni - mij + 6 
1 t, ’ni , t, . ni 1. 

Thus, we have  restricted  the  range of possible  values for a2 and 
hence  the  set of positions  for  patch P2 that  are  consistent  with  this 
interpretation. 

Similarly,  by using the values for d12 . n2 obtained  from  the 

thereby,  the  position of PI. 
measurements, we can  restrict  the  range of values for al and, 

w e  can  also  consider  the Coordinate-Dame-independent term 

dl2 tl = (bi - bj) ti + a1 - aZ(tj ‘ t i ) .  (3) 
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As  before, we can  place  bounds  on  the  measured value for d12 . tl. 
Then, given a  legitimate  range for a1 we can  restrict  the  range of 
az and vice versa.  A  similar  argument  holds for dlz . tz. 

These  constraints allow us to  compute  intrinsic  ranges  for  the 
possible assignments of patches  to faces. The kcy to  them is that  
we can  propagate  these  ranges as we construct  an  interpretation. 
For example,  suppose  that we assign patch PI to  face f i .  hitially, 
the  range for a1 is 

E (O,&]. 
\Ne  now assign  patch f’2 to  face fj, with 

a2 E [Os til 
initially. By applying  the  constraints derived  above, we can  reduce 
the  legitimate  ranges  for  thcse  first  two  patches to some smaller 
set  of  ranges. We  now consider adding  patch p3 to  face f k .  When 
we construct  the  range of legal  values for a3, we find that  the 
constraint3  are  generally  much  tighter, since the legal ranges  for a1 
and a2 have  already  been  reduced.  Moreover,  both a1 and a2 must 
be  consistent  with a3, so the legal range  for this patch is given by 
the  intersection of the  ranges  provided by the  constraints.  Finally, 
the refined  range of consistent values for a3 may in  turn  reduce 
the legal ranges for a, and a2 and  these new  ranges  may  then 
refine  each  other by another  application of the  constraints, and SO 

OIL. In  other  words,  the legal ranges  for  the  assignment of patches 
to  faces  may  be relawed via  the  constraint  equations,  and in this 
manner,  a globally consistent  assignment is maintained. Of course, 
if any of the  ranges  for ai becomes  empty,  the  interpretation  can 
be  discarded as inconsistent  without  further  exploration. 

We thus  have  the basis for  a  second recognition and  localization 
technique. As before, we generate  and  prune  a  tree of interpretations, 
by assigning  sensed  patches  to faces of an  object.  Here  there  are  two 
types  of  constraints.  The  first is that  the  angle between  two  sensed 
normals,  modulo  error in the  sensor,  must  be  consistent  with  the 
angle  between the  corresponding  face  normals, as in the  previous 
case. The second  involves the  relaxation of mutual  constraints  on 
the  range of positions  on  a  face  consistent  with  points of contaet 
on those faces, as described above. 

These  constraints  can be extended  to  three dimensions. 

3.2. Simula t ions  with Two-Dimensional Data 

The  crucial  question  to  consider for the  range  propagation  technique 
j.q to what  extent  the  implicit  recoupling of the local constraints 
rcduces  the  amount of explicit  exploration of the  interpretation tree.  
we have  done  extcnsive  testing of tile  algorithm  with  simulated 
two-dimensional data of the  type  illustrated in Figure 2.  We 
compared  the  ratio of the  number of nodes  explored  using the  range 
propagation  technique,  to  the  number of nodes  explored  for  the 
same  data using the  decoupled  constraints.  Ovcrall, we found  that 
the  average  number of nodes  explored in  the  interpretation  tree is 
not significantly reduced  from  the  normal  method. 

... 

We note that  since the  error  ranges  associated  with  each 
constraint differ  between the  normal  constraints  and  the  coupled 
constraints, it is possible  for the coupled  eonstraints  to  actually 
be less effective in removing  portions of the  interpretation  tree. 
This is especially noticeable for large values of error in the  surface 
normal.  Given  the  additional  overhead  associated  with  computing 
and  intersecting  the  ranges of feasible positions  along edges, it  may 
not be worth while to uw  the  range  propagation  mdhod. Wr note 
that  these  results  may differ  when considering  objects  whose  faces 
do not  all  form  right angles with one another. 
4. Summary 

We  have  presented a recognition  technique  based  on  a  search 
for consistent  matches  between local geometric  measurements  and 
model  faces.  .The technique offers a number of advantages:  it is very 

simple  yet efficient; it can operate on sparse  data;  it is applicable 
$0 a  wide  range  of sensory modalities  and choice of features; it 
degrades gracefully  with error. 

In addition  to  the  advantages of the  particular  technique,  the 
framework  within  which it has becn developed has proven  useful 
both to  analyze  exprcted  performance of t.his method  and to  mode1 
a  lumber of other  methods. In fact, wc have  described a framework 
for  a class  of recognition  algorithms. We considered two  major 
variations  depending on the  class of constraints  employed;  some 

minor  variations  were  employcd i n  dcaling with dilkrent  sensory 
m o d a i i h ,  nolabiy grey-scale  edges. These  variations,  however, 
share  many  common  assumptions as to the  structure of the  scarch  for 
consistent  matct~ings. We have  asmmcd, for  example, that we match 
some subset  of  the  data  elements  against all the  model  elcmenta 
a t  once; that  we obtain all (longest)  consistent  interprctations; 
that   thc objects  have  comparable  number of degrees of freedom 
as the  measurements.  Beyond  these  algorithmic  assumptions, we 
have preserved some  assumptions  about our domain. We have 
assumed, for example, that  the  data is made up of simple local 
measurements  such as surface  patches;  that  the  model is made 
up of planar  faces;  that  the  dimensions of the  objects  are f i e d  
and  known  a  priori. All of these  assumptions  can  be  relaxed while 
retaining  the  characteristic fiizvor  of the  approach  presented  here. 
We have  implemented all of these  extensions  with  relatively  minor 
modifications  to  the  program code. 
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