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Abstract

Optimal Transport has recently gained in-
terest in machine learning for applications
ranging from domain adaptation to sentence
similarities or deep learning. Yet, its ability
to capture frequently occurring structure be-
yond the “ground metric” is limited. In this
work, we develop a nonlinear generalization
of (discrete) optimal transport that is able to
reflect much additional structure. We demon-
strate how to leverage the geometry of this
new model for fast algorithms, and explore
connections and properties. Illustrative ex-
periments highlight the benefit of the induced
structured couplings for tasks in domain adap-
tation and natural language processing.

1 Introduction

Optimal transport provides a natural, elegant frame-
work for comparing probability distributions while re-
specting the underlying geometry (Villani, 2008). Due
to its strong theoretical foundations and many desirable
properties, both the continuous and discrete versions
of the transportation problem have received consid-
erable attention in various fields within and beyond
mathematics, including statistics (Mallows, 1972), dif-
ferential equations (Jordan, Kinderlehrer, and Otto,
1998), optics (Glimm and Oliker, 2003) and economics
(Galichon, 2016). Within machine learning and related
fields, optimal transport distances (in particular the
Wasserstein metric) have found successful application
to shape analysis (Gangbo and McCann, 2000), image
registration and interpolation (Solomon et al., 2015),
domain adaptation (Courty et al., 2017), adversar-
ial neural networks (Arjovsky, Chintala, and Bottou,
2017), and multi-label prediction (Frogner et al., 2015).
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The discrete version of the problem has also had im-
pact in settings where relaxed notions of matchings are
sought, such as pairing control and treatment units in
observational studies (Rosenbaum and Rubin, 1985).
The range of applications has been growing with the
development of fast algorithms (Cuturi, 2013; Genevay
et al., 2016).

An important appeal of optimal transport distances is
that they reflect the metric of the underlying space in
the transport cost. Yet, in a number of settings, there
is further important structure that remains uncaptured.
This structure can be intrinsic if the distributions corre-
spond to structured objects (e.g., images with segments,
or sequences) or extrinsic if there is side information
that induces structure (e.g., groupings). A concrete
example arises when applying optimal transport to do-
main adaptation, where a subset of the source points
to be matched have known class labels. In this case,
we may desire source points with the same label to
be matched coherently to the same compact region of
the target space, preserving compact classes, and not
be split into disjoint, distant locations (Courty et al.,
2017). When pairing control and treatment units in
observational studies of treatment effects, it is benefi-
cial to compare treated and control subjects from the
same “natural block” (e.g., family, hospital) so as to
minimize the difference between unmeasured covari-
ates (Pimentel et al., 2015). In all these examples,
the additional structure essentially seeks correlations
in the mappings of “similar” source points. Such de-
pendencies, however, cannot be induced by standard
formulations of optimal transport whose cost is separa-
ble in the mapping variables;1 they require nonlinear
interactions.

In this work, we develop a framework to incorporate
such structural information directly into the optimal
transport problem. This novel formulation opens av-
enues to a much richer class of (nonlinear) cost func-
tions, allowing us to encode known or desired interac-

1The original optimal transport formulation with cost∑
ij cijγij is linear in the mappings γij , γkl of separate

source locations i, k; the mappings are counted indepen-
dently.
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tions of mappings, such as grouping constraints, cor-
relations, and explicitly modeling topological informa-
tion that is present, for instance, in sequences and
graphs. The tractability of this nonlinear formula-
tion arises from polytopes induced by submodular set
functions. Submodular functions possess two highly
desirable properties for our problem: (1) they natu-
rally encode combinatorial structure, via diminishing
returns and as combinatorial rank functions; and (2)
their geometry leads to efficient algorithms.

The resulting combination of the geometries of trans-
portation and submodularity leads to a problem with
rich, favorable polyhedral structure and connections
to game theory and saddle point optimization. We
leverage this structure to solve the submodular opti-
mal transport problem via a saddle-point mirror prox
algorithm involving alternating projections onto the
polytope defined by the transportation constraints and
the base polytope associated with the submodular cost
function. The former can be done efficiently through
Sinkhorn iterations, while the latter, as we will see, can
be solved exactly in O(n log n) time for a suitable class
of submodular functions.

Via various applications and experiments, we explore
the characteristics of the solutions to this novel trans-
portation problem and demonstrate the efficiency of our
algorithms. We show how different submodular func-
tions yield solutions that interpolate between strictly
structure-aware transportation plans and structure-
agnostic regularized versions of the problem. Besides
these synthetic experiments, we evaluate our frame-
work in two real-life applications: domain adaption for
digit classification and sentence similarity prediction.
In both cases, introducing structure leads to better
empirical results.

Contributions. In short, we make the following con-
tributions: (1) we propose a framework for including
structured information into optimal transport that inte-
grates concepts from combinatorics to geometry; (2) we
show efficient optimization methods that carefully ex-
ploit the underlying geometric structure; (3) we demon-
strate the utility of this new framework via example
applications in domain adaptation and sentence similar-
ity, where our structured couplings outperform classical
and class-regularized versions of optimal transport.

2 Background

2.1 Optimal Transport

The original formulation of optimal transport by Gas-
par Monge considers two probability measures µ, ν over
metric spaces X ,Y, and a measurable cost function

c : X × Y → R, which represents the cost of transport-
ing a unit of mass from x ∈ X to y ∈ Y. The problem
asks to find a transport map T : X → Y that realizes

inf
T

{∫
X
c(x, T (x))dµ(x) | T#µ = ν

}
, (1)

where T# denotes the push-forward of µ by T . The
solution to (1) might not exist. However, a convex
relaxation of the problem due to Kantorovich is guar-
anteed to have a solution:

inf
γ

{∫
X×Y

c(x, y)dγ(x, y) | γ ∈ Γ(µ, ν)

}
, (2)

where Γ(µ, ν) is the set of transportation plans, i.e., joint
distributions with marginals µ and ν. If µ and ν are
only available through discrete samples U := {xsi}ni=1

and V := {xti}mi=1, the empirical distributions can be
written as

µ =

n∑
i=1

psi δxsi , ν =

m∑
i=1

ptiδxti (3)

where psi , pti are the probabilities associated with the
samples. It is easy to adapt Kantorovich’s formulation
to this discrete setting. In this case, the space of
transportation plans is a polytope:

Mµ,ν = {γ ∈ Rn×m+ | γ1 = µ, γT1 = ν}. (4)

The cost function only needs to be specified for every
pair (xsi ,x

t
j), i.e., it is a matrix C ∈ Rn×m, and the

total cost incurred by γ is 〈γ,C〉 :=
∑
ij γijcij . Thus,

the discrete optimal transport (DOT) problem consists
of finding a plan γ that solves

min
γ∈Mµ,ν

〈γ,C〉. (5)

If n = m, and µ and ν are uniform measures, Mµ,ν

is the Birkhoff polytope of size n, and the solutions
of (5), which lie in the corners of this polytope, are
permutation matrices.

Discrete optimal transport is a linear program, and
thus can be solved exactly in O(n3 log n) with interior
point methods. In practice, a version with entropic
smoothing has proven more efficient (Cuturi, 2013):

min
γ∈M

〈γ,C〉 − 1

λ
H(γ). (6)

The solution of this strictly convex optimization prob-
lem has the form γ∗ = diag(u)Kdiag(u), with K =

e−
C
λ (entrywise), and can be obtained efficiently via

the Sinkhorn-Knopp algorithm, an iterative matrix-
scaling procedure (Cuturi, 2013). Besides significant
speedups, the smoothed problem often leads to better
empirical results in downstream applications.
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2.2 Submodularity

A set function F : 2V → R over a ground set V of items
is called submodular if it satisfies diminishing returns:
for all S ⊆ T ⊆ V and all v in V \ T , it holds that

F (S ∪ {v})− F (S) ≥ F (T ∪ {v})− F (T ) (7)

F is called supermodular if −F is submodular, and
modular if it is both sub- and supermodular. The
tractability of submodular functions arises from the
polytopes they define. The base polytope of F is

BF = {y ∈ R|V | | y(V ) = F (V ); y(S) ≤ F (S) ∀S ⊆ V }.

Base polytopes generalize matroid polytopes (convex
hulls of combinatorial “independent sets”), and lead to
strong links with convexity. The Lovász extension of
a set function F extends its domain from 2V to Rn+
(Lovász, 1982). For any w ∈ Rn+, order its coordinates
so that w1 ≥ · · · ≥ wn and define wn+1 = 0 and
Sj = {i | wi ≥ wj}. The Lovász extension f of F is

f(w) =

n∑
j=1

(wj − wj+1)F (Sj). (8)

If F is submodular, the Lovász extension is equivalent
to the support function

f(w) = max
x∈BF

wTx, (9)

which is convex. In fact, f is convex if and only if F is
submodular (Lovász, 1982).

3 Optimal Transport with
Submodular Costs

In the classical formulation of optimal transport (5),
the cost function 〈γ,C〉 is linear in the decision vari-
ables γ. This means each potential pairwise assignment
γij (i.e., every pair (µi, νj)) is treated independently.
But, in some applications, it is desirable to bias certain
points to be mapped together, i.e., to introduce depen-
dencies between assignments. In our running example
of domain adaptation, we want points from the same
class to be transported “together”. Intuitively, the joint
cost of mapping points from the same class to close-by
target points should be lower than splitting them apart,
even if the transportation distances are the same.

More generally, we might want to encourage mappings
of subspaces to subspaces, or, on the contrary, dis-
courage some combinations of assignments. A flexible
framework to express such interactions over discrete
choices is via submodular functions (Lin and Bilmes,
2011; Jegelka and Bilmes, 2011; Kohli, Osokin, and
Jegelka, 2013). Intuitively, property (7) implies that

the marginal cost of an additional element decreases
as more “compatible” items have already been chosen,
and thus it is relatively cheaper to select compatible
items together (e.g., items from the same group) than
non-compatible ones.

To see how submodularity can be leveraged for optimal
transport, consider for a moment Monge’s formulation
(1), where we seek a matching of the elements in U and
V with minimal cost. Any matching can be expressed
as a set of edges S = {(u1, v1), . . . , (uk, vk)}, and its
cost as a set function F : 2|U |×|V | → R+. Under this
formulation, the classic definition of optimal transport
uses a modular cost function:

F (S) =
∑

(u,v)∈S

cuv,

so the cost of the additional match (u, v) is the same,
namely cuv, regardless of what assignments have al-
ready been made. If we let F be submodular instead,
property (7) implies that the marginal cost of addi-
tional edges decreases as the set of matches grows. The
magnitude of decrease depends on S, the new item v,
and the choice of F . We will channel this decrease
to occur only when the additional “item” (assignment
(u, v)) is compatible with already chosen “items”.

3.1 Submodular cost functions

The rich class of submodular functions allows various
types of structural information (compatibility) to be
encoded in the cost function. As an example, recall the
local consistency structure induced by class labels in
domain adaptation. We may divide the support of the
source and target distributions µ and ν into regions
(subsets of samples) Uk ⊂ U and Vl ⊂ V . These induce
a partition of the set of assignments too:

Ekl := {(u, v) | u ∈ Uk, v ∈ Vl}.

Now define

F (S) :=
∑
kl

Fkl(S ∩ Ekl), (10)

where each Fkl is submodular with reduced support
Ekl. One possible choice for Fkl is

Fkl(S) = gkl

( ∑
(u,v)∈S∩Ekl

Cuv

)
, (11)

where Cij ∈ R+ is the ground metric cost between xsi
and xtj , and gkl : R→ R are scalar monotone increasing
concave functions whose effect is to dampen the cost of
additional edges between the partitions Ul and Vk, thus
encouraging edge selections that map most of the mass
in Ul to the same Vk. To grant discounts only after
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a sufficient number of assignments have been chosen
from a group, we may use an explicit threshold, e.g.,

gkl(x) = min{x, α}+
√

[x− α]+. (12)

We use such functions in the clustered point matching,
domain adaptation and sentence similarity experiments
in Section 5. We may also use subspaces for encod-
ing structure. For example, a smoother grouping of
assignments (u, v) could be encoded by stacking fea-
ture vectors for u and v into one vector φ(u, v) and
taking F (S) = rank(ΦS), i.e., the rank of the matrix
of features of the selected assignments, or the volume
F (S) = log det(Φ>SΦS). This function captures discrete
groups if the feature vectors are indicator vectors of
groups. Other important examples include hierarchical
structures and coverage functions.

3.2 Problem Formulation: Submodular
optimal transport

The functions defined above have discrete domains, i.e.,
they correspond to discrete matchings, but we really
seek a formulation like (5), with continuous, fractional
assignments. The key to obtaining a nonlinear, struc-
tured analog of Kantorovich’s formulation (2) of the
classical problem is the convex Lovász extension f of
the submodular function F . The above intuitions and
effects carry over, and we define the submodular optimal
transport problem as

min
γ∈M

f(γ) ≡ min
γ∈M

max
κ∈BF

〈γ, κ〉. (13)

The right hand side follows since the Lovász exten-
sion is also the support function of the submodular
base polytope. This relaxation has another advantage:
while the discrete version is hard to even solve approx-
imately (Goel et al., 2009), problem (13) is a convex
optimization problem on γ.

The new structured optimal transport problem recovers
many desirable properties of the original optimal trans-
port formulation. For example, the “distance” implied
by it is a semi-metric under mild assumptions (proof
in the Supplementary Material):
Lemma 3.1. Suppose the ground cost C(·, ·) is a met-
ric and that F is a submodular non-decreasing function
such that F (∅) = 0 and F ({(i, j)}) > 0 iff C(xi, yj) > 0.
Then dF (µ, ν) = minγ∈M f(γ) is a semi-metric.

Problem (13) suggests two possible approaches for com-
puting the optimal transport plan γ∗. The left-hand
side is a non-smooth but convex optimization problem,
which can be solved via subgradient methods. Alterna-
tively, the minimax form is a smooth convex-concave
optimization over nonempty, closed and convex sets.2

2M,BF , being polytopes, are closed and convex. M is
always nonempty (µνT ∈ M), and so is BF (Bach, 2013).

Therefore, (13) is a convex-concave saddle-point prob-
lem (Juditsky and Nemirovski, 2011a). The solutions
z∗ := (γ∗, κ∗) of this problem, i.e., the saddle points
φ := 〈·, ·〉 in Z :=M×BF , satisfy

φ(γ∗, κ) ≤ φ(γ∗, κ∗) ≤ φ(γ, κ∗) ∀γ ∈M, κ ∈ BF

This formulation gives rise to a primal-dual pair of
convex optimization problems:

Opt(P ) = min
γ∈M

φ̄(γ), φ(γ) := sup
κ∈BF

φ(γ, κ) (14)

Opt(D) = max
κ∈BF

φ(κ), φ(κ) := sup
γ∈M

φ(γ, κ) (15)

If a saddle point (γ∗, κ∗) exists, then it is a primal-
dual optimal pair and Opt(P ) = Opt(D). Hence, the
saddle-point gap quantifies the accuracy of a candidate
solution (γ̂, κ̂):

εsp = sup
γ
φ(γ, κ̂)− inf

κ
φ(γ̂, κ)

= [φ(γ)−Opt(P )]− [Opt(D)− φ(κ)]

Since φ is continuous and convex-concave, andM,BF
are convex and bounded, a solution always exists.

Although more involved than the alternative convex
optimization approach, this saddle-point formulation
results in a smooth objective, which allows for the use of
methods with O( 1t ) convergence rate instead of O( 1√

t
).

This, however, comes at the price of a higher cost per
iteration. We analyze these opposing effects theoreti-
cally in the next section and empirically in Section 5.
Beyond these computational issues, the saddle-point
formulation provides interesting interpretations of the
structured optimal transport problem through the lens
of minimax optimization and its well-known connec-
tions to game theory and robust optimization.

Game Theoretic Interpretation. The minimax
formulation (13) is a min-max strategy polytope (MSP)
game (Gupta, Goemans, and Jaillet, 2016): a two-
player zero-sum game with strategies played over poly-
topes with payoff function 〈γ, κ〉. In this optimal trans-
port game, Player A (the minimizer) chooses a trans-
port plan γ between µ and ν, and Player B (the adver-
sary) chooses a cost matrix κ from the set of admissible
costs, i.e., those that lie on the base polytope defined by
the submodular cost function F . After this, Player A
pays 〈γ, κ〉 to Player B. Since the game is guaranteed
to have a Nash equilibrium, there is a pair of transport
plan γ∗ and cost matrix κ∗ such that γ∗ is optimal for
fixed cost κ∗ and vice versa.

The shape and size of the adversary’s strategy polytope
BF , an nm− 1 dimensional set in Rn×m, depends on
the characteristics of F . The “more submodular” this
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function is—i.e., the earlier and sharper the marginal
costs decrease—the larger is BF . If F is modular, the
base polytope collapses to a single point, that is, Player
B plays a fixed strategy: a ground cost matrix C. The
problem then reduces to minγ∈M〈γ,C〉: the traditional
optimal transport problem (5).

Robust Optimization Interpretation. Problem
(13) can also be viewed in the light of robust optimiza-
tion (Ben-Tal, Ghaoui, and Nemirovski, 2009; Bert-
simas, Brown, and Caramanis, 2011), where uncer-
tain observations are treated in a worst-case scenario.
Structured optimal transport could then be viewed as
a transportation problem with uncertain cost matrix
κ, where we aim for a solution that is robust to any
fluctuation of costs within the confidence set BF .

3.3 Further related work

Courty et al. (2017) propose to include structural infor-
mation into the standard transportation cost by adding
a group-norm regularizer. In contrast, our polyhedral
approach directly modifies the linear cost function,
does not need a regularization coefficient, allows to
integrate a wide set of combinatorial functions, and
directly leads to the saddle point connections. Our
framework is also fundamentally different from known
connections between multi-marginal optimal transport
and submodularity (Bach, 2015; Carlier, 2003; Pass,
2015); while that setting is separable over assignments
γij , the submodularity ranges across assignment pairs
between two distributions.

4 Solving the Optimization Problem

4.1 A case for proximal methods

Most popular first-order optimization methods for con-
strained convex problems fall into two categories: con-
ditional gradient and proximal methods. Methods in
the former class, like the Frank-Wolfe algorithm, re-
quire solving linear minimization oracles (LMO) as a
subroutine. In the case of (13), this means solving a
classic (non-regularized) optimal transport problem in
each iteration, which is expensive.

On the other hand, proximal methods require mirror
map computations and projections. The choice of mir-
ror map is crucial for the efficiency of these methods,
and should take into account the geometry of the con-
straint set. Only if the resulting projections can be
easily computed are proximal methods an attractive
alternative. As we show below, for appropriately cho-
sen mirror maps this is the case for both constraint
sets in problem (13). We briefly discuss all required
subroutines in the next section, and present outer op-

timization algorithms in Section 4.3. We outline the
main concepts here; detailed derivations may be found
in the Supplementary Material.

4.2 Subroutines: projections and
subgradients

Subgradients of f . The subdifferential of f is

∂f(γ) = argmax
κ∈BF

〈κ, γ〉.

Thus, a subgradient of f is computed by a linear op-
timization over the base polytope, which, despite ex-
ponentially many constraints, can be solved by a sim-
ple sort via Edmonds’ greedy algorithm in O(N logN)
time, where N = n×m is the dimension of γ.

Projections on the coupling polytope. If we
use (negative) entropy as the mirror map in M, i.e.,
ΦM(γ) := H(γ) =

∑
i,j γij ln(γij), the projection of a

point w ontoM is given by the KL-divergence:

γ̂ = argmin
γ∈M

KL(γ ‖ w). (16)

This problem is efficiently solved by the Sinkhorn-
Knopp algorithm (Cuturi, 2013; Benamou et al.,
2015). An ε-accurate solution can be computed in
O(N logNε−3) time (Altschuler, Weed, and Rigollet,
2017), but often much faster empirically (Cuturi, 2013).

Projections on the base polytope. If we use
ΦBF (κ) = 1

2‖κ‖
2, the resulting Euclidean projection3

on the base polytope,

κ̂ = argmin
κ∈BF

‖κ− w‖22 = argmin
κ′∈BF−w

‖κ′‖22 + w, (17)

is equivalent to minimizing the “shifted” submodular
function F (S) −

∑
i∈S wi and can be computed, for

instance, via the Fujishige-Wolfe minimum norm point
(MNP) algorithm (Wolfe, 1976; Fujishige, Hayashi, and
Isotani, 2006), via parametric submodular minimiza-
tion and with recent cutting-plane algorithms (Lee,
Sidford, and Wong, 2015). These generic methods
are nevertheless computationally very expensive, ex-
cept for small problems. But most of the functions of
interest, such as the group functions defined in Sec-
tion 3.1, have additional structure: they are of the form
F (S) =

∑k
i=1 Fi(S) (also called decomposable), each Fi

with small support or “simple” structure. Here, “simple”
means that the minimum norm point problem can be
solved fast. For the functions defined in (11), and more

3Perhaps surprisingly, the projection onto the base poly-
tope resulting from choosing ΦBF (κ) := H(κ) instead is
also solved by (17) (Djolonga and Krause, 2015), and hence
we may implement mirror descent with either projection.
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generally, for certain hierarchical functions (Hochbaum
and Hong, 1995; Iwata and Zuiki, 2004), coverage func-
tions (Stobbe and Krause, 2010) and graph cuts on
lines (equivalent to Total Variation), this can be solved
in O(m logm) time, where m is the support size of the
respective Fi. We provide an O(m logm) algorithm for
our cluster functions in the Supplement. If the sup-
ports of the Fi’s are disjoint, then the base polytope
is a product of polytopes BFi , and the projection can
be computed for each BFi separately in parallel. If the
supports overlap, then we can still exploit decomposi-
tion structure via randomized coordinate descent (Ene,
Nguyen, and Végh, 2017), operator splitting methods
(Jegelka, Bach, and Sra, 2013; Nishihara, Jegelka, and
Jordan, 2014) or others (Stobbe and Krause, 2010) for
fast optimization.

4.3 Optimization Algorithms

4.3.1 Convex formulation

We can solve the left hand side of (13) using mirror
descent (MDA), shown as Algorithm 1. The choice of
entropy mirror map Φ(γ) = H(γ) means that every
iteration will require a KL-projection onto the base
polytope and a subgradient computation, bringing the
total cost per iteration to O(N logN +N(logN)ε−3).
For a non-smooth, not strongly convex function like
the Lovász extension, MDA converges with rate O( 1√

t
).

4.3.2 Saddle-point formulation

We solve the minimax formulation of problem (13) via
either saddle-point mirror-descent (SP-MD) or saddle-
point mirror-prox (SP-MP) (Juditsky and Nemirovski,
2011a; Juditsky and Nemirovski, 2011b). The latter
enjoys a faster convergence rate, at the cost of doubling
the per-iteration cost, requiring two projections onto
each of M and BF . In either case, the setup is as
follows. Let ΦM(γ) and ΦBF (κ) be mirror maps on
M and BF , then the mirror map for the joint variable
z = (γ, κ) ∈ Z :=M×BF is Φ(z) = ΦM(γ) + ΦBF (κ),
and a first-order oracle F for φ is required to obtain
subgradients in ∂φ(z) = {∂γ [φ(γ, κ)]}×{∂κ[−φ(γ, κ)]}.
Thus, both the gradient computation and projection
decouple over κ and γ, and we can use the projec-
tions described in Section 4.2. The final SP-MP
method for solving problem (13) is shown as Algo-
rithm 2. The (simpler) SP-MD is analogous with a
single Sinkhorn/projection step. Compared to MDA
and SP-MD, the mirror prox version enjoys a better
convergence rate of O( 1

t ). Using the fast projection
method for the cluster-based functions proposed here
(Eq. 10), the total cost per iteration in either SP-MD
and SP-MP is O(N(logN)ε−3 +K logK), where K is
the size of the largest cluster.

Algorithm 1 MDA for Structured Optimal Transport
Input: Initial point γ0 and initial step size η0
while ε < tol do
gt ←Edmonds(f, γt)
γ̃t+1 ←Sinkhorn(γt ◦ exp{−ηtgt})
γt+1 ← [

∑t+1
s=1 ηs]

−1∑t+1
s=1 ηsγ̃s

ε← f(γt)− f(γt+1)
t← t+ 1

end while

Algorithm 2 Saddle Point Mirror Prox for Structured
Optimal Transport

Input: Initial point z0 = (γ0, κ0) and step size η0
while εSP < tol do

// Mirror step on true gradient
ut+1 ←Sinkhorn(γt ◦ exp{−ηtκt})
vt+1 ←BasePolyProject(κt + ηtγt)
// Mirror step on proxy gradient
γt+1 ←Sinkhorn(γt ◦ exp{−ηtvt+1)
κt+1 ←BasePolyProject(kappat + ηtut+1)
// Compute saddle point gap of current solution
zt+1 ← [

∑t+1
s=1 ηs]

−1∑t+1
s=1 ηs(γs, κs)

εSP ←SaddleGap(zt)
t← t+ 1

end while

Initialization A simple choice for γ0 is µνT . For κ0,
a random corner in the base polytope4 can be used,
however, we found that initializing it as the projection
of C onto BF often results in faster convergence.

5 Experimental Results

Our implementation of Algorithms 1 and 2 uses
the Python Optimal Transport library (Flamary and
Courty, 2017) for entropic projections onto the trans-
port polytope. For the projections onto the base poly-
tope required by SP-MP (Alg. 2), we use a tailored
algorithm for decomposable functions (detailed in the
Supplementary Material) and RCDM (Ene and Nguyen,
2015) when the supports are not disjoint. All experi-
ments were run on a 2.8GHz Intel Core i7 Processor.

5.1 Clustered Point Cloud Matching

Synthetic Point Clouds. In our first set of experi-
ments, we seek to understand the characteristics of the
transport plans obtained with our structured optimal
transport (SOT) framework. For this, we generate two
point clouds in R2 from two distinct 3-gaussian mixture
distributions (20 points each, 60/20/20% class splits).
We use the class labels to define a sum-of-clusters func-

4Computed, e.g., by evaluating f for random w ∈ Rn×m.
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EMD Entropy α = 0 α = 0.1 α = 0.3 α = 5

Figure 1: Optimal transport plans for clustered point matching obtained with two structure-agnostic formula-
tions (EMD, entropy-regularized) and our submodular approach with varying concavity threshold parameter α
(Eqn. (12)). Dashed lines show class partitions. Right: Runtimes for alternative optimization methods.

Figure 2: Color transfer with various optimal transport methods. The pixels in the source image get their color
from the transported pixels in the target image.

tion as in (11), using square-root thresholding functions
(12) for varying values of α. The optimal coupling ma-
trices are shown in Figure 1. As expected, lower values
of α enforce cluster structure more aggressively, while
for larger α the cost effectively becomes modular, caus-
ing the solution to resemble those of the unstructured
OT formulations. In terms of empirical runtimes (Fig. 1,
right), SP-MP generally outperforms both SP-MD and
MDA except in the very low sample size regime.

Color transfer. An interesting application of this
matching with group information is color transfer. Here,
we seek to transfer the colors of one image (the target
color scheme) into another one, the source. To do so,
we view pixels as points in RGB space, transport them
using optimal transport, and assign their color to the
matched pixels. Here we define partitions through su-
perpixels obtained by segmentation (Felzenszwalb and
Huttenlocher, 2004). The example in Figure 2 shows
that including structure in the cost function results in
a coloring scheme that is more uniform that the EMD
variant and sharper than the entropy-regularized one.

5.2 Domain Adaptation

Domain adaptation can be naturally cast as a trans-
portation problem. When modeling the source and
target distributions via discrete samples, DOT yields
an optimal transport plan γ∗ between the two samples,
according to which source points can be “transported”
to the target domain through the barycentric mapping
implicitly defined by γ∗ (Villani, 2008, Chapter 7).

In our motivating example of domain adaptation for
classification, we wish to incorporate any available class
labels on either domain into the cost function, so as

to encourage points of the same class to be mapped to
the same region of the target space. This is seamlessly
attainable with our proposed framework and the cluster
functions defined before (11). In the experiments below,
we partition the source samples according to their class
label, but we do not use the target labels (i.e., every
target sample forms its own cluster), so as to simulate
the harder—and more realistic—unsupervised domain
adaptation setting.

We test this adaptation approach on the benchmark
USPS and MNIST digit classification datasets. We
preprocess the data by normalizing, and downscale
MNIST to the 16×16 size of USPS. Here, we simulate
an extreme adaptation setting where only 100 samples
of each domain are provided, and no target labels are
available. We train a 1-NN classifier on the transported
samples, and use it to predict labels on the test set
(10K examples for MNIST, ∼2K for USPS).

We compare our method (using (11) with (12), and
a default α = 0.2 threshold) against the two class-
regularized OT formulations of Courty et al. (2017):
one using an `p–`1 group-sparsity norm, and the other
a Laplacian regularization term. We also compare
against the original and entropy-regularized formula-
tions, neither of which uses class labels. The results in
Table 1 show that the submodular formulation achieves
better accuracy in both directions of adaptation, and
exhibits much clearer block-diagonal structure in the
coupling matrix (Figure 3). We emphasize that the
target labels are not used when defining the groupings
of the submodular function, so this block structure is
obtained solely by encouraging source points with the
same label to be mapped together. Example source
and transported digits are shown in the Supplement.
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Figure 3: Optimal transport plans for the mnist→usps adaptation task. Rows and columns are sorted by class.

Method MNIST→USPS USPS→MNIST

No adaption 41.20 33.10

EMD 37.72 33.68
Entropy 55.70 43.64
Laplace 54.37 37.73

Group-Lasso 57.12 49.49
Struct-OT 62.97 58.34

Table 1: Results on digit recognition adaptation. Val-
ues shown are prediction accuracy (%).

5.3 Syntax-aware Word Mover’s Distance

The Word Mover’s Distance (WMD) is an application
of optimal transport to natural language processing
(Kusner et al., 2015). It measures dissimilarity between
strings (sentences or documents) by computing the cost
of “moving” the words from one to the other, using a
ground metric of distances between vector-space embed-
dings of words. The WMD, however, is syntax-agnostic,
i.e., it does not take into account word ordering. That
is, the cost of “moving” a word ui in sentence U to vj
in sentence V depends only on their distance in the em-
bedded space, and not on their relative positions in the
two sentences. When using WMD to predict sentence
similarity of long sentences with subclauses, this ap-
proach can have obvious drawbacks, like transporting
words across noun-phrase boundaries.

We can obtain a syntax-aware alternative to WMD
with a simple clustered cost function as before, where
now each n-gram in a sentence defines a group (i.e.,
we allow overlaps between the groups). With this, we
are encouraging neighboring words in a sentence to
be matched to neighboring words in the other. Word-
to-word costs are defined as before. We compare this
distance against the original WMD in a simple sentence
similarity task: the SICK dataset, consisting of pairs of
English sentences labeled with human-generated simi-
larity scores. We randomly select 100 sentences with at
most 10 words from the train and test folds, we com-
pute optimal transport distances between all training
pairs, and then fit a non-parametric regression model
to predict similarity scores from these distances. At

Figure 4: Sentence similarity prediction with two
classes of optimal transport distances over sentences.

test time, given a pair of sentences, we compute the
distance between them and use the regression model
to predict their similarity. The distances, gold simi-
larity scores and fitted models are shown in Figure 4.
The WMD model obtains a mean squared error of
0.67 (Spearman’s ρ of .71), while our proposed syntax-
aware version has a much better correlation with gold
similarity scores (MSE=0.59, ρ = .75).

6 Discussion

We proposed a generic framework for including struc-
tural information into optimal transport problems,
which are finding a growing range of applications in
machine learning. While we demonstrated the utility
of the framework via examples in domain adaptation,
color transfer and sentence similarity, our framework
can encode a variety of structures beyond these settings,
since it allows arbitrary submodular functions. This
choice will depend on the specifics of the problem and
the efficiency with which the projections can be solved.
The overall resulting convex optimization problem is
efficiently solvable via mirror descent methods. For
very large problems or general submodular functions,
approximate or stochastic submodular optimization
subroutines (if applicable) may be suitable.

In fact, the flexibility of our framework goes beyond sub-
modularity; any convex function with bounded closed
gradient maps would work as f . Here, we explicitly
chose submodular functions due to their favorable ge-
ometry and resulting tractability, and their ability to
encode a wide range of combinatorial structures.
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