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", Learning Bayesian networks

* Bayesian networks are widely used as modeling tools
across applied areas, including computational biology

(Friedman 2004)

* L earned structures (especially causal) can lead to useful
insights about the domain
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i) Structure learning: basics
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‘Y Structure learning as inference

e Each node can select a subset of the other nodes as “parents”
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Structure learning as inference
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e Each node can select a subset of the other nodes as “parents”

e Each parent selection contributes a score; the goal Is to
maximize the sum of the scores (decomposable scoring

metric)
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‘Y Structure learning as inference
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e Finding the highest scoring graph is hard because the graph
has to be acyclic (the problem remains hard even if we limit
the number of parents to two)
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.. Score based approaches (briefly)

* Local search methods
- stochastic search (e.g., Heckerman et al., 1995)
- over equivalence classes (e.g., Chickering 2002)
- order based search (e.g., Teyssier et al., 2005)

* Exact search methods

= dynamic programming (e.g., Koivisto et al., 2004, Singh et al.,
2005, Silander et al., 2006)

- partial order covers (Parviainen et al., 2009)
- branch and bound (e.g., de Campos et al., 2009 )
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Exact methods

* Dynamic programming methods work well for small
structure learning problems ...
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Exact methods

* Dynamic programming methods work well for small
structure learning problems ...
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) Overview of our approach

* We reduce the search over graph structures to a linear
program over a polytope representing acyclic graphs

- each vertex corresponds to an acyclic graph

- interior points correspond to distributions over graphs

P(G)

C%b o SCore
e

* Any solution obtained at a vertex is guaranteed to be
optimal (“certificate of optimality”)
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iy Graphs and vectors
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iy Graphs and vectors
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An equivalent representation of the
directed graph as a binary vector
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iy Graphs and vectors

score(l\@, D)

12}
13}

paq €

pas
paz < C%?score (3|{1}, D)

1,2}

—~—
W = =
——

score(2[{1,3}, D)

An equivalent representation of the
directed graph as a binary vector

Wednesday, March 10, 2010

{2,3}
- JK@
]

OO —

O —0O

parent set selection
for variable |

parent set selection
for variable 2

parent set selection
for variable 3



2 Graphs and polytopes
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Graphs and polytopes
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Vertices of the polytope are binary vectors corresponding to
acyclic graphs; interior points are averages
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Graphs and polytopes
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5, LP for structure learning

e Maximize "

>: >: b (Paz')SCOTG(i\pai, D) “expected” score
1=1 pa;

subject to vertices are binary
n < vectors corresponding

to acyclic graphs

* Integral solution is optimal (“certificate of optimality”)
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5, LP for structure learning

e Maximize "

>: >: b (p&z')SCOre(i\pai, D) “expected” score
1=1 pa;

subject to vertices are binary
n < vectors corresponding

to acyclic graphs

* Integral solution is optimal (“certificate of optimality™)

* But the polytope has exponentially many facets...
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) A cutting plane approach

* We only need to fully characterize the polytope (linear
constraints) near the actual solution
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) A cutting plane approach

* We only need to fully characterize the polytope (linear
constraints) near the actual solution

- solve first with the current constraints
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) A cutting plane approach

* We only need to fully characterize the polytope (linear
constraints) near the actual solution

- solve first with the current constraints

- find a violated constraint (separation problem)
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) A cutting plane approach

* We only need to fully characterize the polytope (linear
constraints) near the actual solution

- solve first with the current constraints

- find a violated constraint (separation problem)
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A cutting plane approach

* We only need to fully characterize the polytope (linear
constraints) near the actual solution

- solve first with the current constraints

- find a violated constraint (separation problem)

- resolve
violated simple
. constraint
‘o .
,,'neW~sgIHt|on
el ) T o C;rrent solution
parent set selection ..

probabilities

constraints

What are the linear constraints?
How to find a violated constraint?
How to solve the resulting (simpler) LP?
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i) The separation problem
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i) The separation problem

parent set selection
for variable |

parent set selection
for variable 2

parent set selection
for variable 3
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“...LP relaxation for structure learning

e Maximize

r
>: >: b (p&z')SCOre(i\pai, D) “expected” score
1=1 pa;

subject to Ni (pai) > 0, Z Ni (pai) — ] parent set selections
pa;

n - IC > 17 \W & cluster constraints

These constraints are facet
defining but not sufficient to
fully specify the polytope
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" Dual LP for structure learning

* Minimize
E max
pa;
1=1

subject to
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* Minimize

E Imax
pa;

1=1

subject to

= Dual LP for structure learning

local scores adjusted based on clusters

score(i|pa;, D)

Ac >0, VC

* Why the dual?

- simpler constraints, closed
form coordinate updates

- clusters can be ranked by their

effect on value

- any dual feasible point upper
bounds the LP value (and the

optimal score)
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i Simple example problem

* RNAI gene silencing experiments in C. elegans

* 25 phenotypic indicators/markers that characterize each
experimental outcome

* We seek to build a Bayesian network model over the
phenotypic markers in order to capture their
coordinate variation across experiments

* Technical constraint: each variable can have at most four
parents
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Dual solution
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* The LP is tight if we can find a structure (integral
solution) that attains the dual value
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0, Minimum regret decoding

* We can use adjusted local scores from the dual solution
to find good candidate structures (decoding)

local scores adjusted based on clusters

score(i|pa;, D) + Z Aclc(pa;)
C:1eC

find an ordering O

. . select parents
of variables C)

based on the ordering
O’ >
od

candidate
structure
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“.. Dual solution with decoding
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* A structure is proved optimal if it attains the dual value

* The simple LP relaxation is (almost) tight for this
problem
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e Branch and Bound

* We can further tighten the approximation by iteratively
partitioning the space of possible solutions and using the
LP relaxation separately for each partition

* The dual LP (upper bound) is particularly effective for
determining how the tree of partitions should be
expanded
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Partitions

* We can tighten the approximation further by partitioning
the polytope into segments and solving each segment
separately

§~~
§

~
~
~
~
~
~
~
~
~
~
~
~
~§
-~

YRS

parent set selection
probabilities

+ cluster constraints

Wednesday, March 10, 2010



Partitions

* We can tighten the approximation further by partitioning
the polytope into segments and solving each segment
separately

~
~
~
~
~
~
~
~
~
~
~
~
~§
-~

parent set selection
probabilities

+ cluster constraints

Wednesday, March 10, 2010



Partitions

* We can tighten the approximation further by partitioning
the polytope into segments and solving each segment
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L Partitions

* We can tighten the approximation further by partitioning
the polytope into segments and solving each segment

separately
ne.
parent set selection
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pa; outside pa; overlaps
cluster C cluster C
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3 Solution...

* The highest scoring structure is found after a small
number of branch and bound partitions
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3 Recall: exact methods

* Dynamic programming methods work well for small
structure learning problems ...
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iy LP relaxation with BB

* | P relaxation combined with branch and bound
performs similarly to dynamic programming methods
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The alarm network

* 37 variables, 1000 data points
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(Heckerman et al. 1995)
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e The alarm network

* Dynamic programming methods are no longer practical

without additional constraints ...
40 hourso
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e The alarm network

* Dynamic programming methods are no longer practical
without additional constraints ...
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e The alarm network

* Dynamic programming methods are no longer practical
without additional constraints ...
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300x

22 24 26 28 30 32 34 36 38
number of variables

Wednesday, March 10, 2010



iy Anytime solution
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iy Anytime solution
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i Summary

* Finding the highest scoring Bayesian network structure
from data is a hard combinatorial problem... but the
“hard instances” may not be typical

* Our “anytime” approach to structure learning is based
on linear programming relaxations that are iteratively
refined in a cutting plane fashion

* The approach relies fundamentally on understanding the
facets of the polytope corresponding to acyclic graphs
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