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Abstract

We provide a principle for semi-supervised learning based on optimizing
the rate of communicating labels for unlabeled points with side informa-
tion. The side information is expressed in terms of identities of sets of
points or regions with the purpose of biasing the labels in each region
to be the same. The resulting regularization objective is convex, has a
unique solution, and the solution can be found with a pair of local prop-
agation operations on graphs induced by the regions. We analyze the
properties of the algorithm and demonstrate its performance on docu-
ment classification tasks.

1 Introduction

A number of approaches and algorithms have been proposed for semi-supervised learning
including parametric models [1], random field/walk models [2, 3], or discriminative (kernel
based) approaches [4]. The basic intuition underlying these methods is that the labels
should not change within clusters of points, where the definition of a cluster may vary from
one method to another.

We provide here an alternative information theoretic criterion and associated algorithms
for solving semi-supervised learning problems. Our formulation, an extension of [5, 6],
is based on the idea of minimizing the number of bits required to communicate labels for
unlabeled points, and involves no parametric assumptions. The communication scheme
inherent to the approach is defined in terms of regions, weighted sets of points, that are
shared between the sender and the receiver. The regions are important in capturing the
topology over the points to be labeled, and, through the communication criterion, bias the
labels to be the same within each region.

We start by defining the communication game and the associated regularization problem,
analyze properties of the regularizer, derive distributed algorithms for finding the unique
solution to the regularization problem, and demonstrate the method on a document classi-
fication task.
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Figure 1: The topology imposed by the set of regions (squares) on unlabeled points (circles)

2 The communication problem

Let S = {x1, . . . , xn} be the set of unlabeled points and Y the set of possible labels.
We assume that target labels are available only for a small subset S l ⊂ S of the unlabeled
points. The objective here is to find a conditional distribution Q(y|x) over the labels at each
unlabeled point x ∈ S. The estimation is made possible by a regularization criterion over
the conditionals which we define here through a communication problem. The communi-
cation scheme relies on a set of regionsR = {R1, . . . , Rm}, where each region R ∈ R is
a subset of the unlabeled points S (cf. Figure 1). The weights of points within each region
are expressed in terms of a conditional distribution P (x|R),

∑
x∈R P (x|R) = 1, and each

region has an a priori probability P (R). We require only that
∑

R∈R P (x|R)P (R) = 1/n
for all x ∈ S. (Note: in our overloaded notation “R” stands both for the set of points and
its identity as a set).

The regions and the membership probabilities are set in an application specific manner. For
example, in a document classification setting we might define regions as sets of documents
containing each word. The probabilities P (R) and P (x|R) could be subsequently derived
from a word frequency representation of documents: if f(w|x) is the frequency of word
w in document x, then for each pair of w and the corresponding region R we can set
P (R) =

∑
x∈S f(w|x)/n and P (x|R) = f(w|x)/(nP (R)).

For any fixed conditionals {Q(y|x)} we define the communication problem as follows.
The sender selects a region R ∈ R with probability P (R) and a point within the region
according to P (x|R). Since

∑
R∈R P (x|R)P (R) = 1/n, each point x is overall equally

likely to be selected. The label y is sampled from Q(y|x) and communicated to the receiver
optimally using a coding scheme tailored to the region R (based on knowing P (x|R) and
Q(y|x), x ∈ R). The receiver has access to x, R, and the region specific coding scheme
to reproduce y. The rate of information needed to be sent to the receiver in this scheme is
given by

Jc(Q;R) =
∑
R∈R

P (R)IR(x; y) =
∑
R∈R

P (R)
∑
x∈R

∑
y∈Y

P (x|R)Q(y|x) log
Q(y|x)
Q(y|R)

(1)

where Q(y|R) =
∑

x∈R P (x|R)Q(y|x) is the overall probability of y within the region.



3 The regularization problem

We use Jc(Q;R) to regularize the conditionals. This regularizer biases the conditional
distributions to be constant within each region so as to minimize the communication cost
IR(x; y). Put another way, by introducing a region R we bias the points in the region
to be labeled the same. By adding the cost of encoding the few available labeled points,
expressed here in terms of the empirical distribution P̂ (y, x) whose support lies in Sl, the
overall regularization criterion is given by

J(Q; λ) = −
∑
x∈Sl

∑
y∈Y

P̂ (y, x) log Q(y|x) + λJc(Q;R) (2)

where λ > 0 is a regularization parameter. The following lemma guarantees that the
solution is always unique:

Lemma 1 J(Q; λ) for λ > 0 is a strictly convex function of the conditionals {Q(y|x)}
provided that 1) each point x ∈ S belongs to at least one region containing at least two
points, and 2) the membership probabilities P (x|R) and P (R) are all non-zero.

The proof follows immediately from the strict convexity of mutual information [7] and the
fact that the two conditions guarantee that each Q(y|x) appears non-trivially in at least one
mutual information term.

4 Regularizer and the number of labelings

We consider here a simple setting where the labels are hard and binary, Q(y|x) ∈ {0, 1},
and seek to bound the number of possible binary labelings consistent with a cap on the
regularizer.

We assume for simplicity that points in a region have uniform weights P (x|R). Let N(I)
be the number of labelings of S consistent with an upper bound I on the regularizer
Jc(Q,R). The goal is to show that N(I) is significantly less than 2n and N(I) → 2
as I → 0.

Theorem 2 log2 N(I) ≤ C(I) + I · n · t(R)/ minR P (R), where C(I) → 1 as I → 0,
and t(R) is a property ofR.

Proof Let f(R) be the fraction of positive samples in region R. Because the labels are
binary IR(x; y) is given by H(f(R)), where H is the entropy. If

∑
R P (R)H(f(R)) ≤ I

then certainly H(f(R)) ≤ I/P (R). Since the binary entropy is concave and symmetric
w.r.t. 0.5, this is equivalent to f(R) ≤ gR(I) or f(R) >= 1 − gR(I), where gR(I) is the
inverse of H at I/P (R). We say that a region is mainly negative if the former condition
holds, or mainly positive if the latter.

If two regions R1 and R2 overlap by a large amount, they must be mainly positive or mainly
negative together. Specifically this is the case if |R1 ∩ R2| > gR1(I)|R1| + gR2(I)|R2|
Consider a graph with vertices the regions, and edges whenever the above condition holds.
Then regions in a connected component must be all mainly positive or mainly negative
together. Let C(I) be the number of connected components in this graph, and note that
C(I)→ 1 as I → 0.

We upper bound the number of labelings of the points spanned by a given connected com-
ponent C, and subsequently combine the bounds. Consider the case in which all regions in
C are mainly negative. For any subset C ′ of C that still covers all the points spanned by C,

f(C) ≤ 1
|C|

∑
R∈C′

gI(R)|R| ≤ max
R

gI(R) ·
∑

R∈C′ |R|
|C′| (3)



Thus f(C) ≤ t(C)maxR gI(R) where t(C) = minC′∈C, C′ cover

∑
R∈C′ |R|
|C′| is the minimum

average number of times a point in C is necessarily covered.

There at most 2nf(R) log2(2/f(R)) labelings of a set of points of which at most nf(R) are
positive. 1. Thus the number of feasible labelings of the connected component C is upper
bounded by 21+nt(C)maxR gI (R) log2(2/(t(C)maxR gI (R))) where 1 is because C can be either
mainly positive or mainly negative. By cumulating the bounds over all connected compo-
nents and upper bounding the entropy-like term with I/P (R) we achieve the stated result.
�

Note that t(R), the average number of times a point is covered by a minimal subcovering
ofR normally does not scale with |R| and is a covering dependent constant.

5 Distributed propagation algorithm

We introduce here a local propagation algorithm for minimizing J(Q; λ) that is both easy to
implement and provably convergent. The algorithm can be seen as a variant of the Blahut-
Arimoto algorithm in rate-distortion theory [8], adapted to the more structured context here.
We begin by rewriting each mutual information term IR(x; y) in the criterion

IR(x; y) =
∑
x∈R

∑
y∈Y

P (x|R)Q(y|x) log
Q(y|x)
Q(y|R)

(4)

= min
QR(·)

∑
x∈R

∑
y∈Y

P (x|R)Q(y|x) log
Q(y|x)
QR(y)

(5)

where the variational distribution QR(y) can be chosen independently from Q(y|x) but the
unique minimum is attained when QR(y) = Q(y|R) =

∑
x∈R P (x|R)Q(y|x). We can

extend the regularizer over both {Q(y|x)} and {QR(y)} by defining

Jc(Q, QR;R) =
∑
R∈R

P (R)
∑
x∈R

∑
y∈Y

P (x|R)Q(y|x) log
Q(y|x)
QR(y)

(6)

so that Jc(Q;R) = min{QR(·),R∈R} Jc(Q, QR;R) recovers the original regularizer.

The local propagation algorithm follows from optimizing each Q(y|x) based on fixed
{QR(y)} and subsequently finding each QR(y) given fixed {Q(y|x)}. We omit the
straightforward derivation and provide only the resulting algorithm: for all points x ∈
S ∩ Sl (not labeled) and for all regions R ∈ R we perform the following complementary
averaging updates

Q(y|x) ← 1
Zx

exp(
∑

R:x∈R

[nP (R)P (x|R)] log QR(y) ) (7)

QR(y) ←
∑
x∈R

P (x|R)Q(y|x) (8)

where Zx is a normalization constant. In other words, Q(y|x) is obtained by taking
a weighted geometric average of the distributions associated with the regions, whereas
QR(y) is (as before) a weighted arithmetic average of the conditionals within each re-
gion. In terms of the document classification example discussed earlier, the weight
[nP (R)P (x|R)] appearing in the geometric average reduces to f(w|x), the frequency of
word w identified with region R in document x.

1The result follows from
∑k

i=0

(
n
i

) ≤ (
2n
k

)k



Updating Q(y|x) for each labeled point x ∈ S l involves minimizing
∑
y∈Y

P̂ (y, x) log Q(y|x)− λ

n
H(Q(·|x))− λ

∑
y∈Y

Q(y|x)
( ∑

R:x∈R

P (R)P (x|R) log QR(y)
)

(9)

where H(Q(·|x)) is the Shannon entropy of the conditional. While the objective is strictly
convex, the solution cannot be written in closed form and have to be found iteratively (e.g.,
via Newton-Raphson or simple bracketing when the labels are binary). A much simpler
update Q(y|x) = δ(y, ŷx), where ŷx is the observed label for x, may suffice in practice.
This update results from taking the limit of small λ and approximates the iterative solution.

6 Extensions

6.1 Structured labels and generalized propagation steps

Here we extend the regularization framework to the case where the labels represent
more structured annotations of objects. Let y be a vector of elementary labels y =
[y1, . . . , yk]′ associated with a single object x. We assume that the distribution Q(y|x) =
Q(y1, . . . , yk|x), for any x, can be represented as a tree structured graphical model, where
the structure is the same for all x ∈ S. The model is appropriate, e.g., in the context of as-
signing topics to documents. While the regularization principle applies directly if we leave
Q(y|x) unconstrained, the calculations would be potentially infeasible due to the number
of elementary labels involved, and inefficient as we would not explicitly make use of the
assumed structure. Consequently, we seek to extend the regularization framework to handle
distributions of the form

QT (y|x) =
k∏

i=1

Qi(yi|x)
∏

(i,j)∈T

Qij(yi, yj |x)
Qi(yi|x)Qj(yj |x)

(10)

where T defines the edge set of the tree. The regularization problem will be formulated
over {Qi(yi|x), Qij(yi, yj|x)} rather than unconstrained Q(y|x).

The difficulty in this case arises from the fact that the arithmetic average (mixing) in eq
(8) is not structure preserving (tree structured models are not mean flat). We can, however,
also constrain QR(y) to factor according to the same tree structure. By restricting the class
of variational distributions QR(y) that we consider, we necessarily obtain an upper bound
on the original information criterion. If we minimize this upper bound with respect to
{QR(y)}, under the factorization constraint

QR,T (y) =
k∏

i=1

QR,i(yi)
∏

(i,j)∈T

QR,ij(yi, yj)
QR,i(yi|x)QR,j(yj)

, (11)

given fixed {QT (y|x)}, we can replace eq (8) with simple “moment matching” updates

QR,ij(yi, yj)←
∑
x∈R

P (x|R)Qij(yi, yj |x) (12)

The geometric update of Q(y|x) in eq (7) is structure preserving in the sense that if
QR,T (y), R ∈ R share the same tree structure, then so will the resulting conditional.
The new updates will result in a monotonically decreasing bound on the original criterion.

6.2 Complementary sets of regions

In many cases the points to be labeled may have alternative feature representations, each
leading to a different set of natural regions R(k). For example, in web page classification
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Figure 2: Clusters correctly separated by information regularization given one label from
each class

both the content of the page, and the type of documents that link to that page should be
correlated with its topic. The relationship between these heterogeneous features may be
complex, with some features more relevant to the classification task than others.

Let Jc(Q;R(k)) denote the regularizer from the k th feature representation. Since the reg-
ularizers are on a common scale we can combine them linearly:

Jc(Q;K, α) =
K∑

k=1

αkJc(Q;R(k)) =
K∑

k=1

∑
R∈R(k)

αkPk(R)IR(x; y) (13)

where αk ≥ 0 and
∑

k αk = 1. The result is a regularizer with regions K = ∪kR(k)

and adjusted a priori weights αkPk(R) over the regions. The solution can therefore be
found as before provided that {αk} are known. When {αk} are unknown, we set them
competitively. In other words, we minimize the worst information rate across the available
representations. This gives rise to the following regularization problem:

max
αk≥0,

∑
αk=1

min
Q(y|x)

J(Q; λ, α) (14)

where J(Q; λ, α) is the overall objective that uses Jc(Q;K, α) as the regularizer. The
maximum is well-defined since the objective is concave in {αk}. This follows immediately
from the fact that it is a minimum of a collection of linear functions J(Q; λ, α) (linear in
{αk}).

At the optimum all Jc(Q;R(k)) for which αk > 0 have the same value (the same informa-
tion rate). Other feature sets, those with αk = 0, do not contribute to the overall solution
as their information rates are dominated by others.

7 Experiments

We first illustrate the performance of information regularization on two generated binary
classification tasks in the plane. Here we can derive a region covering from the Euclidean
metric as spheres of a certain radius centered at each data point. On the data set in Fig-
ure 2 inspired from [3] the method correctly propagates the labels to the clusters starting
from a single labeled point in each class. In the example in Figure 3 we demonstrate that
information regularization can be used as a post-processing to supervised classification and
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Figure 3: Ability of information regularization to correct the output of a prior classifier
(left: before, right: after)

improve error rates by taking advantage of the topology of the space. All points are a priori
labeled by a linear classifier that is non-optimal and places a decision boundary through the
negative and positive clusters. Information regularization (on a Euclidean region covering
defined as circles around each data point) is able to correct the mislabeling of the clusters.
Next we test the algorithm on a web document classification task, the WebKB data set of
[1]. The data consists of 1051 pages collected from the websites of four universities. This
particular subset of WebKB is a binary classification task into ’course’ and ’non-course’
pages. 22% of the documents are positive (’course’). The dataset is interesting because
apart from the documents contents we have information about the link structure of the
documents. The two sources of information can illustrate the capability of information
regularization of combining heterogeneous unlabeled representations.

Both ’text’ and ’link’ features used here are a bag-of-words representation of documents.
To obtain ’link’ features we collect text that appears under all links that link to that page
from other pages, and produce its bag-of-words representation. We employ no stemming,
or stop-word processing, but restrict the vocabulary to 2000 text words and 500 link words.
The experimental setup consists of 100 random selections of 3 positive labeled, 9 negative
labeled, and the rest unlabeled. The test set includes all unlabeled documents. We report a
naı̈ve Bayes baseline based on the model that features of different words are independent
given the document class. The naı̈ve Bayes algorithm can be run on text features, link
features, or combine the two feature sets by assuming independence. We also quote the
performance of the semi-supervised method obtained by combining naı̈ve Bayes with the
EM algorithm as in [9].

We measure the performance of the algorithms by the F-score equal to 2pr/(p+r), where p
and r are the precision and recall. A high F-score indicates that the precision and recall are
high and also close to each other. To compare algorithms independently of the probability
threshold that decides between positive and negative samples, the results reported are the
best F-scores for all possible settings of the threshold.

The key issue in applying information regularization is the derivation of a sound region
coveringR. For document classification we obtained the best results by grouping all doc-
uments that share a certain word into the same region; thus each region is in fact a word,
and there are as many regions as the size of the vocabulary. Regions are weighted equally,
as well as the words belonging to the same region. The choice of λ is also task dependent.
Here cross-validation selected a optimal value λ = 90. When running information regu-
larization with both text and link features we combined the coverings with a weight of 0.5
rather than optimizing it in a min-max fashion.



All results are reported in Table 1. We observe that information regularization performs bet-

Table 1: Web page classification comparison between naı̈ve Bayes and information regu-
larization and semi-supervised naı̈ ve Bayes+EM on text, link, and joint features

naı̈ve Bayes inforeg naı̈ve Bayes+EM
text 82.85 85.10 93.69
link 65.64 82.85 67.18
both 83.33 86.15 91.01

ter than naı̈ve Bayes on all types of features, that combining text and link features improves
performance of the regularization method, and that on link features the method performs
better than the semi-supervised naı̈ ve Bayes+EM. Most likely the results do not reflect the
full potential of information regularization due to the ad-hoc choice of regions based on the
vocabulary used by naı̈ve Bayes.

8 Discussion

The regularization principle introduced here provides a general information theoretic ap-
proach to exploiting unlabeled points. The solution implied by the principle is unique and
can be found efficiently with distributed algorithms, performing complementary averages,
on the graph induced by the regions. The propagation algorithms also extend to more
structured settings. Our preliminary theoretical analysis concerning the number of possi-
ble labelings with bounded regularizer is suggestive but rather loose (tighter results can be
found). The effect of the choice of the regions (sets of points that ought to be labeled the
same) is critical in practice but not yet well-understood.
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