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Abstract

Information regularization is a principle for assigning labels to unlabeled data
points in a semi-supervised setting. The broader principle is based on finding labels
that minimize the information induced between examples and labels relative to a
topology over the examples; any label variation within a small local region of examples
ties together the identities of examples and their labels. Such variation should be
minimized unless supported directly or indirectly by the available labeled examples.
The principle can be cast in terms of Tikhonov style regularization for maximizing
likelihood of labeled examples with an information theoretic regularization penalty.
We consider two ways of representing the topology over examples, either based on
complete knowledge of the marginal density, or by grouping together examples whose
labels should be related. We discuss the learning algorithms and sample complexity
issues that result from each representation.

1 Introduction

A substantial number of algorithms and methods exist for solving supervised learning
problems with little or no assumptions about the distribution generating the samples.
Semi-supervised learning methods, in contrast, have to rely on assumptions about
the problem so as to relate the available unlabeled data to possible class decisions.
The most common such assumption is the cluster assumption (see Chapter 1, or
Seeger [2001]) that, loosely speaking, prefers class decisions that cut between rather
than through clusters of unlabeled points. The effect of the assumption is that it
can significantly reduce the set of possible (reasonable) decisions that need to be
considered in response to a few labeled examples. The same effect can be also achieved
through representational constraints (e.g., Blum and Mitchell [1998]).

The definition of what constitutes a cluster and how the cluster assumption is
formalized varies from one method to another. For example, clusters may be defined
in terms of a weighted graph so that class decisions correspond to a graph partition
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Szummer and Jaakkola [2001], Blum and Chawla [2001], A.Blum et al. [2004]. In a
regularization setting, the graph may be used to introduce a smoothness penalty on
the discriminant function so as to limit how the discriminant function can change
within graph neighborhoods (e.g., see Chapter 11). Alternatively, we may define
a model for each cluster via generative mixture models, and associate a single class
decision (distribution over classes) with each mixture component (e.g., see Chapter 4).

The strength of the bias from unlabeled data can be directly controlled via the
regularization parameter or by weighting likelihoods corresponding to labeled and
unlabeled data. The choice of the weight may have a substantial effect on the resulting
classifier, however (e.g., Corduneanu and Jaakkola [2002]).

We approach here the semi-supervised learning problem as a regularization prob-
lem , consistent with the broader cluster assumption, but define the regularization
penalty by appealing to information theory. The key idea is to express the penalty as
a bit cost of deviating decisions from those consistent with some assumed structure
over the unlabeled examples. In our case the structure corresponds to a collection of
overlapping sets or regions that play a role similar to clusters; decisions are biased
to be the same within each set and their specification is tied to the marginal distri-
bution over the examples. In practice, the sets can be derived from weighted graph
neighborhoods for discrete objects or from ε-balls covering the unlabeled points.

We begin by introducing the overall information regularization principle. The
structure of the remaining sections is modeled after Figure 1, successively elaborating
the principle under variations in the example space, type of unlabeled data that is
available, and which modeling assumptions we are willing to make.

Consider a typical semi-supervised learning problem with a few labeled exam-
ples ((x1, y1), . . . , (xl, yl)) and a large number of unlabeled examples (xl+1, . . . , xn)
or the marginal distribution p(x). We assume that the labels are discrete taking
values in Y = {1, . . . ,M} for some finite M . The goal is to estimate the conditional
distributions Q(y|x) associated with each available example x (labeled or unlabeled).

We will introduce the information regularization approach here from two alter-
native perspectives: smoothness and communication. By smoothness we mean con-
straining how Q(y|x) is allowed to vary from one point to another. The smoothness
preference is expressed as a regularization penalty over different choices of Q(·|x),
x ∈ X. The communication perspective, on the other hand, characterizes the regular-
ization penalty in terms of the cost of encoding labels for all the points using Q(y|x)
relative to a basic coding scheme.

In either case the key role is played by a collection of regions, denoted by R. Each
region R ∈ R represents a set of a priori equivalent examples. In other words, in the
absence of any other information, we would prefer to associate the same distribution
of labels with all x ∈ R. Figure 2 illustrates two possible overlapping regions. We
will use these regions to exemplify the basic ideas.
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Figure 1: Outline of information regularization methods under different assumptions about the
space, data, and model. Dotted arrows indicate that one setting can be cast as another through
a simple transformation (estimation, or relations derived from metric)

1.1 Regions and smoothness

Consider the six unlabeled examples in region R in Figure 2. We assume that each
point has the same probability of being a member of the region so that P(x|R) = 1/6.
The membership probabilities provide an additional degree of freedom for specify-
ing smoothness constraints. Given the region R and the membership probabilities
P(x|R), x ∈ R, we would like to introduce a penalty for any variation in the condi-
tionals Q(y|x) across the examples in the region. A natural choice for this penalty
is the KL-divergence between each conditional Q(y|x) and the best common choice
Q(y|R):

IR(x; y) = min
Q(·|R)

∑
x∈R

P(x|R)
∑
y∈Y

Q(y|x) log
Q(y|x)
Q(y|R)

(1)

=
∑
x∈R

P(x|R)
∑
y∈Y

Q(y|x) log
Q(y|x)
Q(y|R)

(2)
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Figure 2: Example regions.

where Q(y|R) =
∑

x∈R P(x|R)Q(y|x). 1. Note that we can interpret the result as
the mutual information between x and y within the region so long as the joint
distribution Q(x, y) is defined as Q(y|x)P(x|R). The mutual information involves
no prior penalty on what the common distribution should be; IR(x, y) is zero if all
the points in the region are labeled y = 1 or all of them have entirely uncertain
conditionals Q(y|x) = 1/M .

Suppose now that some of the six examples in region R have been labeled. We will
formulate the resulting estimation task as a regularization problem with the mutual
information serving as a regularization penalty. To this end, let Q refer collectively to
the parameters Q(·|x), x ∈ R. Define J(Q) = IR(x; y) (which we will extend shortly
to multiple regions) so that the penalized maximum likelihood criterion is given by

l∑
i=1

log Q(yi|xi)− λJ(Q)

where λ is a regularization parameter that balances the fit to the available labeled
points and the smoothness bias expressed by J(Q). If only one of the six points is
labeled, all the points in the region will be labeled with the observed label. This
is because the value of the regularizer is independent of the common choice within
the region but biases any differences within the region. In case of two distinctly
labeled points, the remaining points would be labeled such that the conditionals
Q(y|x) assign all their weight equally to the two observed labels while excluding all
others. The conditionals associated with the labeled points would be drawn towards
their respective labels, also excluding other than observed label values.

1.1.1 Multiple regions

In the single region case the labels for unlabeled points are pulled equally towards
the optimized common distribution without further distinguishing between the points.
The notion of locality arises from multiple regions, such as R = {R,R′} in the figure.
In this setting, the overall regularization penalty must be a (weighted) average of the

1IR(x; y) is exactly the general Jensen-Shannon divergence between Q(·|x) for all x ∈ R, weighted by
P(x|R)
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individual region penalties:

J(Q) =
∑
R∈R

γ(R) IR(x; y)

where γ(R) represents the weight of region R, where the choice of γ(R) is a modeling
decision. γ(R) expresses a priori belief in the relative importance of the regions, thus
it is not necessarily related to P(R) =

∫
R p(x)dx, the probability of region R derived

from the generative distribution of the data.
In Figure 2 there are three sets of equivalent points that are not further distin-

guished in this regularizer. They are R \ R′, R ∩ R′, and R′ \ R. We call these sets
that are not further partitioned by other regions atomic regions. By introducing more
regions, we partition the space into smaller atomic regions and thus can make finer
distinctions between the conditional distributions associated with the points; within
each atomic region, the conditional distributions can differ only if some of the points
are explicitly labeled.

A sequence of overlapping regions can mediate influence between the conditionals
associated with more “remote” points, those that do not appear in a common region.
For example, labeling any point in R \R′ will also set all the labels in R′ \R via the
intersection. Note, however, that labeling the points in the intersection would not
completely remove this influence; the Markov properties associated with the regions
pertain to the conditional distributions, not labels directly.

The choice of the regions, region weights γ(R), and the membership probabilities
P (x|R) will change the regularizer. While these provide additional degrees of freedom
that have to be set (or learned), there are nevertheless simple ways of specifying
them directly based on the problem. For example, suppose we are given a weighted
undirected graph with vertex set V , edge set E, and edge weights w(u, v) associated
with any (u, v) ∈ E. Then we can simply associate the regions with edges, specify
equal membership probabilities for vertices in each edge, and set γ(R) equal to the
weight of the corresponding edge in the graph. The resulting regularizer is analogous
to the graph based regularizers for discriminant functions except that it is cast in
terms of conditional probabilities.

1.2 Communication principle

The information regularization objective can be also derived from a communication
principle. Suppose we have the same collection of regions R, region weights γ(R),
membership probabilities P (x|R), and the conditionals {Q(y|x)} associated with the
points. The regularizer is defined as the bit rate of communicating labels for points
according to the following communication game. In this scheme, the regions, points,
and labels are sampled as follows. First, we select a region R ∈ R with probability
(proportional to) γ(R), then a point within the region according to the membership
probabilities P (x|R), and finally the label y from Q(y|x). The label is then communi-
cated to the receiver using a coding scheme tailored to the region, i.e., on the basis of
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Q(y|R). The receiver is assumed to have prior access to x, R, and the region specific
coding scheme. Under these assumptions, the amount of information that must be
sent to the receiver to accurately reconstruct the samples on average is

J(Q) =
∑
R∈R

γ(R)IR(x ; y)

which is the regularizer previously defined. Equivalently, we can rewrite the regular-
izer as:

J(Q) = I(x ; y)− I(R ; y)

Therefore the communication principle aims to minimize any information x has to
communicate about y beyond what has already been communicated by the region
from which x was drawn. This information is minimal when the label within each
region does not depend on which x we sampled.

2 Information regularization on metric spaces

We adapt here the information regularization principle to the setting where X is a
metric space and assume that its metric is correlated with the labeling of points. In
other words, points that are close according to the metric are likely to have the same
label. For example, if X is a real vector space the metric could be the Euclidean
distance between the points, possibly weighted by feature relevance. Using a metric
to introduce a bias in semi-supervised learning is quite common, and many existing
algorithms require an explicit or implicit metric.

2.1 Full knowledge of the marginal

We begin by considering the ideal situation in which we have access to unlimited
unlabeled data, which, together with the metric, amounts to knowing the marginal
density p(x). In this case the information regularizer will relate the structure of p(x)
to the possible labelings of points. While we develop the ideas in the context of
knowing the marginal, the resulting algorithms apply also to finite sample cases, by
replacing p(x) with an empirical estimate.

2.1.1 The information regularizer

In order to construct the regularizer we need to specify how the regions cover the
metric space along with the weights γ(R) associated with the regions. The cover
R should provide connected and significantly overlapping regions. This is necessary
since labeling one point can only affect another if they can be connected through a
path of overlapping regions.
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In covering the space we have to balance the size of the regions with their overlap.
We derive here the form of the regularizer in the limit of vanishing but highly over-
lapping regions. Under mild constraints about how the limit is taken, the resulting
regularizer is the same. The limiting form has the additional benefit that it no longer
requires us to engineer a particular covering of the space.

We choose the regions such that as their size approaches 0, the overlap between
neighbors approaches 100% (this is required for smoothness). In the limit therefore
each point belongs to infinitely many regions, resulting in an infinite sum of local
regularizers. An appropriate choice of λ, the regularization parameter, is needed to
re-scale the regularizer to take into account this increase.

In choosing the cover R care must be taken not to introduce systematic biases
into the regularizer. Assuming that X has vector space structure, we can cover it
with a homogeneous set of overlapping regions of identical shape: regions centered at
the axis-parallel lattice points spaced at distance l′. In what follows the regions are
going to be axis-parallel cubes of length l, where l is much larger than l′. Because
R covers X uniformly, we can weight the regions based on the marginal density, i.e.,
γ(R) = P(R) up to a multiplicative constant.

Assuming that l and l′ are such that l/l′ is an integer, each (non-lattice) point
belongs to (l/l′)d cubic regions, where d is the dimension of the vector space. Let
R′ be the partitioning of R into atomic lattice cubes of length l′. Each region in
R is partitioned into (l/l′)d disjoint atomic cubes from R′, and each atomic cube
is contained in (l/l′)d overlapping regions from R. We may now rewrite the global
regularizer as a sum over the partition R′:

J(p) = lim
l→0

∑
R∈R

P(R)IR(x; y) = lim
l→0

∑
R′∈R′

P(R′)
∑

R⊇R′

IR(x; y) =

(l/l′)d lim
l′→0

∑
R′∈R′

P(R′)IR(x; y) = lim
l→0

(l/l′)d ·
∫

X
p(x)

dIR(x; y)
dx

dx

Note that the factor in front of the integral can be factored into the regularization
parameter λ as a multiplicative constant.

Infinitesimal Mutual Information

We derive the local mutual information as the diameter of R approaches 0. If x0 is
the expectation of x over R, mutual information takes the following asymptotic form:

IR(x; y) =
1
2
tr (VarR [x]F (x0)) + O

(
diam(R)3

)
where F (x) = EQ(y|x)

[
∇x log Q(y|x) · ∇x log Q(y|x)>

]
is the Fisher information and

VarR [x] is the covariance of pR(x) (for a proof of this result see Corduneanu and
Jaakkola [2003]). Note that since the covariance is O

(
diam(R)2

)
, IR(x; y) → 0 as

diam(R) → 0. Therefore limdiam(R)→0 IR(x; y)/diam(R)2 is well-defined, and this is
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the infinitesimal quantity that we will integrate to obtain J(p)2:

J(p) =
∫

X
p(x)tr

(
F (x) lim

diam(R)→0

VarR [x]
diam(R)2

)
dx

Given this form of the regularizer we can argue that regions in the shape of a
cube are indeed appropriate. We start from the principle that the regularizer should
not introduce any systematic directional bias in penalizing changes in the label. If
the diameter of a region R is small enough, pR(x) is almost uniform, and p(y = 1|x)
can be approximated well by v · x + c, where v is the direction of highest variation.
In this setting we have the following result (Corduneanu and Jaakkola [2003]):

Theorem 1 Let R be such that diam(R) = 1. The local information regularizer is
independent of v/ ‖v‖ if and only if VarR [·] is a multiple of the identity.

Proof We have F (x0) = vv>. The relevant quantity that should be independent
of v/ ‖v‖ is therefore v>VarR [·]v. Let v = Φi/ ‖Φi‖, where Φi is an eigenvector
of VarR [·] of eigenvalue φi. Then v>VarR [·]v = φi should not depend on the
eigenvector. If follows that VarR [·] has equal eigenvalues, thus VarR [·] = φI. The
converse is trivial.

It follows that in order to remove any directional bias, VarR [x] ≈ diam(R)2 · I,
as it is the case if R is a cube or a sphere. We thus reach our final form of the
information regularizer for metric space when the marginal is fully known:

J(p) =
∫

X
p(x)tr (F (x)) dx (3)

Note the the dependence of R is only implicit.

2.1.2 Classification algorithm

We would like to estimate a label confidence Q(·|x) (that is, a soft label in [0, 1]M )
for every x ∈ X given the knowledge of p(x), and a labeled sample {(xi, yi)}i=1...l.
The information regularization principle requires us to maximize the regularized log-
likelihood:

max
{Q(y|x) ; x∈X,y∈Y}

l∑
i=1

log Q(yi|xi)− λ

∫
X

p(x)tr (F (x)) dx (4)

where F (x) = EQ(y|x)

[
∇x log Q(y|x) · ∇x log Q(y|x)>

]
, and the maximization is sub-

ject to 0 ≤ Q(y|x) ≤ 1 and
∑

y∈Y Q(y|x) = 1.

2To be consistent with the derivation of J(p), we should normalize IR(x; y) by diam(R)d, but unless
d = 2 the regularizer would be either 0 or∞. We can afford to choose the convenient normalization without
compromising the principle because we are free to choose λ
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It is interesting that the above optimization defines a labeling even in a com-
pletely unrestricted non-parametric setting (save for differentiability constraints on
Q(·|x). In this situation labels of distinct data points are related only through the
information regularizer. We show that if we fix the values of the labels at the ob-
served labeled samples, Q(yi|xi) = P0(yi|xi), for all i = 1 . . . l, the regularizer extends
Q(y|x) to unobserved x’s uniquely. In what follows, we restrict the analysis to binary
classification (Y = {−1, 1}).

We cast the optimization as solving a differential equation that characterizes the
optimal conditional. The conditional that minimizes the regularizer

∫
p(x)tr (F (x))

is a differentiable function (except maybe at the labeled samples, where it is only
continuous) that satisfies the Euler-Lagrange condition:

∇x log p(x)∇xQ(1|x)> + tr
(
∇2

xxQ(1|x)
)
+

1
2

Q(1|x)−Q(−1|x)
Q(1|x)Q(−1|x)

‖∇xQ(1|x)‖2 = 0

(Corduneanu and Jaakkola [2003])
This differential equation defines a unique solution given the natural boundary

conditions p(x) = 0 and ∇xQ(y|x) = 0 at infinity, as well as the labels P0(yi|xi) at
labeled samples.

In order to optimize (4) one could solve the differential equation for various values
{P0(yi|xi)}i=1...l, then optimize with respect to P0(yi|xi). Unfortunately, solving the
differential equation numerically involves discretizing X, which is impractical for all
but low dimensional spaces. That is why the non-parametric but inductive (find
a label for each point in X) information regularization is of more theoretical than
practical interest.

Nevertheless, if X is the one-dimensional real line the differential equation can be
solved analytically (Corduneanu and Jaakkola [2003]). We present the solution here
to illustrate the type of biases imposed by the information regularizer. When X is one
dimensional, the labeled samples x1, x2, . . . , xl split the real line into disjoint intervals;
thus if P0(y|xi) are given, the differential equation can be solved independently on
each interval determined by the samples. The solution only depends on the labels of
the endpoints, and is given by the following:

Q(1|x) =
1

1 + tan2
(
−c
∫

1
p(x)

)
where c and the additive constant in

∫
1/p can be determined from the values of the

conditional at the endpoints. These two parameters need not be the same on different
intervals.

Figure 3 shows the influence of various p(x) on Q(1|x) through information reg-
ularization under the boundary conditions P (y = 1|x = 0) = 0.9 and P (y = 1|x =
1) = 0.1. The property of preferring changes in the label in regions of low data
density is evident. Note that the optimal P (y|x) will always be between its values
at the boundary; otherwise for some x1 6= x2 we would have P (y|x1) = P (y|x2),
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Figure 3: Non-parametric conditionals that minimize the information regularizer for various one-
dimensional data densities while the label at boundary labeled points is fixed

and because the cumulative variation is minimized, necessarily P (y|x) = P (y|x1) for
every x ∈ [x1, x2].

2.1.3 Learning theoretic properties

We extend the analysis of information regularization on metric spaces given the full
knowledge of the marginal with a learning theoretical framework. The aim is to
show that the information regularizer captures the learning complexity, in the sense
that bounding it makes the labels learnable without any additional assumptions about
{Q(y|x)}x∈X,y∈Y. Because the setting is non-parametric, and the only link that relates
labels of distinct points is the information regularizer, {Q(y|x)}x∈X,y∈Y would not be
learnable without placing a constraint on the information regularizer. While the
learning framework is general, due to technical constraints 3 we derive an explicit
sample-size bound only for binary classification when X is one-dimensional.

We need to formalize the concepts, the concept class (from which to learn them),
and a measure of achievement consistent with (4). The key is then to show that the
task is learnable in terms of the complexity of the concept class.

Standard PAC-learning of indicator functions of class membership will not suffice
for our purpose. Indeed, conditionals with very small information regularizer can

3Only in one dimension the labeled points give rise to segments that can be optimized independenlty.

10



still have very complex decision boundaries, of infinite VC-dimension. Instead, we
rely on the p-concept (Kearns and Schapire [1994]) model of learning full conditional
densities: concepts are functions Q(y|x) : X → [0, 1]. Then the concept class is that
of conditionals with bounded information regularizer:

Iγ(p) =

Q :
∫

X
p(x)

∑
y∈Y

Q(y|x) ‖∇x log Q(y|x)‖2 dx ≤ γ


We measure the quality of learning by a loss function LQ : X× Y→ [0,∞). This

can be the log-loss − log Q(y|x) associated with maximizing likelihood, or the square
loss (Q(y|x) − 1)2. The goal is to estimate from a labeled sample a concept Qopt

from Iγ(p) that minimizes the expected loss Ep(x)P (y|x) [LQ], where P(y|x) is the true
conditional.

One cannot devise an algorithm that optimizes the expected loss directly, because
this quantity depends on the unknown P(y|x). We make the standard approximation
of estimating Qopt by minimizing instead the empirical estimate of the expected loss
from the labeled sample:

Q̂ = arg min
Q∈Iγ(p)

Ê [LQ] = arg min
Q

1
l

l∑
i=1

LQ(xi, yi)

If the loss function is the log-loss, finding Q̂ is equivalent to maximizing the informa-
tion regularization objective (4) for a specific value of λ. However, we will present
the learning bound for the square loss, as it is bounded and easier to work with.
A similar result holds for the log-loss by using the equivalence results between the
log-loss and square-loss presented in (Abe et al. [2001]).

The question is how different Q̂ (estimated from the sample) and Qopt (estimated
from the true conditional) can be due to this approximation. Learning theoretical
results provide guarantees that given enough labeled samples the minimization of
Ê [LQ] and Ep(x)P (y|x) [LQ] are equivalent. We say the task is learnable if with high
probability in the sample the empirical loss converges to the true loss uniformly for
all concepts as l → ∞. This guarantees that E

[
LQ̂

]
approximates E

[
LQopt

]
well.

Formally,

P{∃Q ∈ Iγ(p) : |Ê [LQ]−E [LQ] | > ε} ≤ δ (5)

where the probability is with respect to all samples of size l. The inequality should
hold for l polynomially large in 1/ε, 1/δ, 1/γ.

We have the following sample complexity bound on the square loss, derived in
Corduneanu and Jaakkola [2003]:

Theorem 2 Let ε, δ > 0. Then

P{∃Q ∈ Iγ(p) : |Ê [LQ]−E [LQ] | > ε} < δ
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where the probability is over samples of size l greater than

O

(
1
ε4

(
log

1
ε

)[
log

1
δ

+ cp(m−1
p (ε2)) +

γ

(m−1
p (ε2))2

])
Here mp(α) = P{x : p(x) ≤ α}, and cp(α) is the number of disconnected sets in

{x : p(x) > α}.

The quantities mp(·) and cp(·) characterize how difficult the classification is due
to the structure of p(x). Learning is more difficult when significant probability mass
lies in regions of small p(x) because in such regions the variation of Q(y|x) is less
constrained. Also, the larger cp(·) is, the labels of more “clusters” need to be learned
from labeled data. The two measures of complexity are well-behaved for the useful
densities. Densities of bounded support, Laplace and Gaussian, as well mixtures of
these have mp(α) < uα, where u is some constant. Mixtures of single-mode densities
have cp(α) bounded by the number of mixtures.

2.2 Finite unlabeled sample

We discuss here classification by information regularization when X is endowed with
a metric but the true marginal p(x) is unknown save a large unlabeled sample
(xl+1, . . . , xn). In practice we might already have a domain specific model (class)
of how the labels are generated and we show how to apply information regularization
if the labels must come from a parametric family Q(y|x, θ).

Although it is possible to approach this scenario directly by partitioning the space
into regions as in Szummer and Jaakkola [2002], here we reduce the task to the
situation in which the full marginal is known by replacing the full marginal with an
empirical estimate obtained from the unlabeled sample.

We illustrate this method on logistic regression, in which we restrict the condi-
tional to linear decision boundaries with the following parametric form: Q(y|x; θ) =
σ(yθ>x), where y ∈ {−1, 1} and σ(x) = 1/(1 + exp(−x)). The Fisher information is
therefore F (x; θ) = σ(θ>x)σ(−θ>x)θθ> and according to Equation 3 the information
regularizer takes the form

‖θ‖2
∫

p̂(x)σ(θ>x)σ(−θ>x)dx

Here p̂(x) is the empirical estimate of the true marginal. We compare two ways
of estimating p(x), the empirical approximation 1

n

∑n
j=1 δ(x−x′j), as well as a Gaus-

sian kernel density estimator. The empirical approximation leads to optimizing the
following criterion:

max
θ

l∑
i=1

log σ(yiθ
>xi)− ‖θ‖2

λ

n

n∑
j=1

σ(θ>xj)σ(−θ>xj)
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It is instructive to contrast this information regularization objective with the
criterion optimized by transductive SVM’s, as in Chapter 6. Changing the SVM loss
function to logistic loss, transductive SVM/logistic regression optimizes:

max
θ,yl+1,...,yn

n∑
i=1

log σ(yiθ
>xi)−

λ

2
‖θ‖2

over all labelings of unlabeled data. In contrast, our algorithm contains the unlabeled
information in the regularizer.

The presented information regularization criterion can be easily optimized by
gradient-ascent or Newton type algorithms. Note that the term σ(θ>x)σ(−θ>x) =
Q(1|x)Q(−1|x) focuses on the decision boundary. Therefore compared to the stan-
dard logistic regression regularizer ‖θ‖2, we penalize more decision boundaries cross-
ing regions of high data density. Also, the term makes the regularizer non-convex,
making optimization potentially more difficult. This level of complexity is however
unavoidable by any semi-supervised algorithm for logistic regression, because the
structure of the problem introduces locally optimal decision boundaries.

If unlabeled data is limited, we may prefer a kernel estimate p̂(x) = 1
n

∑n
j=1 K(x, x′j)

to the empirical approximation, provided the regularization integral remains tractable.
In logistic regression, if the kernels are Gaussian we can make the integral tractable by
approximating σ(θ>x)σ(−θ>x) with a degenerate Gaussian. Either from the Laplace
approximation, or the Taylor expansion log(1 + ex) ≈ log 2 + x/2 + x2/8, we derive
the following approximation, as in Corduneanu and Jaakkola [2003]:

σ(θ>x)σ(−θ>x) ≈ 1
4

exp
(
−1

4
(θ>x)2

)
With this approximation computing the integral of the regularizer over the kernel

centered µ of variance τI becomes integration of a Gaussian:

1
4

exp
(
−1

4
(θ>x)2

)
N(x ; µ, τI) =

1
4

√
det Σθ

det τI
exp

(
−µ> (τI− Σθ) µ

2τ2

)
N

(
x ;

Σθµ

τ
,Σθ

)
where Σθ =

(
1
τ I + 1

2θθ>
)−1 = τ

[
I− 1

2θθ>/
(

1
τ + 1

2 ‖θ‖
2
)]

After integration only the multiplicative factor remains:

1
4

(
1 +

τ

2
‖θ‖2

)− 1
2 exp

(
−1

4
(θ>µ)2

1 + τ
2 ‖θ‖

2

)
Therefore if we place a Gaussian kernel of variance τI at each sample xj we obtain

the following approximation to the information regularization penalty:

‖θ‖2√
1 + τ

2 ‖θ‖
2

1
4n

n∑
j=1

exp

(
−1

4
(θ>xj)2

1 + τ
2 ‖θ‖

2

)
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This regularizer can be also optimized by gradient ascent or Newton’s method.

2.2.1 Logistic regression experiments

We demonstrate the logistic information regularization algorithm as derived in the
previous section on synthetic classification tasks. The data is generated from two
bivariate Gaussian densities of equal covariance, a model in which the linear decision
boundary can be Bayes optimal. However, the small number of labeled samples is not
enough to accurately estimate the model, and we show that information regularization
with unlabeled data can significantly improve error rates.

We compare a few criteria: logistic regression trained only on labeled data and
regularized with the standard ‖θ‖2; logistic regression regularized with the informa-
tion regularizer derived from the empirical estimate to p(x) ; and logistic regression
with the information regularizer derived from a Gaussian kernel estimate of p(x).

We have optimized the regularized likelihood L(θ) both with gradient ascent θ ←
θ + α∇θL(θ), and with Newton’s method (iterative re-weighted least squares) θ ←
θ − α∇2

θθL(θ)−1∇θL(θ) with similar results. Newton’s method converges with fewer
iterations, but computing the Hessian becomes prohibitive if data is high dimensional,
and convergence depends on stronger assumptions that those for gradient ascent.
Gradient ascent is safer but slower.

We ran 100 experiments with data drawn from the same model and averaged
the error rates to obtain statistically significant results. In Figure 4 (Corduneanu
and Jaakkola [2003])we have obtained the error rates on 5 labeled and 100 unlabeled
samples. On each data set we initialized the iteration randomly multiple times. We
set the kernel width τ of the Gaussian kernel approximation to the regularizer by
standard cross-validation for density estimation. Nevertheless, on such large number
of unlabeled samples the information regularizers derived from kernel and empirical
estimates perform indistinguishable. They both outperform the standard supervised
regularization significantly.

3 Information regularization and relational data

In a large number of classification domains we do not have a natural metric relevant
to the classification task (correlating Q(y|x) and Q(y|x′) for x 6= x′). In the absence
of a metric biases about labelings are often naturally expressed in relational form.
For example, consider the task of categorization of web pages in the presence of
information about their link structure. It is natural to believe that pages that are
linked in the same manner (common parents and common children) are biased to
have similar topics even before we see any information about their content. Similarly,
all other things being equal, pages that share common words are likely to have similar
topics. In classifying gene function, genes whose protein products interact are more
likely to participate in the same process with similar function; or in retrieving science
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Figure 4: Average error rates of logistic regression with and without information regularization
on 100 random selections of 5 labeled and 100 unlabeled samples from bivariate gaussian classes

publications, co-cited articles, or articles published in the same journal, are likely to
have similar relevance assessments.

Relational classification is not new – it has been studied extensively from a
Bayesian network perspective, as in Taskar et al. [2002]. Nevertheless, information
regularization can exploit the relational structure with minimal assumptions about
the distribution of data, even in a non-parametric, purely transductive context.

Let us begin by representing the relational constraints as a collection of regions
(sets) R, derived from observed examples (x1, x2, . . . , xn), where we expect the labels
to be similar within each region. The regions here differ from the continuous case in
that they are discrete subsets of indices {1, 2, . . . , n} in the training set. It is useful
to depict the region cover as a bipartite graph with points on one side and regions on
the other, as in Figure 5. Note that regions can also be derived from a metric if such
metric exists. For example, we could define regions centered at each observed data
point of a certain radius. For this reason every algorithm discussed in this section is
also applicable to finite sample metric settings.

We consider a generative process over the finite sample (x1, x2, . . . , xn) by selecting
a region R from R with probability γ(R), and then an observed point xi from R
according to the membership 4 probability P(i|R). The probabilities γ(R) and P(x|R)
are task specific and must be selected such that

∑
R∈R γ(R)P(i|R) = P(xi), the

probability of sampling xi from (x1, . . . , xn). If the true marginal is known, then
we can replace P(xi) with its true value; otherwise, a reasonable empirical estimate
is P(xi) = 1/n for all i = 1 . . . n. If there is no reason to prefer one region over
another, γ(R) could be uniform on R; the constraint P(xi) = 1/n cannot be typically

4In the finite sample case we use the index of the example interchangeably with the example itself.
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Figure 5: Covering of the observed samples with a set of relational regions represented as a
bipartite graph. The lower nodes are the observed data points, and the upper nodes are the
regions.

simultaneously enforced, however.
In this context the goal of classification is purely transductive: given the labels of

the labeled training set, the classifier assigns labels to the unlabeled training set in a
manner consistent with the relational biases R. Nothing is inferred about unobserved
x ∈ X.

3.1 Non-parametric classification

Without constraining the family of label distributions Q(y|x), the objective that must
be optimized according the information regularization principle is:

max
{Q(y|xi)}i=1...n

1
l

l∑
i=1

log Q(yi|xi)− λJ(Q;R)

where the information regularizer is given by

J(Q;R) =
∑
R∈R

γ(R)IR(x; y) =
∑
R∈R

γ(R)
∑
j∈R

∑
y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)
Q(y|R)

where Q(y|R) =
∑

j∈R P (j|R)Q(y|xj) is the overall probability of y within the region.
As opposed to the continuous version of information regularization, the above

objective depends on a finite set of parameters {Q(y|xi)}i=1...n, thus optimization is
efficient. Moreover, in the non-parametric setting the objective is convex due to the
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convexity of mutual information (Cover and Thomas [1991]). The following lemma
from Corduneanu and Jaakkola [2004] formalizes the result:

Lemma 3 The relational regularization objective for λ > 0 is a strictly convex func-
tion of the conditionals {Q(y|xi)} provided that 1) each point i ∈ {1, . . . , n} belongs to
at least one region containing at least two points, and 2) the membership probabilities
P(i|R) and γ(R) are all non-zero.

3.1.1 Distributed propagation algorithm

As in Corduneanu and Jaakkola [2004] we derive a local propagation algorithm for
minimizing the relational regularization objective that is both easy to implement
and provably convergent. The algorithm can be seen as a variant of the Blahut-
Arimoto algorithm in rate-distortion theory (Blahut [1972]). We begin by rewriting
each mutual information term IR(x; y) in the criterion

IR(x; y) =
∑
j∈R

∑
y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)
Q(y|R)

= min
QR(·)

∑
j∈R

∑
y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)
QR(y)

where the variational distribution QR(y) can be chosen independently from Q(y|xj)
but the unique minimum is attained when QR(y) = Q(y|R) =

∑
j∈R P(j|R)Q(y|xj).

We can extend the regularizer over both {Q(y|xi)} and {QR(y)} by defining

J(Q,QR;R) =
∑
R∈R

γ(R)
∑
j∈R

∑
y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)
QR(y)

so that J(Q;R) = min{QR(·),R∈R} J(Q,QR;R) recovers the original regularizer.
The local propagation algorithm follows from optimizing each Q(y|xi) based on

fixed {QR(y)} and subsequently finding each QR(y) given fixed {Q(y|xi)}. We omit
the straightforward derivation and provide only the resulting algorithm: for all points
xi, i = (l + 1) . . . n (not labeled), and for all regions R ∈ R we perform the following
complementary averaging updates

Q(y|xi) ←
1

Zxi

exp(
∑

R:j∈R

P(R|j) log QR(y) ) (6)

QR(y) ←
∑
j∈R

P(xj |R)Q(y|xj) (7)

where Zxj is a normalization constant, and P (R|j) ∝ P (j|R)γ(R). In other words,
Q(y|xi) is obtained by taking a weighted geometric average of the distributions asso-
ciated with the regions, whereas QR(y) is (as before) a weighted arithmetic average
of the conditionals within each region.
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Updating Q(y|xi) for each labeled point xi, i = 1 . . . l involves minimizing

1
l

log Q(yi|xi)−
λ

n
H(Q(·|xi))− λ

∑
y∈Y

Q(y|xi)
( ∑

R:j∈R

γ(R)P(j|R) log QR(y)
)

where H(Q(·|xi)) is the Shannon entropy of the conditional. While the objective is
strictly convex, the solution cannot be written in closed form and has to be found
iteratively (e.g., via Newton-Raphson or simple bracketing when the labels are bi-
nary). A much simpler update Q(y|xi) = δ(y, yi), where yi is the observed label for
xi, may suffice in practice. This update results from taking the limit of small λ and
approximates the iterative solution.

Thus the transduction information regularization algorithm in the non-parametric
setting consists of the following steps:

1. Associate with each region R ∈ R a label probability distribution
QR(y).

2. Initialize {Q(y|xi)}i=1...n and {QR(y)}R∈R. The initialization values
are irrelevant because the objective is convex and admits a unique
minimum.

3. Iterate (6) and (7) alternatively until convergence. For labeled points
a slightly different update than (6) must be used to account for the
observation.

3.1.2 Learning theoretical properties

As in the metric case, we seek to show that the information regularizer is an adequate
measure of complexity, in the sense that learning a labeling consistent with a cap on
the regularizer requires fewer labeled samples. We consider only the simpler setting
where the labels are hard and binary, Q(y|xi) ∈ {0, 1}, and show that bounding
the information regularizer significantly reduces the number of possible labelings.
Assuming that the points in a region have uniform weights P (j|R), let N(γ) be the
number of labelings of {x1, x2, . . . , xn} consistent with

J(Q,R) < γ

According to Corduneanu and Jaakkola [2004] we have the following result:

Theorem 4 log2 N(γ) ≤ C(γ) + γ · n · t(R)/ minR γ(R), where C(γ)→ 1 as γ → 0,
and t(R) is a property of R that does not depend on the cardinality of R.

Therefore when γ is small, N(γ) is exponentially smaller than 2n, and

lim
γ→0

N(γ) = 2

18



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6: Clusters correctly separated by information regularization given one label from each
class

3.1.3 Experiments

To begin with we illustrate the performance of transductive information regulariza-
tion on two two-dimensional generated binary classification tasks (Corduneanu and
Jaakkola [2004]). In this setting we convert the tasks to relational classification by
deriving regions of observed points contained in spheres centered at each data point
and of a certain radius.

On the classic semi-supervised data set in Figure 6 the method correctly propa-
gates the labels to the clusters starting from a single labeled point in each class. In
the example in Figure 7 we demonstrate that information regularization can be used
as a post-processing to supervised classification and improve error rates by taking
advantage of the topology of the space. All points are a priori labeled by a linear
classifier that is non-optimal and places a decision boundary through the negative
and positive clusters. Information regularization is able to correct the mislabeling of
the clusters. Both results are quite robust to the choice of the radius of the regions
as long as all regions remain connected with each other.

Next we test the algorithm on a web document classification task, the WebKB
data set of [Blum and Mitchell, 1998]. The data consists of 1051 pages collected
from the websites of four universities. This particular subset of WebKB is a binary
classification task into ’course’ and ’non-course’ pages. 22% of the documents are
positive (’course’). The dataset is interesting because apart from the documents
contents we have information about the link structure of the documents. The two
sources of information can illustrate the capability of information regularization of
combining heterogeneous unlabeled representations.

Both ’text’ and ’link’ features used here are a bag-of-words representation of
documents. To obtain ’link’ features we collect text that appears under all links
that link to that page from other pages, and produce its bag-of-words representation.
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Figure 7: Ability of information regularization to correct the output of a prior classifier (left:
before, right: after)

We employ no stemming, or stop-word processing, but restrict the vocabulary to
2000 text words and 500 link words. The experimental setup consists of 100 random
selections of 3 positive labeled, 9 negative labeled, and the rest unlabeled. The test
set includes all unlabeled documents. We report a näıve Bayes baseline based on
the model that features of different words are independent given the document class.
The näıve Bayes algorithm can be run on text features, link features, or combine the
two feature sets by assuming independence. We also quote the performance of the
semi-supervised method obtained by combining näıve Bayes with the EM algorithm
as in Chapter ref.chap:Nigam.

We measure the performance of the algorithms by the F-score equal to 2pr/(p+r),
where p and r are the precision and recall. A high F-score indicates that the precision
and recall are high and also close to each other. To compare algorithms independently
of the probability threshold that decides between positive and negative samples, the
results reported are the best F-scores for all possible settings of the threshold.

The key issue in applying information regularization is the selection of sound
relational biases (i.e. R). For document classification we obtained the best results
by grouping all documents that share a certain word into the same region; thus each
region is in fact a word, and there are as many regions as the size of the vocabulary.
Regions are weighted equally, as well as the words belonging to the same region. The
choice of λ is also task dependent. Here cross-validation selected a optimal value
λ = 90. When running information regularization with both text and link features
we combined the coverings with a weight of 0.5.

All results are reported in Table 1. We observe that information regularization
performs better than näıve Bayes on all types of features, that combining text and
link features improves performance of the regularization method, and that on link
features the method performs better than the semi-supervised näıve Bayes+EM.
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Table 1: Web page classification comparison between näıve Bayes and information regularization
and semi-supervised näıve Bayes+EM on text, link, and joint features

näıve Bayes inforeg näıve Bayes+EM
text 82.85 85.10 93.69
link 65.64 82.85 67.18
both 83.33 86.15 91.01

3.2 Parametric classification

We briefly discuss extensions to the transductive information regularization algorithm
with relational biases when the conditional takes a parametric form (unpublished
work). The extended framework subsumes standard estimation principles such as
supervised maximum likelihood, expectation maximization from incomplete data, as
well as information regularization presented above. One of the key modifications is to
associate with each region R a parametric model QR(x, y|θR) instead of the standard
average label QR(y) as introduced in the above transductive algorithm. With this
change the meaning of the regions shifts to represent groups of data points that are
modeled in a similar way (same parametric family), where the parametric family
may change from region to region. This revision increases the expressive power of
information regularization significantly while remaining tractable. Preliminary results
are encouraging.

4 Discussion

We have presented the broader information regularization framework, a principle for
assigning labels to unlabeled data in a semi-supervised setting. The principle seeks to
minimize the information induced between examples and labels relative to a topology
over the examples. In other words, we minimize spurious information content not
forced by the observed labels.

The information regularization principle manifests itself in different forms de-
pending on assumptions about the space of examples – metric or relational. We
demonstrated the resulting algorithms both under the idealized setting where the
marginal is known as well as when only a finite unlabeled sample is available. Trans-
ductive non-parametric classification results in an efficient algorithm that is provably
convergent to a unique optimum.

We can also constrain the conditional probabilities to take a particular parametric
form. This extension can be generalized considerably, leading to a unifying frame-
work.
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