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Abstract

We provide a method that approximates the
Bayes error rate and the Shannon entropy
with high probability. The Bayes error rate
approximation makes possible to build a clas-
sifier that polynomially approaches Bayes er-
ror rate. The Shannon entropy approxima-
tion provides provable performance guaran-
tees for learning trees and Bayesian networks
from continuous variables. Our results rely
on some reasonable regularity conditions of
the unknown probability distributions, and
apply to bounded as well as unbounded vari-
ables.

1. Introduction

Classification is arguably one of the most well-studied
problems in machine learning. This includes the pro-
posal of novel classification algorithms, and the study
of generalization bounds (and sample complexity). In-
tuitively speaking, generalization bounds provide the
rate at which the expected risk of the best classifier
(chosen from some family) for a finite sample, ap-
proaches the expected risk of the best classifier (from
the same family) for an infinite sample.

Less attention has been given to the approximation of
the optimal Bayes error rate, which requires nonpara-
metric methods. Some of the notable exceptions are
the study of asymptotic universal Bayes consistency
for weighted-average plug-in classifiers (Stone, 1977)
(a class that contains for instance k-nearest neighbors)
as well as for Parzen windows (Fralick & Scott, 1971).

It is well known that without any further assump-
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tion on the probability distributions, no rate-of-
convergence results can be obtained (Antos et al.,
1999). Given this, several authors have considered
regularity conditions in the form of Lipschitz conti-
nuity. The Lipschitz continuity assumption upper-
bounds the change of a function with respect to a given
parameter. Under the assumption of Lipschitz poste-
rior probability (i.e. P(y = 1|x) Lipschitz with re-
spect to x), (Drakopoulos, 1995; Nock & Sebban, 2001;
Györfi, 1981; Kulkarni & Posner, 1995) provide gener-
alization bounds for k-nearest neighbors while (Kohler
& Krzyżak, 2006) provides generalization bounds av-
erage plug-in classifiers. However the generalization
bounds in (Drakopoulos, 1995; Nock & Sebban, 2001;
Kulkarni & Posner, 1995) do not imply Bayes consis-
tency since the analysis considers “twice Bayes error”.

Our first goal is the approximation of Bayes error
rate between two unknown distributions, from a given
training set. More specifically, we are interested on
two-sided exponential concentration bounds. As a
byproduct, we obtain a classifier that is Bayes consis-
tent with provable finite-sample rates. Note that while
the rates in (Györfi, 1981; Kohler & Krzyżak, 2006)
show generalization bounds for Bayes consistent clas-
sifiers, they do not provide a recipe for producing the
desired bounds. The main reason is that the bounds
are one-sided and in expected risk. While in prac-
tice resampling (Jackknife, bootstrapping and cross-
validation) is used to assess classifier performance in
finite samples, it is unclear how resampling can pro-
duce the bounds we are interested on. In this paper
we prove that, given N samples, with probability at
least 1− δ, we can approximate the Bayes error with a
finite-sample rate of O(N−1/4 log1/2N, log (1/δ)). To
the best of our knowledge, this is the first exponential
inequality for Bayes error rate estimation.

We assume Lipschitz continuity as the regularity con-
dition for the probability distributions. This is a rea-
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sonable assumption since universal rate-of-convergence
results are not possible (Antos et al., 1999).

Our second goal is the approximation of Shannon en-
tropy of an unknown distribution, from a given train-
ing set. Again, we are interested on two-sided expo-
nential concentration bounds. Our main motivation is
to provide generalization bounds for learning the struc-
ture of trees and Bayesian networks from continuous
variables. This is due to the fact that a concentration
bound for the entropy makes available a concentration
bound for related information theoretic measures, such
as mutual information and conditional entropy.

Several asymptotic consistency results are available for
Shannon entropy estimation. Techniques such as ker-
nel density estimation (Ahmad & Lin, 1976; Egger-
mont & LaRiccia, 1999; Paninski & Yajima, 2008) and
spacings (Van Es, 1992; Tsybakov & Van der Meulen,
1996; Wang et al., 2005) have been previously pro-
posed. The use of k-nearest neighbors was proposed
by (Pérez-Cruz, 2008; Póczos & Schneider, 2012) for
estimating Shannon entropy and other related infor-
mation theoretic measures. Convex risk minimization
for estimating divergences was analyzed in (Nguyen
et al., 2010). The use of nearest-neighbor graphs was
proposed by (Pál et al., 2010) for Rényi entropy es-
timation with finite-sample rates for Lipschitz distri-
butions. We refer the interested reader to the survey
articles (Beirlant et al., 1997; Paninski, 2003) for more
discussion.

Very recently, a kernel estimator of the Shannon en-
tropy with exponential concentration bounds was pro-
posed by (Liu et al., 2012). The authors focused on
distributions of the Hölder class (which is a subset of
the Lipschitz class studied here). Moreover, the esti-
mator proposed by (Liu et al., 2012) requires positive-
ness of the density function, differentiability, vanishing
first-order derivative in the boundaries, bounded third-
order derivative1, and prior knowledge of lower/upper
bounds of the density function. In contrast, our re-
sults also apply to probability distributions with re-
gions of zero-probability, nonsmooth density functions
(discontinuous derivative), arbitrary behavior in the
boundaries, and we do not require prior knowledge of
lower/upper bounds. Additionally, our results apply
to both bounded and unbounded variables, unlike (Liu
et al., 2012).

As expected, given that our results are relatively more
general, our finite-sample rate for the entropy is slower
than the rate of (Liu et al., 2012). More specifically,
given N samples, with probability at least 1 − δ, we

1See eq.(3.36) of (Liu et al., 2012)

approximate the Shannon entropy with a finite-sample
rate of O(N−1/4 log3/2N, log (1/δ)). In contrast, (Liu
et al., 2012) provides a rate of O(N−1/2, log (1/δ)).

In this paper, we propose the same framework for ap-
proximating both the Bayes error rate and the Shan-
non entropy. Our method is based on splitting the
variable domain into bins. Then, we compute empiri-
cal probabilities for each bin. Finally, we produce an
empirical estimate of the statistical measure (Bayes er-
ror and entropy). Interestingly, our method has prov-
able two-sided exponential concentration bounds.

For clarity of exposition, we present our proofs for the
one-dimensional case. Given that the extension to sev-
eral dimensions is trivial, we defer this topic until Sec-
tion 5.

2. Preliminaries

In this paper, we assume Lipschitz continuity as the
regularity condition for the probability distributions.
Our Lipschitz assumption upper-bounds the rate of
change of the density function. A kernel estimator
of the Shannon entropy for the Hölder class was pro-
posed by (Liu et al., 2012). The relationship between
the Hölder and the Lipschitz class might not seem im-
mediately obvious. In this section, we show that the
Hölder class is a subset of the Lipschitz class.

Next, we present our Lipschitz continuity assumption.

Definition 1. A probability distribution P = p(·) is
called K-Lipschitz continuous, if its probability den-
sity function p(x) is Lipschitz continuous with constant
K ≥ 0, that is:

(∀x1, x2) |p(x1)− p(x2)| ≤ K|x1 − x2| (1)

or equivalently for a continuous function p(x):

(∀x)
∣∣∣ ∂p∂x (x)

∣∣∣ ≤ K (2)

In Table 1 we provide some few examples of very well
known parametric distributions that are Lipschitz con-
tinuous. This includes the Gaussian, Laplace, Cauchy
and Gumbel distributions. Note that by properties of
Lipschitz continuity, any mixture of Lipschitz distri-
butions is also Lipschitz.

Next, we show that the Hölder class analyzed in (Liu
et al., 2012) is a subset of the Lipschitz class.

Theorem 2. Let f(x) be a function that belongs to
the second-order Holdër class with domain x ∈ [0; 1]
and vanishing derivatives in the boundaries. That is,
there is constant L ≥ 0 such that:

(∀x, u)
∣∣∣f(x+ u)− f(x)− ∂f

∂x (x)u
∣∣∣ ≤ Lu2 (3)
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Table 1. Some Lipschitz continuous distributions, their
density function p(x) and Lipschitz constant K.

Distrib. p(x) Conditions K

Gaussian 1

σ
√
2π
e
− x2

2σ2 σ > 0 1

σ2
√
2πe

Laplace 1
2λ
e−
|x|
λ λ > 0 1

2λ2

Cauchy 1
π
( λ
x2+λ2 ) λ > 0 3

√
3

8πλ2

Gumbel 1
λ
e−x/λ−e

−x/λ
λ > 0 2+

√
5

λ2 e−
3+
√

5
2

Mixture
∑
i αipi(x) Ki-Lipschitz pi(·),

∑
i αiKi

αi > 0,
∑
i αi = 1

and either ∂f
∂x (0) = 0 or ∂f

∂x (1) = 0. Then, the function
f(x) is Lipschitz continuous with constant K = 3L.

Proof. Assume that ∂f
∂x (0) = 0 holds. By setting x =

0 in eq.(3) and by the previous assumption, we have
|f(u)− f(0)| ≤ Lu2. This is a Lipschitz condition at
x = 0 since −1 ≤ u ≤ 1 and therefore Lu2 ≤ L|u|.

Next, we focus at x > 0. By the reverse triangle in-
equality in eq.(3) and by setting u = −x, we have:∣∣∣∂f∂x (x)u

∣∣∣ ≤ |f(x+ u)− f(x)|+ Lu2∣∣∣∂f∂x (x)
∣∣∣x ≤ |f(0)− f(x)|+ Lx2 ≤ Lx2 + Lx2 = 2Lx2

Therefore,
∣∣∣∂f∂x (x)

∣∣∣ ≤ 2Lx for x > 0. Recall that x ≤ 1

and −1 ≤ u ≤ 1. By the reverse triangle inequality in
eq.(3), we have:

|f(x+ u)− f(x)| ≤
∣∣∣∂f∂x (x)u

∣∣∣+ Lu2

=
∣∣∣∂f∂x (x)

∣∣∣ |u|+ Lu2

≤ 2Lx|u|+ Lu2

≤ 2L|u|+ L|u|
= 3L|u|

A similar proof can be done for ∂f
∂x (1) = 0 instead.

3. Bayes error rate

In this section, we present our two-sided exponential
concentration bound for Bayes error. We show results
for both bounded and unbounded random variables.

3.1. Bounded Domain

In this paper, we approximate statistical measures by
splitting the variable domain into bins. To this end,
we first provide a general concentration bound for the
probability that a variable falls inside a specific bin.

Proposition 3. Let x be a continuous random vari-
able with domain D. Let d be a subset of D. Let

P = p(·) be a probability distribution with probabil-
ity density function p(x). Let the true probability
p̄d = PP [x ∈ d] =

∫
x∈d p(x). Given N i.i.d. sam-

ples x1, . . . , xN from P. Let the empirical probability
p̂d = P̂P [x ∈ d] = 1

N

∑
n 1[xn ∈ d]. The following high

probability statement holds:

P[|p̂d − p̄d| > ε] ≤ 2e−2Nε2 (4)

Proof. Let zn ≡ 1[xn ∈ d]. We have:

EP [zn] = EP [1[xn ∈ d]] = PP [xn ∈ d] = p̄d

Note that zn ∈ {0, 1} and p̂d = 1
N

∑
n zn. By Hoeffd-

ing’s inequality, we prove our claim.

Next, we provide bounds for the Bayes error rate inside
a specific bin. These bounds depend only on the em-
pirical probabilities, the Lipschitz constant K as well
as the bin size.

Lemma 4. Let x be a continuous random variable
with compact domain D. Let d be a compact sub-
set of D. Let P = p(·) and Q = q(·) be two K-
Lipschitz continuous distributions. Let the true prob-
abilities p̄d = PP [x ∈ d] =

∫
x∈d p(x) and q̄d = PQ[x ∈

d] =
∫
x∈d q(x). The true Bayes error rate on d, given

by Bd(P,Q) =
∫
x∈d min (p(x), q(x)) is bounded as fol-

lows:

min (p̄d, q̄d)−
K|d|2

2
≤ Bd(P,Q) ≤ min (p̄d, q̄d) (5)

where |d| is the size of d.

Proof. Given that p(x) is Lipschitz continuous with
constant K, that we know the integral p̄d =

∫
x∈d p(x),

and that the maximum change in x is |d|. We have

p(x) ≥ p̄d
|d| − Z and q(x) ≥ q̄d

|d| − Z where Z ≡ K|d|
2 .

For finding a lower bound, note that:

Bd(P,Q) =

∫
x∈d

min (p(x), q(x))

≥
∫
x∈d

min

(
p̄d
|d|
− Z, q̄d

|d|
− Z

)
=

∫
x∈d

(
1

|d|
min (p̄d, q̄d)− Z

)
= min (p̄d, q̄d)− |d|Z

By replacing Z, we prove that the lower bound holds.

For finding an upper bound, note that given any two
functions p(x) and q(x), we have min (p(x), q(x)) ≤
p(x). Therefore Bd(P,Q) =

∫
x∈d min (p(x), q(x)) ≤∫

x∈d p(x) = p̄d. Similarly, Bd(P,Q) ≤ q̄d, and we
prove that the upper bound holds.
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Armed with the previous results, we present our first
main contribution. That is, we show our two-sided
exponential concentration bound for the Bayes error
rate of a bounded variable.

Theorem 5. Let x be a continuous random variable
with compact domain D. Let P = p(·) and Q = q(·)
be two K-Lipschitz continuous distributions. Given N
i.i.d. samples x1, . . . , xN from P and y1, . . . , yN from
Q. We divide D into T = N1/4 compact nonoverlap-
ping equally-sized subsets d1, . . . , dT . Let the empirical
probabilities p̂t = P̂P [x ∈ dt] = 1

N

∑
n 1[xn ∈ dt] and

q̂t = P̂Q[x ∈ dt] = 1
N

∑
n 1[yn ∈ dt]. Let the empir-

ical Bayes error rate B̂(P,Q) =
∑
t min (p̂t, q̂t). The

true Bayes error rate B(P,Q) =
∫
x∈Dmin (p(x), q(x))

is bounded as follows with probability at least 1− δ:

B̂(P,Q)− ε(1)
Nδ − ε

(2)
NKD ≤ B(P,Q) ≤ B̂(P,Q) + ε

(1)
Nδ

(6)

where ε
(1)
Nδ = 1

N1/4

√
1
8 logN + 1

2 log 4
δ , ε

(2)
NKD = K|D|2

2N1/4

and |D| is the size of D.

Proof. Let the true probabilities p̄t = PP [x ∈ dt] =∫
x∈dt p(x) and q̄t = PQ[x ∈ dt] =

∫
x∈dt q(x).

By Proposition 3 and the union bound, we have
P[(∃t) |p̂t − p̄t| > ε or |q̂t − q̄t| > ε] ≤ 4Te−2Nε2 = δ.

By solving for ε, we have ε =
√

1
2N log 4T

δ .

Let Bt(P,Q) =
∫
x∈dt min (p(x), q(x)), we have

B(P,Q) =
∑
t Bt(P,Q). By Lemma 4 and since

|p̂t − p̄t| ≤ ε and |q̂t − q̄t| ≤ ε, we have:

min (p̄t, q̄t)−
K|dt|2

2
≤ Bt(P,Q) ≤ min (p̄t, q̄t)

min (p̂t, q̂t)− ε−
K|dt|2

2
≤ Bt(P,Q) ≤ min (p̂t, q̂t) + ε

By summing the latter expression for all t and by as-

suming |dt| = |D|
T , we have:

B̂(P,Q)− Tε− K|D|2

2T
≤ B(P,Q) ≤ B̂(P,Q) + Tε

Finally, we replace ε and set T = N1/4.

3.2. Unbounded Domain

In order to extend our previous result from bounded
variables to unbounded variables, we assume a very
general concentration inequality. That is, we assume
P[x /∈ Dγ ] ≤ γ. Such tail bounds are ubiquitous in
the machine learning and statistics literature. In Ta-
ble 2 we provide some few examples: distributions
with finite variance, finite m-th moment (both by
Chebyshev’s inequality), and sub-Gaussian distribu-
tions. When several samples are available, we can

Table 2. Some distributions for unbounded variables with
tail bounds of the form P[x /∈ Dγ ] ≤ γ. We include the con-
centration inequality and the size of the subdomain |Dγ |.

Distrib. Concentration Conditions |Dγ |/2
Finite variance P[|x| > ε] ≤ σ2

ε2
σ2=E[x2] σ

√
1
γ

Finite m-th P[|x| > ε] ≤ λm

εm
λm=E[xm] λ m

√
1
γ

moment

Sub-Gaussian P[|x| > ε] ≤ 2e
− ε2

2σ2 σ > 0 σ
√

2 log 2
γ

use the union bound. That is, given N i.i.d. samples
x1, . . . , xN , we have P[(∃n) xn /∈ Dγ/N ] ≤ γ.

Next, we present our two-sided exponential concentra-
tion bound for the Bayes error rate of an unbounded
variable. The result is given for general tail bounds.
For specific distributions, we can plug-in the size of
the subdomain |Dγ | given in Table 2.

Theorem 6. Let x be a continuous random variable
with domain R. Assume that with high probability, x
belongs to a compact set Dγ , that is PP [x /∈ Dγ ] =∫
x/∈Dγ p(x) ≤ γ and PQ[x /∈ Dγ ] =

∫
x/∈Dγ q(x) ≤ γ.

Under the same conditions of Theorem 5, the true
Bayes error rate B(P,Q) =

∫
x∈R min (p(x), q(x)) is

bounded as follows with probability at least 1− δ:

B̂(P,Q)−ε(1)
Nδ−ε

(2)
NKDγ ≤ B(P,Q) ≤ B̂(P,Q)+ε

(1)
Nδ+γ

(7)

where B̂(P,Q), ε
(1)
Nδ and ε

(2)
NKDγ are defined as in The-

orem 5.

Proof. Note that B(P,Q) =
∫
x∈Dγ min (p(x), q(x)) +∫

x/∈Dγ min (p(x), q(x)). Theorem 5 provides bounds for

the first term. It suffices to bound the second term.

For finding a lower bound, note that both p(x) ≥ 0
and q(x) ≥ 0, therefore

∫
x/∈Dγ min (p(x), q(x)) ≥ 0.

For finding an upper bound, note that given any two
functions p(x) and q(x), we have min (p(x), q(x)) ≤
p(x). Therefore

∫
x/∈Dγ min (p(x), q(x)) ≤

∫
x/∈Dγ p(x) ≤

γ. The same bound is obtained from a similar argu-
ment with q(x).

4. Shannon entropy

In this section, we present our two-sided exponential
concentration bound for Shannon entropy, for both
bounded and unbounded random variables.

4.1. Bounded Domain

First, we provide three general inequalities that will be
useful for our purposes. In this paper, we approximate
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statistical measures by splitting the variable domain
into bins. For our specific analysis, we need to bound
the change in Shannon entropy at the bin level, as
well as at each point. In what follows we present an
inequality for bounding the entropy change at the bin
level. That is, we consider “interval” probabilities p̄ =∫
x∈d p(x) ∈ [0; 1].

Proposition 7. For 0 ≤ p̂, p̄ ≤ 1 such that |p̂− p̄| ≤ ε,
we have:

|p̂ log p̂− p̄ log p̄| ≤ ε log e
ε (8)

Proof. Note that the bound holds trivially for ε = 0.
Next, we focus at ε > 0.

Without loss of generality, assume 0 ≤ p̄− p̂ = r ≤ 1.
(The same holds for 0 ≤ p̂− p̄ = r ≤ 1.) We have:

|p̂ log p̂− p̄ log p̄| = |p̂ log p̂− p̂ log p̄+ p̂ log p̄− p̄ log p̄|
≤ |p̂ log p̂− p̂ log p̄|+ |p̂ log p̄− p̄ log p̄|
= p̂| log p̂− log p̄| − |p̂− p̄| log p̄

= p̂ log p̄
p̂ − |p̂− p̄| log p̄

≤ p̂( p̄p̂ − 1)− |p̂− p̄| log p̄

= p̄− p̂− |p̂− p̄| log p̄

= r − r log p̄

≤ r(1− log r)

= r log e
r

where we used log z ≤ z − 1 for z = p̄
p̂ .

Let f(r) = r log e
r . So far we proved that |p̂− p̄| = r ⇒

|p̂ log p̂ − p̄ log p̄| ≤ f(r). Note that f(r) is increasing
in r ∈ [0; 1]. Therefore, for all r such that 0 ≤ r ≤ ε ≤
1⇒ f(r) ≤ f(ε), which proves our claim.

Next, we present an inequality for bounding the en-
tropy change at each point. Recall that continuous
distributions allow for point densities greater than one.
That is, p(x) ∈ [0; +∞).

Proposition 8. For p ≥ 0 and ε ≥ 0:

−(p− ε) log (p− ε) + p log p ≥ ε log ε (9)

−(p+ ε) log (p+ ε) + p log p ≥ ε log 1
e(p+ε) (10)

Proof. For proving the first inequality, by reasonably
assuming p ≥ ε:

−(p− ε) log (p− ε) + p log p = ε log (p− ε) + p log p
p−ε

≥ ε log (p− ε) + ε log p
p−ε

= ε log p

≥ ε log ε

For proving the second inequality:

−(p+ ε) log (p+ ε) + p log p = ε log 1
p+ε − p log (1 + ε

p )

≥ ε log 1
p+ε − ε

= ε log 1
e(p+ε)

where −p log (1 + ε
p ) ≥ −ε follows from log (1 + z) ≤ z

for z = ε
p .

In what follows we extend the log sum inequality from
discrete variables to continuous variables. In this
case, straightforward application of the Jensen’s in-
equality is not possible. Therefore, we perform a
reparametrization of the probability distribution.

Proposition 9 (Log integral inequality). Given a
nonnegative function p(x) and a positive function q(x),
both with domain d. We have:∫

x∈d
p(x) log

p(x)

q(x)
≥
∫
x∈d

p(x) log

∫
x∈d p(x)∫
x∈d q(x)

(11)

Proof. Let δ(z) be the Dirac delta function and r(x) =
p(x)/q(x). Let the convex function f(z) = z log z. We
have:∫
x∈d p(x) log p(x)

q(x) =
∫
x∈d q(x)f(r(x))

=
∫
x∈d q(x)

∫
z∈[0;+∞)

f(z)δ(z − r(x))

=
∫
z∈[0;+∞)

f(z)h(z)

where h(z) =
∫
x∈d q(x)δ(z − r(x)).

Note that g(z) = h(z)/
∫
x∈d q(x) is a probability den-

sity function. We can write:

EG [z]
∫
x∈d q(x) =

∫
z∈[0;+∞)

zh(z)

=
∫
z∈[0;+∞)

z
∫
x∈d q(x)δ(z − r(x))

=
∫
x∈d q(x)

∫
z∈[0;+∞)

zδ(z − r(x))

=
∫
x∈d q(x)r(x)

=
∫
x∈d p(x)

Finally, we have:∫
x∈d p(x) log p(x)

q(x) = EG [f(z)]
∫
x∈d q(x)

≥ f(EG [z])
∫
x∈d q(x)

By replacing the EG [z], we prove our claim.

Next, we provide bounds for the Shannon entropy in-
side a specific bin. These bounds depend only on the
empirical probability, the Lipschitz constant K as well
as the bin and domain size.
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Lemma 10. Let x be a continuous random variable
with compact domain D. Let d be a compact subset
of D. Let P = p(·) be a K-Lipschitz continuous dis-
tribution. Let the true probability p̄d = PP [x ∈ d] =∫
x∈d p(x). The true Shannon entropy on d, given by

Hd(P) = −
∫
x∈d p(x) log p(x) is bounded as follows:

−p̄d log
p̄d
|d|

+ ε
(0)
KDd ≤ Hd(P) ≤ −p̄d log

p̄d
|d|

(12)

where ε
(0)
KDd = K|d|2

2 log min
(
K|d|

2 , |D|
e+eK|D|2/2

)
and |d|

is the size of d.

Proof. Given that p(x) is Lipschitz continuous with
constant K, that the know the integral p̄d =

∫
x∈d p(x),

and that the maximum change in x is |d|. We have

p(x) = p̄d
|d| + z(x) where |z(x)| ≤ K|d|

2 ≡ Z.

For finding a lower bound, by Proposition 8 we have:

Hd(P) =

∫
x∈d
−p(x) log p(x)

≥
∫
x∈d

min
|z(x)|≤Z

−
(
p̄d
|d|

+ z(x)

)
log

(
p̄d
|d|

+ z(x)

)
=

∫
x∈d

min
z(x)∈{−Z,+Z}

−
(
p̄d
|d|

+ z(x)

)
log

(
p̄d
|d|

+ z(x)

)
≥
∫
x∈d

(
− p̄d
|d|

log
p̄d
|d|

+ Z log min

(
Z,

|D|
e+ eK|D|2/2

))
= −p̄d log

p̄d
|d|

+ |d|Z log min

(
Z,

|D|
e+ eK|D|2/2

)
In this derivation, in order to lower-bound eq.(10), we

used the fact that p(x) ≤ 1
|D|+

K|D|
2 = 1+K|D|2/2

|D| given

that
∫
x∈D p(x) = 1. By replacing Z, we prove that the

lower bound holds.

For finding an upper bound, we apply the log inte-
gral inequality (Proposition 9) for the given p(x) and
a constructed q(x) = 1. Thus,

∫
x∈d q(x) = |d|.

Armed with the previous results, we present our sec-
ond main contribution. That is, we show our two-sided
exponential concentration bound for the Shannon en-
tropy of a bounded variable.

Theorem 11. Let x be a continuous random variable
with compact domain D. Let P = p(·) be a K-Lipschitz
continuous distribution. Given N i.i.d. samples
x1, . . . , xN from P. We divide D into T = N1/4 com-
pact nonoverlapping equally-sized subsets d1, . . . , dT .
Let the empirical probabilities p̂t = P̂P [x ∈ dt] =
1
N

∑
n 1[xn ∈ dt]. Let the empirical Shannon entropy

Ĥ(P) = −
∑
t p̂t log (p̂t/|dt|). The true Shannon en-

tropy H(P) = −
∫
x∈D p(x) log p(x) is bounded as fol-

lows with probability at least 1− δ:

Ĥ(P)− ε(1)
NδD − ε

(2)
NKD ≤ H(P) ≤ Ĥ(P) + ε

(1)
NδD (13)

where ε
(1)
NδD = 1

N1/4

√
1

128 logN + 1
32 log 2

δ ×(
log 4( e

|D| )
4 + 3 logN − 2 log ( 1

4 logN + log 2
δ )
)

,

ε
(2)
NKD = K|D|2

2N1/4 log min
(
K|D|
2N1/4 ,

|D|
e+eK|D|2/2

)
and |D| is

the size of D.

Proof. Let the true probabilities p̄t = PP [x ∈ dt] =∫
x∈dt p(x). By Proposition 3 and the union bound, we

have P[(∃t) |p̂t − p̄t| > ε] ≤ 2Te−2Nε2 = δ. By solving

for ε, we have ε =
√

1
2N log 2T

δ .

Let Ht(P) = −
∫
x∈dt p(x) log p(x), we have H(P) =∑

tHt(P). By Lemma 10, Proposition 7, by assuming
|dt| ≤ 1, and since |p̂t − p̄t| ≤ ε, we have:

−p̄t log p̄t
|dt| + ε

(0)
KDdt ≤ Ht(P) ≤ −p̄t log p̄t

|dt|

−p̂t log p̂t
|dt| . . .

−ε log e
ε|dt| + ε

(0)
KDdt ≤ Ht(P) ≤ −p̂t log p̂t

|dt| + ε log e
ε|dt|

By summing the latter expression for all t and by as-

suming |dt| = |D|
T , we have:

Ĥ(P)− Tε log eT
ε|D| + K|D|2

2T log min
(
K|D|
2T , |D|

e+eK|D|2/2

)
· · · ≤ H(P) ≤ Ĥ(P) + Tε log eT

ε|D|

Finally, we replace ε and set T = N1/4.

4.2. Unbounded Domain

In order to extend our previous result from bounded
variables to unbounded variables, we assume a very
general concentration inequality as in Section 3.2.
That is, we assume P[x /∈ Dγ ] ≤ γ.

Next, we present our two-sided exponential concentra-
tion bound for the Shannon entropy of an unbounded
variable. The result is given for general tail bounds.
For specific distributions, we can plug-in the size of
the subdomain |Dγ | given in Table 2.

Note that a trapezoidal distribution is inside our Lips-
chitz class. For maximizing the entropy we can reduce
the density of the flat region to an infinitesimal value,
thus increasing the support. This explains the assump-
tion of bounded variance in the following theorem.

Theorem 12. Let x be a continuous random vari-
able with domain R, zero mean and bounded variance,
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that is EP [x] = 0 and EP [x2] ≤ ν. Assume that with
high probability, x belongs to a compact set Dγ , that
is PP [x /∈ Dγ ] =

∫
x/∈Dγ p(x) ≤ γ. Under the same

conditions of Theorem 11, the true Shannon entropy
H(P) = −

∫
x∈R p(x) log p(x) is bounded as follows with

probability at least 1− δ:

Ĥ(P)−ε(1)
NδDγ−ε

(2)
NKDγ+ε

(3)
Kγ≤H(P)≤Ĥ(P)+ε

(1)
NδDγ+ε

(4)
νγ

(14)

where Ĥ(P), ε
(1)
NδDγ and ε

(2)
NKDγ are defined as in

Theorem 11, ε
(3)
Kγ = min(0, 1

2γ(1 − log (2Kγ))) and

ε
(4)
νγ = max(0, 3γ

2 ,
1
2γ(1− log (2γ3

πν ))).

Proof. Note that H(P) = −
∫
x∈Dγ p(x) log p(x) −∫

x/∈Dγ p(x) log p(x). Theorem 11 provides bounds for

the first term. It suffices to bound the second term.

For finding a lower bound, we construct a worst-case
scenario in which the density concentrates in a small
region. In particular, consider a “half-triangular” dis-
tribution Q with density q(x) = K ′x for 0 < K ′ ≤ K
and x ∈ [0;L] * Dγ . That is, the distribution is in-
side our Lipschitz class and the density vanishes at
q(0) = 0. (The choice of x = 0 as an extreme of the
interval is only for clarity of exposition.) By integra-
tion we have

∫
x∈[0;L]

q(x) = 1
2K
′L2 = γ′ ≤ γ and

therefore L =
√

2γ′/K ′. The entropy is given by:

−
∫
x∈[0;L]

q(x) log q(x) = 1
4K
′L2(1− 2 log (K ′L))

= 1
2γ
′(1− log (2K ′γ′))

≥ min(0, 1
2γ
′(1− log (2K ′γ′)))

Since the latter function is nonincreasing with respect
to γ′ and K ′, we prove that the lower bound holds.

For finding an upper bound, we follow a variational
calculus argument. Consider a distribution Q with
zero mean and known variance, that is EQ[x] = 0
and EQ[x2] ≤ ν. We are interested on finding the
maximum “half-entropy”, that is, the entropy in the
domain x ∈ [0; +∞) = Dγ . (The choice of x = 0
as an extreme of the interval and the zero-mean as-
sumption are only for clarity of presentation.) As-
sume PQ[x /∈ Dγ ] =

∫
x∈[0;+∞)

q(x) = γ′ ≤ γ. Given

the nonnegativity of x2q(x), the “half-variance” fulfills∫
x∈[0;+∞)

x2q(x) = ν′ ≤ ν. We need to solve:

max
q
−
∫
x∈[0;+∞)

q(x) log q(x)

s.t.
∫
x∈[0;+∞)

q(x) = γ′∫
x∈[0;+∞)

x2q(x) = ν′

By variational calculus and Lagrange multipliers, the

solution of the above problem is q∗(x) =
√

2γ′3

πν′ e
− γ
′x2
2ν′ .

The “half-entropy” of Q∗ is given by:

h(ν′, γ′) = −
∫
x∈[0;+∞)

q∗(x) log q∗(x)

= 1
2γ
′(1− log (2γ′3

πν′ )

The function h(ν′, γ′) is increasing with respect to ν′,
therefore h(ν′, γ′) ≤ h(ν, γ′). The function h(ν, γ′) is
concave with respect to γ′. In order to obtain an upper

bound, we make ∂h
∂γ′ (ν, γ

′) = 0 and obtain ν∗ = 2e2

π γ′
3
,

which produces the maximum value h(ν∗, γ′) = 3γ′

2 ≤
3γ
2 . By putting everything together, we prove that the

upper bound holds.

5. Discussion

Extension to several dimensions. Our results
easily extend to V -dimensional data. Assume, for
clarity of exposition that each of the V variables be-
long to the same domain D′. That is x ∈ D where
D = D′× · · ·×D′ = D′V . The size of the domain D is
|D′|V . The term |D|2

N1/4 in our bounds, explains the ex-
ponential dependence of the number of samplesN with
respect to the dimensionality. That is N ∈ O(|D′|4V ).
For bounded variables where |D′| ≤ 1 this is not an
issue. For bounded variables where |D′| > 1 and
unbounded variables, we have an exponential depen-
dence. However this is expected for a nonparametric
method. Note that the results in (Liu et al., 2012) only
apply to two variables in the unit square (D = [0; 1]2).
The effect of the domain size and the extension to
higher dimensions are not immediately obvious.

In our proofs, for a compact subset d of D, we used
the fact that

∫
x∈d 1 = |d| which is an `1 measure.

Therefore, we extend Lipschitz continuity for several
dimensions with respect to the `1 norm. That is
(∀x1,x2) |p(x1)− p(x2)| ≤ K‖x1 − x2‖1.

All theorems follow from these assumptions with-
out any modification. Theorem 12 requires a minor
change. More specifically, the lower bound produces a
term γ

V instead of γ. Finally, note that independent
variables maximize the entropy, therefore a factor of
V is needed in the upper bound.

Implications. To the best of our knowledge, we
present the first exponential concentration bounds for
Bayes error rate estimation. As a byproduct, we ob-
tain a classifier that is Bayes consistent with provable
finite-sample rates.

Regarding the Shannon entropy approximation, we ex-
tended the class of distributions with provable finite-
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sample rates from the Hölder class (Liu et al., 2012)
to the Lipschitz class. In contrast to (Liu et al., 2012),
our results also apply to probability distributions with
regions of zero-probability, nonsmooth density func-
tions, arbitrary behavior in the boundaries, and we
do not require prior knowledge of lower/upper bounds
neither boundedness of the variable.

The entropy approximation provides provable perfor-
mance guarantees for learning the structure of trees
and Bayesian networks from continuous variables.
First, we show a generalization bound for trees (Chow
& Liu, 1968).

Theorem 13. Let N be the number of samples
and V the number of continuous variables. Let T
be a tree distribution, that is T is a collection of
V − 1 edges that form a tree. Define I(y, z) =
H(y) +H(z)−H(y, z) as the mutual information. Let

L̂(T ) = 1
V−1

∑
(v,w)∈T Î(xv, xw) be the empirical log-

likelihood, and L(T ) = 1
V−1

∑
(v,w)∈T I(xv, xw) the

expected log-likelihood. Let T̂ = arg maxT L̂(T ) be
the empirical maximizer, and T ∗ = arg maxT L(T )
the ground truth model. Under the same conditions
of Theorem 11, with probability at least 1− δ:

L(T ∗)−L(T̂ ) ≤ O
(

log3/2N
N1/4 , log3/2 V, log 1

δ

)
(15)

Proof. We need to approximate entropies for all nodes
and pairs. That is, we need |H(xv) − Ĥ(xv)| ≤ ε for

every node v, and |H(xv, xw) − Ĥ(xv, xw)| ≤ ε for
every pair (v, w). The number of approximations is
V +

(
V
2

)
≤ (V + 1)2. A minor change in Theorem

11 is required in the union bound (2(V + 1)2T events
instead of 2T events) in order to obtain ε. Note that a
bound in entropy approximation implies a bound for
mutual information. That is, we have |I(xv, xw) −
Î(xv, xw)| ≤ 3ε for every pair (v, w). Therefore, we

have |L(T )−L̂(T )| ≤ 3ε for every tree distribution T .

Finally, L(T ∗)−L(T̂ ) ≤ L̂(T ∗)−L̂(T̂ ) + 6ε ≤ 6ε.

Next, we show a generalization bound for structure
learning of Bayesian networks from continuous vari-
ables. This bound complements the results for discrete
variables (Friedman & Yakhini, 1997; Höffgen, 1993).
In the following theorem we consider maximum like-
lihood (De Campos, 2006) among models with a pre-
scribed maximum number of parents k.

Theorem 14. Let N be the number of samples and
V the number of continuous variables. Let Π be a
Bayesian network where πv ∈ {1, . . . , V } is the parent
set for variable xv. Assume that (∀v) |πv| ≤ k. Define
H(y|z) = H(y, z) − H(z) as the conditional entropy.

Let L̂(Π) = − 1
V

∑
v Ĥ(xv|xπv ) be the empirical log-

likelihood, and L(Π) = − 1
V

∑
vH(xv|xπv ) the expected

log-likelihood. Let Π̂ = arg maxΠL̂(Π) be the empiri-
cal maximizer, and Π∗ = arg maxΠL(Π) the ground
truth model. Under the same conditions of Theorem
11, with probability at least 1− δ:

L(Π∗)−L(Π̂) ≤ O
(

log3/2N
N1/4 , ((k + 2) log V )3/2, log 1

δ

)
(16)

Proof. For a maximum number of parents k, we need
to approximate entropies from up to k + 1 variables.
That is, we need |H(xS) − Ĥ(xS)| ≤ ε for every set
S ⊂ {1, . . . , V } such that 1 ≤ |S| ≤ k + 1. The num-

ber of possible sets S is
∑k+1
i=1

(
V
i

)
≤ V k+2. A mi-

nor change in Theorem 11 is required in the union
bound (2V k+2T events instead of 2T events) in or-
der to obtain ε. Note that a bound in entropy ap-
proximation implies a bound for conditional entropy.
That is, we have |H(xv|xπ) − Ĥ(xv|xπ)| ≤ 2ε for ev-
ery v and π such that |π| ≤ k. Therefore, we have

|L(Π) − L̂(Π)| ≤ 2ε for every Bayesian network Π.

Finally, L(Π∗)−L(Π̂) ≤ L̂(Π∗)− L̂(Π̂) + 4ε ≤ 4ε.

Algorithmic complexity. For V -dimensional data,
instead of building an O(2V ) matrix with all possi-
ble bins, we can perform the following. First, we as-
sign the proper bin to each of the N samples and
store these bin-assignments in a O(N) array. Sec-
ond, we sort the samples with respect to their bin-
assignments, in O(N logN)-time. Finally, since sam-
ples in the same bin are consecutive, we can produce
the empirical probabilities in O(N)-time. Thus, our
method is O(N logN)-time and O(N)-space.

Tighter bounds. The Bayes error rate results can
be improved to O(N−1/3, log (1/δ)) by using a con-
centration inequality for the `1 deviation of empirical
distributions (Weissman et al., 2003). On the other
hand, if we assume a minimum density α by Chernoff
bounds we can obtain O(1/α,N−1/2 logN, log (1/δ)).

Concluding Remarks. There are several ways of
extending this research. Bayes error rate approxi-
mation for Lipschitz distributions by using k-nearest
neighbors or a more general class of weighted-average
plug-in classifiers (Stone, 1977) needs to be analyzed.
The extension of kernel methods for Shannon entropy
approximation from the Hölder class (Liu et al., 2012)
to the Lipschitz class needs to be analyzed. It would
be interesting to extend our method to a broader
class of probability distributions. Finally, while our
method uses equally-sized bins and follows a frequen-
tist approach, more adaptive methods and Bayesian
approaches should be analyzed.
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Póczos, B. and Schneider, J. Nonparametric esti-
mation of conditional information and divergences.
AISTATS, 2012.

Stone, C. Consistent nonparametric regression. The
Annals of Statistics, 1977.

Tsybakov, A. and Van der Meulen, E. Root-n con-
sistent estimators of entropy for densities with un-
bounded support. Scandinavian Journal of Statis-
tics, 1996.

Van Es, B. Estimating functionals related to a density
by a class of statistics based on spacings. Scandina-
vian Journal of Statistics, 1992.

Wang, Q., Kulkarni, S., and Verdú, S. Divergence es-
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