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Abstract
Drug discovery aims to find novel compounds
with specified chemical property profiles. In terms
of generative modeling, the goal is to learn to
sample molecules in the intersection of multiple
property constraints. This task becomes increas-
ingly challenging when there are many property
constraints. We propose to offset this complex-
ity by composing molecules from a vocabulary
of substructures that we call molecular rationales.
These rationales are identified from molecules as
substructures that are likely responsible for each
property of interest. We then learn to expand ratio-
nales into a full molecule using graph generative
models. Our final generative model composes
molecules as mixtures of multiple rationale com-
pletions, and this mixture is fine-tuned to preserve
the properties of interest. We evaluate our model
on various drug design tasks and demonstrate sig-
nificant improvements over state-of-the-art base-
lines in terms of accuracy, diversity, and novelty
of generated compounds.

1. Introduction
The key challenge in drug discovery is to find molecules
that satisfy multiple constraints, from potency, safety, to
desired metabolic profiles. Optimizing these constraints
simultaneously is challenging for existing computational
models. The primary difficulty lies in the lack of training
instances of molecules that conform to all the constraints.
For example, for this reason, Jin et al. (2019a) reports over
60% performance loss when moving beyond the single-
constraint setting.

In this paper, we propose a novel approach to multi-
property molecular optimization. Our strategy is inspired
by fragment-based drug discovery (Murray & Rees, 2009)
often followed by medicinal chemists. The idea is to start
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with substructures (e.g., functional groups or later pieces)
that drive specific properties of interest, and then combine
these building blocks into a target molecule. To automate
this process, our model has to learn two complementary
tasks: (1) identification of the building blocks that we call
rationales, and (2) assembling multiple rationales together
into a fully formed target molecule. In contrast to competing
methods, our generative model does not build molecules
from scratch, but instead assembles them from automat-
ically extracted rationales already implicated for specific
properties (see Figure 1).

We implement this idea using a generative model of
molecules where the rationale choices play the role of latent
variables. Specifically, a molecular graph G is generated
from underlying rationale sets S according to:

P (G) =
∑
S
P (G|S)P (S) (1)

As ground truth rationales (e.g., functional groups or sub-
graphs) are not provided, the model has to extract candidate
rationales from molecules with the help of a property pre-
dictor. We formulate this task as a discrete optimization
problem efficiently solved by Monte Carlo tree search. Our
rationale conditioned graph generator, P (G|S), is initially
trained on a large collection of real molecules so that it is
capable of expanding any subgraph into a full molecule.
The mixture model is then fine-tuned using reinforcement
learning to ensure that the generated molecules preserve all
the properties of interest. This training paradigm enables us
to realize molecules that satisfy multiple constraints without
observing any such instances in the training set.

The proposed model is evaluated on molecule design tasks
under different combinations of property constraints.1 Our
baselines include state-of-the-art molecule generation meth-
ods (Olivecrona et al., 2017; You et al., 2018a). Across all
tasks, our model achieve state-of-the art results in terms of
accuracy, novelty and diversity of generated compounds. In
particular, we outperform the best baseline with 38% abso-
lute improvement in the task with three property constraints.
We further provide ablation studies to validate the benefit
of our architecture in the low-resource scenario. Finally, we
show that identified rationales are chemically meaningful in
a toxicity prediction task (Sushko et al., 2012).

1https://github.com/wengong-jin/multiobj-rationale
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Figure 1.Illustration of RationaleRL.Left: To generate a dual inhibitor against biological targets GSK3� and JNK3, our model �rst
identi�es rationale substructuresS for each property. Note that rationales are not provided as domain knowledge.Middle: The model
learns to compose multiple rationalesS into a complete moleculeG. Right: Our method achieves much higher success rate than the
current state-of-the-art molecule design method REINVENT (Olivecrona et al., 2017)) under four property constraints.

2. Related Work

Reinforcement Learning One of the prevailing paradigms
for drug design is reinforcement learning (RL) (You et al.,
2018a; Olivecrona et al., 2017; Popova et al., 2018), which
seeks to maximize the expected reward de�ned as the sum
of predicted property scores using the property predictors.
Their approach learns a distributionP(G) (a neural network)
for generating molecules. Ideally, the model should achieve
high success rate in generating molecules that meet all the
constraints, while maintaining the diversity ofP(G).

The main challenge of RL is the reward sparsity, especially
when there are multiple competing constraints. For illus-
tration, we test a state-of-the-art reinforcement learning
method (Olivecrona et al., 2017) under four property con-
straints: biological activity to GSK3� , JNK3, drug-likeness
and synthetic accessibility (Li et al., 2018). As shown in
Figure 1, initially the success rate and diversity is high when
given only one of the constraints, but they decrease dra-
matically when all the property constraints are added. The
reason of this failure is that the property predictor (i.e., re-
ward function) remains black-box and the model has limited
understanding of why certain molecules are desirable.

Our framework offsets this complexity by understanding
property landscape through rationales. At a high level, the
rationales are analogous tooptions(Sutton et al., 1999;
Stolle & Precup, 2002), which are macro-actions leading
the agent faster to its goal. The rationales are automatically
discovered from molecules with labeled properties.

Molecule Generation Previous work have adopted var-
ious approaches for generating molecules under speci�c
property constraints. Roughly speaking, existing methods
can be divided along two axes — representation and opti-
mization. On the representation side, they either operate
on SMILES strings (Ǵomez-Bombarelli et al., 2018; Segler
et al., 2017; Kang & Cho, 2018) or directly on molecular
graphs (Simonovsky & Komodakis, 2018; Jin et al., 2018;

Samanta et al., 2018; Liu et al., 2018; De Cao & Kipf, 2018;
Ma et al., 2018; Seff et al., 2019). On the optimization
side, the task has been formulated as reinforcement learn-
ing (Guimaraes et al., 2017; Olivecrona et al., 2017; Popova
et al., 2018; You et al., 2018a; Zhou et al., 2018), continu-
ous optimization in the latent space learned by variational
autoencoders (Ǵomez-Bombarelli et al., 2018; Kusner et al.,
2017; Dai et al., 2018; Jin et al., 2018; Kajino, 2018; Liu
et al., 2018), or graph-to-graph translation (Jin et al., 2019b).
In contrast to existing approaches, our model focuses on the
multi-objective setting of the problem and offers a different
formulation for molecule generation based on rationales.

Interpretability Our rationale based generative model
seeks to provide transparency (Doshi-Velez & Kim, 2017)
for molecular design. The choice of rationalesP(S) is visi-
ble to users and can be easily controlled by human experts.
Prior work on interpretability primarily focuses on �nding
rationales (i.e., explanations) of model predictions in image
and text classi�cation (Lei et al., 2016; Ribeiro et al., 2016;
Sundararajan et al., 2017) and molecule property predic-
tion (McCloskey et al., 2019; Ying et al., 2019; Lee et al.,
2019). In contrast, our model uses rationales as building
blocks for molecule generation.

3. Proposed Approach: RationaleRL

Molecules are represented as graphsG = ( V; E) with atoms
V as nodes and bondsE as edges. The goal of drug discov-
ery is to �nd novel compounds satisfying given property
constraints (e.g., drug-likeness, binding af�nity, etc.). With-
out loss of generality, we assume the property constraints to
be of the following form:

Find molecules G

Subject to r i (G) � � i ; i = 1 ; � � � ; M
(2)

For each propertyi , the property scorer i (G) 2 [0; 1] of
moleculeG must be higher than threshold� i 2 [0; 1]. A
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Figure 2.Overview of our approach. We �rst construct rationales for each individual property and then combine them as multi-property
rationales. The method learns a graph completion modelP (GjS) and rationale distributionP(S) in order to generate positive molecules.

moleculeGis calledpositiveto propertyi if r i (G) � � i and
negativeotherwise.

Following previous work (Olivecrona et al., 2017; Popova
et al., 2018),r i (G) is output of property prediction models
(e.g., random forests) which effectively approximate empir-
ical measurements. The prediction model is trained over
a set of molecules with labeled properties gathered from
real experimental data. The property predictor is then�xed
throughout the rest of the training process.

Overview Our model generates molecules by �rst sampling
a rationaleS from the vocabularyV [M ]

S , and then complet-
ing it into a moleculeG. The generative model is de�ned
as

P(G) =
X

S2 V [M ]
S

P(S)P(GjS) (3)

As shown in Figure 2, our model consists of three modules:

� Rationale Extraction: Construct rationale vocabulary
V i

S each individual propertyi and combines these ratio-
nales for multiple propertiesV [M ]

S (seex3.1).

� Graph Completion P(GjS): Generate moleculesGus-
ing multi-property rationalesS[M ] 2 V [M ]

S . The model is
�rst pre-trained on natural compounds and then �ne-tuned
to generate molecules satisfying multiple constraints (see
x3.2 for its architecture andx3.3 for �ne-tuning).

� Rationale Distribution P(S): The rationale distribu-
tion P(S) is learned based on the properties of complete
moleculesG generated fromP(GjS). A rationaleS is
sampled more frequently if it is more likely to be ex-
panded into a positive moleculeG(seex3.3).

3.1. Rationale Extraction from Predictive Models

Single-property Rationale We de�ne a rationaleSi for a
single propertyi as a subgraph of some moleculeGwhich
causesGto be active (see Figure 1). To be speci�c, letV i

S
be the vocabulary of such rationales for propertyi . Each
rationaleSi 2 V i

S should satisfy the following two criteria
to be considered as a rationale:

1. The size ofSi should be small (less than 20 atoms).

2. Its predicted property scorer i (Si ) � � i .

For a single propertyi , we propose to extract its rationales
from a set ofpositivemoleculesDpos

i used to train the
property predictor. For each moleculeGpos

i 2 D pos
i , we �nd

a rationale subgraph with high predicted property and small
size (Ns = 20):

Find subgraph Si � G pos
i

Subject to r i (Si ) � � i ;

jS i j � Ns andSi is connected

(4)

Solving the above problem is challenging because rationale
Si is discrete and the potential number of subgraphs grows
exponentially to the size ofGpos

i . To limit the search space,
we have added an additional constraint thatSi has to be a
connected subgraph.2 In this case, we can �nd a rationale
Si by iteratively removing some peripheral bonds while
maintaining its property. Therefore, the key is learning to
prune the molecule.

This search problem can be ef�ciently solved by Monte
Carlo Tree Search (MCTS) (Silver et al., 2017). The root
of the search tree isGpos and each states in the search tree
is a subgraph derived from a sequence of bond deletions.
To ensure that each subgraph is chemically valid and stays
connected, we only allow deletion of one peripheral non-
aromatic bond or one peripheral ring from each state. As
shown in Figure 3, a bond or a ringa is called peripheral if
Gpos stays connected after deletinga.

During search process, each states in the search tree con-
tains edges(s; a) for all legal deletionsa. Following Silver
et al. (2017), each edge(s; a) stores the following statistics:

� N (s; a) is the visit count of deletiona, which is used for
exploration-exploitation tradeoff in the search process.

2This assumption is valid in many cases. For instance, ratio-
nales for toxicity (i.e., toxicophores) are connected subgraphs in
most cases (Sushko et al., 2012).
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Figure 3.Illustration of Monte Carlo tree search for molecules.
Peripheral bonds and rings are highlighted in red. In the forward
pass, the model deletes a peripheral bond or ring from each state
which has maximumQ + U value (see Eq.(6)). In the backward
pass, the model updates the statistics of each state.

� W (s; a) is total action value which indicates how likely
the deletiona will lead to a good rationale.

� Q(s; a) is the mean action value:W (s; a) = N(s; a)

� R(s; a) = r i (s0) is the predicted property score of the
new subgraphs0 derived from deletinga from s.

Guided by these statistics, MCTS searches for rationales in
multiple iterations. Each iteration consists of two phases:

1. Forward pass: Select a paths0; � � � ; sL from the roots0

to a leaf statesL with less thanN atoms and evaluate its
property scorer i (sL ). At each statesk , an deletionak

is selected according to the statistics in the search tree:

ak = arg max
a

Q(sk ; a) + U(sk ; a) (5)

U(sk ; a) = cpuct R(sk ; a)

p P
b N (sk ; b)

1 + N (sk ; a)
(6)

wherecpuct determines the level of exploration. This
search strategy is a variant of the PUCT algorithm (Rosin,
2011). It initially prefers to explore deletions with high
R(s; a) and low visit count, but asympotically prefers
deletions that are likely to lead to good rationales.

2. Backward pass: The edge statistics are updated for each
statesk . Speci�cally, N (sk ; ak )  N (sk ; ak ) + 1 and
W (sk ; ak )  W (sk ; ak ) + r i (sL ).

In the end, we collect all the leaf statess with r i (s) � � i

and add them to the rationale vocabularyV i
S .

Multi-property Rationale For a set ofM properties, we

Figure 4.Illustration of multi-property rationale construction.
Given two single-property rationales, we �rst �nd their maxi-
mum common substructure (MCS). If their MCS is not empty, we
superpose one rationale on another so that their MCS coincides.

can similarly de�ne its rationaleS[M ] by imposingM prop-
erty constraints at the same time, namely

8i : r i (S[M ]) � � i ; i = 1 ; � � � ; M

In principle, we can apply MCTS to extract rationales from
molecules that satisfy all the property constraints. However,
in many cases there are no such molecules available. To
this end, we propose to construct multi-property rationales
from single-property rationales extracted by MCTS. Specif-
ically, each multi-property rationaleS[M ] is merged from
single-property rationalesS1; � � � ; SM . We merge two ra-
tionalesSi andSj by �rst �nding their maximum common
substructure (MCS) and then superposingSi onSj so that
their MCS coincides (see Figure 4).3 This gives us a set of
candidate rationales:

CM
S =

[

(S1 ;��� ;SM )

MERGE( S1; � � � ; SM ) (7)

where(S1; � � � ; SM ) 2 V 1
S � � � � � V M

S . Note that the
output ofMERGE is a set as there are multiple ways of
superposing two rationales. Finally, the vocabulary of multi-
property rationales is the subset ofCM

S which satis�es all
the property constraints:

V [M ]
S = fS 2 CM

S j r i (S[M ]) � � i ; 8ig (8)

For notational convenience, we will denote both single and
multi-property rationales asS from now on.

3.2. Graph Completion

This module is a variational autoencoder which completes a
full moleculeGgiven a rationaleS. Since each rationaleS

3The MCS of two (or multiple) rationales is computed using
RDKit (Landrum, 2006).


