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Abstract

Reparameterization of variational auto-encoders with continuous random variables
is an effective method for reducing the variance of their gradient estimates. In the
discrete case, one can perform reparametrization using the Gumbel-Max trick, but
the resulting objective relies on an argmax operation and is non-differentiable. In
contrast to previous works which resort to softmax-based relaxations, we propose to
optimize it directly by applying the direct loss minimization approach. Our proposal
extends naturally to structured discrete latent variable models when evaluating
the argmax operation is tractable. We demonstrate empirically the effectiveness
of the direct loss minimization technique in variational autoencoders with both
unstructured and structured discrete latent variables.

1 Introduction

Models with discrete latent variables drive extensive research in machine learning applications,
including language classification and generation [39, 9, 31], molecular synthesis [16], or game
solving [22]. Compared to their continuous counterparts, discrete latent variable models can decrease
the computational complexity of inference calculations, for instance, by discarding alternatives in
hard attention models [18], they can improve interpretability by illustrating which terms contributed
to the solution [24, 39], and they can facilitate the encoding of inductive biases in the learning process,
such as images consisting of a small number of objects [6] or tasks requiring intermediate alignments
[22]. Finally, in some cases, discrete latent variables are natural choices, for instance when modeling
datasets with discrete classes [29, 10, 20].

Performing maximum likelihood estimation of latent variable models is challenging due to the
requirement to marginalize over the latent variables. Instead, one can maximize a variational lower-
bound to the data log-likelihood, defined via an (approximate) posterior distribution over the latent
variables, an approach followed by latent Dirichlet allocation [2], learning hidden Markov models [25]
and variational auto-encoders [13]. The maximization can be carried out by alternatively computing
the (approximate) posterior distribution corresponding to the current model parameters estimate, and
estimating the new model parameters. Variational auto-encoders (VAEs) are generative latent variable
models where the approximate posterior is a (neural network based) parameterized distribution which
is estimated jointly with the model parameters. Maximization is performed via stochastic gradient
ascent, provided that one can compute gradients with respect to both the model parameters and the
approximate posterior parameters.

Learning VAEs with discrete n-dimensional latent variables is computationally challenging since
the size of the support of the posterior distribution is exponential in n. Although the score function
estimator (also known as REINFORCE) [36] enables computing the required gradients with respect to
the approximate posterior, in both the continuous and discrete latent variable case, it is known to have
high-variance. The reparametrization trick provides an appealing alternative to the score function
estimator and recent work has shown its effectiveness for continuous latent spaces [14, 27]. In the
discrete case, despite being able to perform reparametrization via the Gumbel-Max trick, the resulting
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mapping remains non-differentiable due to the presence of argmax operations. Recently, Maddison
et al. [20] and Jang et al. [10] have used a relaxation of the reparametrized objective, replacing the
argmax operation with a softmax operation. The proposed Gumbel-Softmax reformulation results in
a smooth objective function, similar to the continuous latent variable case. Unfortunately, the softmax
operation introduces bias to the gradient computation and becomes computationally intractable
when using high-dimensional structured latent spaces, because the softmax normalization relies on a
summation over all possible latent assignments.

This paper proposes optimizing the reparameterized discrete VAE objective directly, by using the
direct loss minimization approach [21, 32], originally proposed for learning discriminative models.
The cited work proves that a (biased) gradient estimator of the argmax operation can be obtained
from the difference between two maximization operations, over the original and over a perturbed
objective, respectively. We apply the proposed estimator to the argmax operation obtained from
applying the Gumbel-Max trick. Compared to the Gumbel-Softmax estimator, our approach relies on
maximization over the latent variable assignments, rather than summation, which is computationally
more efficient. In particular, performing maximization exactly or approximately is possible in
many structured cases, even when summation remains intractable. We demonstrate empirically
the effectiveness of the direct optimization technique to high-dimensional discrete VAEs, with
unstructured and structured discrete latent variables.

Our technical contributions can be summarized as follows: (1) We apply the direct loss minimization
approach to learning generative models; (2) We provide an alternative proof for the direct loss
minimization approach, which does not rely on regularity assumptions; (3) We extend the proposed
direct optimization-based estimator to discrete VAEs with structured latent spaces.

2 Related work

Reparameterization is an effective method to reduce the variance of gradient estimates in learning
latent variable models with continuous latent representations [14, 27, 26, 1, 23, 8]. The success of
these works led to reparameterization approaches in discrete latent spaces. Rolfe et al. [29] and
Vahdat et al. [35, 34] represent the marginal distribution per binary latent variable with a continuous
variable in the unit interval. This reparameterization approach allow propagating gradients through
the continuous representation, but these works are restricted to binary random variables, and as a
by-product, they require high-dimensional representations for which inference is exponential in the
dimension size.

Most relevant to our work, Maddison et al. [20] and Jang et al. [10] use the Gumbel-Max trick to
reparameterize the discrete VAE objective, but, unlike our work, they relax the resulting formulation,
replacing the argmax with a softmax operation. In particular, they introduce the continuous Concrete
(Gumbel-Softmax) distribution and replace the discrete random variables with continuous ones.
Instead, our reparameterized objective remains non-differentiable and we use the direct optimization
approach to propagate gradients through the argmax using the difference of two maximization
operations.

Recent work [22, 4] tackles the challenges associated with learning VAEs with structured discrete
latent variables, but they can only handle specific structures. For instance, the Gumbel-Sinkhorn
approach [22] extends the Gumbel-Softmax distribution to model permutations and matchings. The
Perturb-and-Parse approach [4] focuses on latent dependency parses, and iteratively replaces any
argmax with a softmax operation in a spanning tree algorithm. In contrast, our framework is not
restricted to a particular class of structures. Similar to our work, Johnson et al. [11] use the VAE
encoder network to compute local potentials to be used in a structured potential function. Unlike the
cited work, which makes use of message passing in graphical models with conjugacy structure, we
use the Gumbel-Max trick, which enables us to apply our method whenever the two maximization
operations can be computed efficienty.

3 Background

To model the data generating distribution, we consider samples S = {x1, ..., xm} from a potentially
high-dimensional set xi ∈ X , originating from an unknown underlying distribution. We estimate the
parameters θ of a model pθ(x) by minimizing its negative log-likelihood. We consider latent variable
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models of the form pθ(x) =
∑
z∈Z pθ(z)pθ(x|z), with high-dimensional discrete variables z ∈ Z ,

whose log-likelihood computation requires marginalizing over the latent representation. Variational
autoencoders utilize an auxiliary distribution qφ(z|x) to upper bound the negative log-likelihood of
the observed data points:∑

x∈S
− log pθ(x) ≤

∑
x∈S
−Ez∼qφ log pθ(x|z) +

∑
x∈S

KL(qφ(z|x)||pθ(z)). (1)

In discrete VAEs, the posterior distribution qφ(z|x) and the data distribution conditioned on the
latent representation pθ(x|z) are modeled via the Gibbs distribution, namely qφ(z|x) = ehφ(x,z) and
pθ(x|z) = efθ(x,z). We use hφ(x, z) and fθ(x, z) to denote the (normalized) log-probabilities. Both
quantities are modeled via differentiable (neural network based) mappings.

Parameter estimation of θ and φ is carried out by performing gradient descent on the right-hand
side of Equation (1). Unfortunately, computing the gradient of the first term Ez∼qφ log pθ(x|z) in
a high-dimensional discrete latent space z = (z1, ..., zn) is challenging because the expectation
enumerates over all possible latent assignments:

∇φEz∼qφ log pθ(x|z) =
∑
z∈Z

ehφ(x,z)∇φhφ(x, z)fθ(x, z) (2)

Alternatively, the score function estimator (REINFORCE) requires sampling from the high-
dimensional structured latent space, which can be computationally challenging, and has high-variance,
necessitating many samples.

3.1 Gumbel-Max reparameterization

The Gumbel-Max trick provides an alternative representation of the Gibbs distribution qφ(z|x) that is
based on the extreme value statistics of Gumbel-distributed random variables. Let γ be a random
function that associates an independent random variable γ(z) for each input z ∈ Z . When the
random variables follow the zero mean Gumbel distribution law, whose probability density function
is g(γ) =

∏
z∈Z e

−(γ(z)+c+e−(γ(z)+c)) for the Euler constant c ≈ 0.57, we obtain the following
identity1 (cf. [15]):

ehφ(x,z) = Pγ∼g[z∗ = z], where z∗ , argmax
ẑ∈Z
{hφ(x, ẑ) + γ(ẑ)} (3)

Notably, samples from the Gibbs distribution can be obtained by drawing samples from the Gumbel
distribution (which does not depend on learnable parameters) and applying a parameterized mapping,
based on the argmax operation. For completeness, a proof for the above equality appears in the
supplementary material.

In the context of variational autoencoders, the Gumbel-Max formulation enables rewriting the
expectation Ez∼qφ log pθ(x|z) with respect to the Gumbel distribution, similar to the application of the
reparametrization trick in the continuous latent variable case [13]. Unfortunately, the parameterized
mapping is non-differentiable, as the argmax function is piecewise constant. In response, the
Gumbel-Softmax estimator [20, 10] approximates the argmax via the softmax operation

Pγ∼g[z∗ = z] = Eγ∼g[1z∗=z] ≈ Eγ∼g
e(hφ(x,z)+γ(z))/τ∑
ẑ∈Z e

(hφ(x,ẑ)+γ(ẑ))/τ
(4)

for a temperature parameter τ (treated as a hyper-parameter), which produces a smooth objective
function. Nevertheless, the approximated Gumbel-Softmax objective introduces bias, uses continuous
rather than discrete variables (requiring discretization at test time), and its dependence on the
softmax function can be computationally prohibitive when considering structured latent spaces
z = (z1, ..., zn), as the normalization constant in Equation (4) sums over all the possible latent
variable realizations ẑ.

1The set argmaxẑ∈Z{hφ(x, ẑ) + γ(ẑ)} contains all maximizing assignments (possibly more than one).
However, since the Gumbel distribution is continuous, the γ for which the set of maximizing assignments
contains multiple elements has measure zero. For notational convenience, when we consider integrals (or
probability distributions), we ignore measure zero sets.
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3.2 Direct loss minimization

The direct loss minimization approach has been introduced for learning discriminative models [21, 32].
In the discriminative setting, the goal is to estimate a set of parameters2 φ, used to predict a label
for each (high-dimensional) input x ∈ X via y∗ = argmaxy∈Y hφ(x, y), where Y is the set of
continuous or discrete candidate labels. The score function hφ(x, y) can be non-linear as a function
of the parameters φ, as developed by Song et al. [32].

Given training data tuples (x, y) sampled from an unknown underlying data distribution D, the
goodness of fit of the learned predictor is measured by a loss function f(y, y∗), which is not
necessarily differentiable. This is the case, for instance, when the labels Y are discrete, such as
object labels in object recognition or action labels in action classification in videos [32]. As a result,
the expected loss E(x,y)∼D[f(y, y

∗)] cannot always be optimized using standard methods such as
gradient descent.

The typical solution is to replace the desired objective with a surrogate differentiable loss, such as
the cross-entropy loss between the targets and the predicted distribution over labels. However, the
direct loss minimization approach proposes to minimize the desired objective directly. The proposed
gradient estimator uses a loss-perturbed predictor y∗(ε) = argmaxŷ{hφ(x, ŷ) + εf(y, ŷ)} and takes
the following form:

∇φE(x,y)∼D[f(y, y
∗)] = lim

ε→0

1

ε

(
E(x,y)∼D[∇φhφ(x, y∗(ε))−∇φhφ(x, y∗)]

)
(5)

In other words, the gradient estimator is obtained by performing pairs of maximization operations,
one over the original objective (second term) and one over a perturbed objective (first term). The
unbiased estimator is obtained when the perturbation parameter ε is approaching 0. In practice, the
parameter ε is assigned a small value, treated as a hyper-parameter, which introduces bias.

Unfortunately, the standard direct loss minimization approach predicts a single label y∗ for an input
x and, therefore, cannot generate a posterior distribution over samples y, i.e., it lacks a generative
model. In our work we inject the Gumbel random variable to create a posterior over the label space
enabling the application of this method to learning generative models. The Gumbel random variable
allows us to overcome the general position assumption and the regularity conditions of [21, 32].

4 Gumbel-Max reparameterization and direct optimization

We use the Gumbel-Max trick to rewrite the expected log-likelihood in the variational autoencoder
objective Ez∼qφ log pθ(x|z) in the following form:

Ez∼qφ log pθ(x|z) =
∑
z∈Z

Pγ∼g[z∗ = z]fθ(x, z) = Eγ∼g[fθ(x, z∗)] (6)

where z∗ is the maximizing assignment defined in Equation (3). The equality results from the
identity Pγ∼g[z∗ = z] = Eγ∼g[1z∗=z], the linearity of expectation

∑
z∈Z Eγ∼g[1z∗=z]fθ(x, z) =

Eγ∼g[
∑
z∈Z 1z∗=zfθ(x, z

∗)] and the fact that
∑
z∈Z 1z∗=z = 1.

The gradient of fθ(x, z∗) with respect to the decoder parameters θ can be derived by the chain
rule. The main challenge is evaluating the gradient of Eγ∼g[fθ(x, z∗)] with respect to the encoder
parameters φ, since z∗ relies on an argmax operation which is not differentiable. Our main result is
presented in Theorem 1 and proposes a gradient estimator for the expectation Eγ∼g[fθ(x, z∗)] with
respect to the encoder parameters φ. In the following, we omit γ ∼ g to avoid notational overhead.

Theorem 1. Assume that hφ(x, z) is a smooth function of φ. Let z∗ , argmaxẑ∈Z{hφ(x, ẑ)+γ(ẑ)}
and z∗(ε) , argmaxẑ∈Z{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)} be two random variables. Then

∇φEγ [fθ(x, z∗)] = lim
ε→0

1

ε

(
Eγ [∇φhφ(x, z∗(ε))−∇φhφ(x, z∗)]

)
(7)

Proof sketch: We use a prediction generating functionG(φ, ε) = Eγ [maxẑ∈Z{εfθ(x, ẑ)+hφ(x, ẑ)+
γ(ẑ)}], whose derivatives are functions of the predictions z∗, z∗(ε). The proof is composed of

2We match the notation of the parameters φ of the posterior distribution to highlight the connection between
the two objectives.
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Figure 1: Highlights the the bias-variance tradeoff of the direct optimization estimate as a function
of ε, compared to the Gumbel-Softmax gradient estimate as a function of its temperature τ . In both
cases, the architecture consists of an encoder X → FC(300)→ ReLU → FC(K) and a matching
decoder. The parameters were learned using the unbiased gradient in Equation (2) to ensure both the
direct and GSM have the same (unbiased) reference point. From its optimal parameters we estimate
the gradient randomly for 10, 000 times. Left: the bias from the analytic gradient. Right: the average
standard deviation of the gradient estimate.

three steps: (i) We prove that G(φ, ε) is a smooth function of φ, ε. Therefore, the Hessian of
G(φ, ε) exists and it is symmetric, namely ∂φ∂εG(φ, ε) = ∂ε∂φG(φ, ε). (ii) We show that the
encoder gradient is apparent in the Hessian: ∂φ∂εG(φ, 0) = ∇φEγ [fθ(x, z∗)]. (iii) We rely on the
smoothness G(φ, ε) and derive our update rule as the complement representation of the Hessian:
∂ε∂φG(φ, 0) = limε→0

1
ε (Eγ [∇φhφ(x, z

∗(ε))−∇φhφ(x, z∗)]). The complete proof is included in
the supplementary material.

The gradient estimator proposed in Theorem 1 requires two maximization operations. While comput-
ing z∗ is straightforward, realizing z∗(ε) requires evaluating fθ(x, z) for each z ∈ Z , i.e. evaluating
the decoder network multiple times. Nevertheless, the resulting computational overhead can be re-
duced by performing these operations in parallel (we used batched operations in our implementation).

The gradient estimator is unbiased in the limit ε → 0. However, for small ε values the gradient is
either zero, when z∗(ε) = z∗, or very large, since the gradients’ difference is multiplied by 1/ε.
In practice we use ε ≥ 0.1 which means that the gradient estimator is biased. In Figure 1 we
compare the bias-variance tradeoff of the direct optimization estimator as a function of ε, with the
Gumbel-Softmax gradient estimator as a function of its temperature τ . Figure 1 shows that while ε
and τ are the sources of bias in these two estimates, they have different impact in each framework.

Algorithm 1 Direct Optimization for discrete VAEs
1: φ, θ ← Initialize parameters
2: while φ, θ not converged do
3: x← Random minibatch
4: γ ← Random variables drawn from Gumbel distribution.
5: z∗ ← argmaxẑ{hφ(x, ẑ) + γ(ẑ)}
6: z∗(ε)← argmaxẑ{εfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)}
7: Compute θ-gradient:

gθ ← ∇θfθ(x, z∗)
8: Compute φ-gradient (eq. 7):

gφ ← 1
ε

(
∇φhφ(x, z∗(ε))−∇φhφ(x, z∗)

)
9: φ, θ ← Update parameters using gradients gφ, gθ

10: end while

Algorithm 1 highlights the proposed
approach. Each iteration begins with
drawing a minibatch x and computing
the corresponding latent representations
by mapping x to hφ(x, ẑ) and sam-
pling from the resulting posterior dis-
tribution qφ(z|x) (lines 3-5). The gradi-
ents w.r.t. θ are obtained via standard
backpropagation (line 7). The gradients
w.r.t. φ are obtained by reusing the com-
puted z∗ (line 5) and evaluating the loss-
perturbed predictor (lines 6, 8).

Notably, the argmax operations can
be solved via non-differentiable solvers
(e.g. branch and bound, max-flow).

4.1 Structured latent spaces

Discrete latent variables often carry semantic meaning. For example, in the CelebA dataset there
are n possible attributes for an images, e.g., Eyeglasses, Smiling, see Figure 5. Assigning a binary
random variable to each of the attributes, namely z = (z1, ..., zn), allows us to generate images with
certain attributes turned on or off. In this example, the number of possible realizations of z is 2n.
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Learning a discrete structured space may be computationally expensive. The Gumbel-Softmax
estimator, as described in Equation (4), depends on the softmax normalization constant that requires
to sum over exponential many terms (exponential in n). This computational complexity can be
relaxed by ignoring structural relations within the encoder hφ(x, z) and decompose it according to its
dimensions, i.e., hφ(x, z) =

∑n
i=1 hi(x, zi;φ). In this case the normalization constant requires only

linearly many term (linear in n). However, the encoder does not account for correlations between the
variables in the structured latent space.

Gumbel-Max reparameterization can account for structural relations in the latent space hφ(x, z)
without suffering from the exponential cost of the softmax operation, since computing the argmax is
often more efficient than summing over all exponential possible options.

For computational efficiency we model only pairwise interactions in the structured encoder:

hφ(x, z) =

n∑
i=1

hi(x, zi;φ) +

n∑
i,j=1

hi,j(x, zi, zj ;φ) (8)

The additional modeling power of hi,j(x, zi, zj ;φ) allows the encoder to better calibrate the depen-
dences of the structured latent space that are fed into the decoder. In general, the pairwise correlations
requires a quadratic integer program solvers, such as the CPLEX to recover the argmax. How-
ever, efficient maxflow solvers may be used when the pairwise correlations have special structural
restrictions, e.g., hi,j(x, zi, zj ;φ) = αi,j(x)zizj for αi,j(x) ≥ 0.

The gradient realization in Theorem 1 holds also for the structured setting, whenever the structure of
γ follows the structure of hφ. This gradient realization requires to compute z∗, z∗(ε). While z∗ only
depends on the structured encoder, the argmax-perturbation z∗(ε) involves the structured decoder
fθ(x, z1, ..., zn) that does not necessarily decompose according to the structured encoder. We use
the fact that we can compute z∗ efficiently and apply the low dimensional approximation f̃θ(x, z) =∑n
i=1 f̃i(x, zi; θ), where f̃i(x, zi; θ) = fθ(x, z

∗
1 , ..., zi, ..., z

∗
n). With this in mind, we approximate

z∗(ε) with z̃∗(ε) that is computed by replacing fθ(x, z) with f̃θ(x, z). In our implementation we use
the batch operation to compute f̃θ(x, z) efficiently.

4.2 Semi-supervised learning

Direct optimization naturally extends to semi-supervised learning, where we may add to the learning
objective the loss function `(z, z∗), for supervised samples (x, z) ∈ S1, to better control the prediction
of the latent space. The semi-supervised discrete VAEs objective function is∑

x∈S
Eγ [fθ(x, z∗)] +

∑
(x,z)∈S1

Eγ [`(z, z∗)] +
∑
x∈S

KL(qφ(z|x)||pθ(z)) (9)

The supervised component is explicitly handled by Theorem 1. Our supervised component is
intimately related to direct loss minimization [21, 32]. The added random perturbation γ allows us to
use a generative model to prediction, namely, we can randomly generate different explanations z∗
while the direct loss minimization allows a single explanation for a given x.

5 Experimental evaluation

We begin our experiments by comparing the test loss of direct optimization, the Gumbel-Softmax
(GSM) and the unbiased gradient computation in Equation (2). We performed these experiments using
the binarized MNIST dataset [30], Fashion-MNIST [37] and Omniglot [17]. The architecture consists
of an encoder X → FC(300) → ReLU → FC(K), a matching decoder K → FC(300) →
ReLU → FC(X) and a BCE loss. Following [10] we set our learning rate to 1e − 3 and the
annealing rate to 1e− 5 and we used their annealing schedule every 1000 steps, setting the minimal ε
to be 0.1. The results appear in Table 1. When considering MNIST and Omniglot, direct optimization
achieves similar test loss to the unbiased method, which uses the analytical gradient computation in
Equation (2). Also, direct optimization achieves a better result than GSM, in spite the fact both direct
optimization and GSM use biased gradient descent: direct optimization uses a biased gradient for the
exact objective in Equation (1), while GSM uses an exact gradient for an approximated objective.
Surprisingly, on Fashion-MNIST, direct optimization achieves better test loss than the unbiased. To

6



MNIST Fashion MNIST Omniglot
k unbiased direct GSM unbiased direct GSM unbiased direct GSM
10 164.53 165.26 167.88 228.46 222.86 238.37 155.44 155.94 160.13
20 152.31 153.08 156.41 206.40 198.39 211.87 152.05 152.13 166.76
30 149.17 147.38 152.15 205.60 189.44 197.01 152.10 150.14 157.33
40 142.86 143.95 147.56 205.68 184.21 195.22 151.38 150.33 156.09
50 155.37 140.38 146.12 200.88 180.31 191.00 156.84 149.12 164.01

Table 1: Compares the test loss of VAEs with different categorial variables z ∈ {1, ..., k}. Direct
optimization achieves similar test loss to the unbiased method (Equation (2)) and achieves a better
test loss than GSM, in spite the fact both direct optimization and GSM use biased gradient descent.

MNIST Fashion-MNIST Omniglot

Figure 2: Comparing the decrease of the test loss for k = 10. Top row: test loss as a function of the
learning epoch. Bottom row: test loss as a function of the learning wall-clock time. Incomplete plot
in the bottom row suggests the algorithm required less time to finish 300 epochs.

further explore this phenomenon, in Figure 2 one can see that the unbiased method takes more epochs
to converge, and eventually it achieves similar and often better test loss than direct optimization
on MNIST and Omniglot. In contrast, on Fashion-MNIST, direct optimization is better than the
unbiased gradient method, which we attribute to the slower convergence of the unbiased method, see
supplementary material for more evidence.

It is important to compare the wall-clock time of each approach. The unbiased method requires
k computations of the encoder and the decoder in a forward and backward pass. GSM requires a
single forward pass and a single backward pass (encapsulating the k computations of the softmax
normalization within the code). In contrast, our approach requires a single forward pass, but k
computations of the decoder fθ(x, z) for z = 1, ..., k in the backward pass. In our implementation we
use the batch operation to compute fθ(x, z) efficiently. Figure 2 compares the test loss as a function
of the wall clock time and shows that while our method is 1.5 times slower than GSM, its test loss is
lower than the GSM at any time.

Next we perform a set of experiments on Fashion-MNIST using discrete structured latent spaces
z = (z1, ..., zn) while each zi is binary, i.e., zi ∈ {0, 1}. In the following experiments we consider
a structured decoder fθ(x, z) = fθ(x, z1, ..., zn). The decoder architecture consists of the modules
(2× 15)→ FC(300)→ ReLU → FC(X) and a BCE loss. For n = 15 the computational cost of
the softmax in GSM is high (exponential in n) and therefore one cannot use a structured encoder with
GSM.

Our first experiment with a structured decoder considers an unstructured encoder hφ(x, z) =∑n
i=1 hi(x, zi;φ) for GSM and direct optimization. This experiment demonstrates the effective-

ness of our low dimensional approximation f̃θ(x, z) =
∑n
i=1 f̃i(x, zi; θ), where f̃i(x, zi; θ) =
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Figure 3: Left: test loss of unstructured encoder and a structured decoder as a function of their
epochs. Middle: using structured decoders and comparing unstructured encoders to structured
encoders, hi,j(x, zi, zj ;φ) = αi,j(x)zizj , both for general αi,j(x) (recovering the argmax using
CPLEX) and for αi,j(x) ≥ 0 (recovering the argmax using maxflow). Right: comparing the
wall-clock time of decomposable and structured encoders.

MNIST Fashion-MNIST
accuracy bound accuracy bound

#labels direct GSM direct GSM direct GSM direct GSM
50 92.6% 84.7% 90.24 91.23 63.3% 61.2% 129.66 129.813
100 95.4% 88.4% 90.93 90.64 67.2% 64.2% 130.822 129.054
300 96.4% 91.7% 90.39 90.01 70.0% 69.3% 130.653 130.371
600 96.7% 92.3% 90.78 89.77 72.1% 71.6% 130.81 129.973
1200 96.8% 92.7% 90.45 90.37 73.7% 73.2% 130.921 130.063

Table 2: Semi-supervised VAE on MNIST and Fashion-MNIST with 50/100/300/600/1200 labeled
examples out of the 50, 000 training examples.

fθ(x, z
∗
1 , ..., zi, ..., z

∗
n) for applying direct optimization to structured decoders in Section 4.1. We

also compare the unbiased estimators REBAR [33] and RELAX [7] and the recent ARM estimator
[38].3 The results appear in Figure 3 and may suggest that using the approximated z̃∗(ε), the gradient
estimate of direct optimization still points towards a direction of descent for the exact objective.

Our second experiment uses a structured decoder with structured encoders, which may account for cor-
relations between latent random variables hφ(x, z) =

∑n
i=1 hi(x, zi;φ) +

∑n
i,j=1 hi,j(x, zi, zj ;φ).

In this experiment we compare two structured encoders with pairwise functions hi,j(x, zi, zj ;φ) =
αi,j(x)zizj . We use a general pairwise structured encoder where the argmax is recovered using the
CPLEX algorithm [5]. We also apply a super-modular encoder, where αi,j(x) ≥ 0 is enforced using
the softplus transfer function, and the argmax is recovered using the maxflow algorithm [3]. In
Figure 3 we compare the general and super-modular structured encoders with an unstructured encoder
(αi,j(x) = 0), all are learned using direct optimization. One can see that structured encoders achieve
better bounds, while the wall-clock time of learning super-modular structured encoder using maxflow
(αi,j(x) ≥ 0) is comparable to learning unstructured encoders. One can also see that the general
structured encoder, with any αi,j(x), achieves better test loss than the super-modular structured
encoder. However, this comes with a computational price, as the maxflow algorithm is orders of
magnitude faster than CPLEX, and structured encoder with CPLEX becomes better than maxflow
only in epoch 85, see Figure 3.

Finally, we perform a set of semi-supervised experiments, for which we use a mixed continuous
discrete architecture, [12, 10]. The architecture of the base encoder is (28 × 28) → FC(400) →
ReLU → FC(200). The output of this layer is fed both to a discrete encoder hd and a continuous
encoder hc. The discrete latent space is zd ∈ {1, ..., 10} and its encoder hd is 200→ FC(100)→
ReLU → FC(10). The continuous latent space considers k = 10, c = 20, and its encoder hc
consists of a 200→ FC(100)→ ReLU → FC(66)→ FC(40) to estimate the mean and variance
of 20−dimensional Gaussian random variables z1, ..., z10. The mixed discrete-continuous latent
space consists of the matrix diag(z∗d) · zc, i.e, if z∗d = i then this matrix is all zero, except for the i-th
row. The parameters of zc are shared across the rows z = 1, ..., k through the batch operation.

3For REBAR and RELAX we used the code in https://github.com/duvenaud/relax. and for ARM
we used the code in https://github.com/mingzhang-yin/ARM-gradient
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unsupervised semisupervised

Figure 4: Comparing unsupervised to semi-supervised VAE on MNIST, for which the discrete latent
variable has 10 values, i.e., z ∈ {1, ..., 10}. Weak supervision helps the VAE to capture the class
information and consequently improve the image generation process.

w/o glasses glasses
woman man woman man

w/o smile smile w/o smile smile w/o smile smile w/o smile smile

Figure 5: Learning attribute representation in CelebA, using our semi-supervised setting, by cali-
brating our argmax prediction using a loss function. These images here are generated while setting
their attributes to get the desired image. The i−th row consists the generation of the same continuous
latent variable for all the attributes

We conducted a quantitive experiment with weak supervision on MNIST and Fashion-MNIST with
50/100/300/600/1200 labeled examples out of the 50, 000 training examples. For labeled examples,
we set the perturbed label z∗(ε) to be the true label. This is equivalent to using the indicator loss
function over the space of correct predictions. A comparison of direct optimization with GSM appears
in Table 2. Figure 4 shows the importance of weak supervision in semantic latent space, as it allows
the VAE to better capture the class information.

Supervision in generative models also helps to control discrete semantics within images. We learn
to generate images using k = 8 discrete attributes of the CelebA dataset (cf. [19]) while using our
semi-supervised VAE. For this task, we use convolutional layers for both the encoder and the decoder,
except the last two layers of the continuous latent model which are linear layers that share parameters
over the 8 possible representations of the image. In Figure 5, we show generated images with discrete
semantics turned on/off (with/without glasses, with/without smile, woman/man).

6 Discussion and future work

In this work, we use the Gumbel-Max trick to reparameterize discrete VAEs using the argmax
prediction and show how to propagate gradients through the non-differentiable argmax function. We
show that this approach compares favorably to state-of-the-art methods, and extend it to structured
encoders and semi-supervised learning.

These results can be taken in a number of different directions. Our gradient estimation is practically
biased, while REINFORCE is an unbiased estimator. As a result, our methods may benefit from the
REBAR/RELAX framework, which directs biased gradients towards the unbiased gradient [33, 28].
There are also optimization-related questions that arise from our work, such as exploring the interplay
between the ε parameter and the learning rate.
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