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Abstract

We present a novel approach to collaborative prediction, using low-norm
instead of low-rank factorizations. The approach is inspired by, and has
strong connections to, large-margin linear discrimination. We show how
to learn low-norm factorizations by solving a semi-definite program, and
present generalization error bounds based on analyzing the Rademacher
complexity of low-norm factorizations.

1 Introduction

Fitting a target matrixY with a low-rank matrixX by minimizing the sum-squared error is
a common approach to modeling tabulated data, and can be done explicitly in terms of the
singular value decomposition ofY . It is often desirable, though, to minimize a different
loss function: loss corresponding to a specific probabilistic model (whereX are the mean
parameters, as in pLSA [1], or the natural parameters [2]); or loss functions such as hinge
loss appropriate for binary or discrete ordinal data. Loss functions other than squared-error
yield non-convex optimization problems with multiple local minima. Even with a squared-
error loss, when only some of the entries inY are observed, as is the case for collaborative
filtering, local minima arise and SVD techniques are no longer applicable [3].

Low-rank approximations constrain the dimensionality of the factorizationX = UV ′.
Other constraints, such as sparsity and non-negativity [4], have also been suggested for
better capturing the structure inY , and also lead to non-convex optimization problems.

In this paper we suggest regularizing the factorization by constraining the norm ofU and
V —constraints that arise naturally when matrix factorizations are viewed as feature learn-
ing for large-margin linear prediction (Section 2). Unlike low-rank factorizations, such
constraints lead toconvexoptimization problems that can be formulated as semi-definite
programs (Section 4). Throughout the paper, we focus on using low-norm factorizations
for “collaborative prediction”: predicting unobserved entries of a target matrixY , based on
a subsetS of observed entriesYS . In Section 5, we present generalization error bounds for
collaborative prediction using low-norm factorizations.

2 Matrix Factorization as Feature Learning

Using a low-rank model for collaborative prediction [5, 6, 3] is straightforward: A low-
rank matrixX is sought that minimizes a loss versus the observed entriesYS . Unobserved



entries inY are predicted according toX. Methods differ in how they relate real-valued
entries inX to preferences inY , and in the associated measure of discrepancy. For ex-
ample, entries inX can be seen as parameters (either mean parameters [5, 6] or natural
parameters [3, 7]) for a probabilistic model of the entries inY , and a maximum likeli-
hood criterion used. Alternatively, other loss functions, such as squared error [8, 3], can
be minimized. Matrices of rank at mostk are those that can be factored intoX = UV ′,
U ∈ Rn×k, V ∈ Rm×k, and so seeking a low-rank matrix is equivalent to seeking a
low-dimensional factorization. The matricesU andV can be interpreted as “factors” or,
depending on the measure of discrepancy, distributions of latent variables or mixture com-
ponents.

If one of the matrices, sayU , is fixed, and only the other matrixV ′ needs to be learned, then
fitting each column of the target matrixY is a separate linear prediction problem. Each row
of U functions as a “feature vector”, and each column ofV ′ is a linear predictor, predicting
the entries in the corresponding column ofY based on the “features” inU .

In collaborative prediction, bothU andV are unknown and need to be estimated. This can
be thought of as learning feature vectors (rows inU ) for each of the rows ofY , enabling
good linear prediction across all of the prediction problems (columns ofY ) concurrently,
each with a different linear predictor (columns ofV ′). The features are learned without
any external information or constraints which is impossible for a single prediction task (we
would use the labels as features). The underlying assumption that enables us to do this in
a collaborative filtering situation is that the prediction tasks (columns ofY ) arerelated, in
that the same features can be used for all of them, though possibly in different ways.

The symmetric view, of learning features for the column enabling good linear prediction of
the rows, is equally valid.

Low-rank collaborative prediction corresponds to regularizing by limiting the dimension-
ality of the feature space—each column is a linear prediction problem in ak-dimensional
space. Instead, we suggest allowing an unbounded dimensionality for the feature space, and
regularizing by requiring a low-norm factorization, while predicting with large-margin.

Consider adding to the loss a penalty term which is the sum of squares of entries inU and
V , i.e.‖U‖2Fro + ‖V ‖2Fro (‖‖Fro denotes the Frobenius norm). Each “conditional” problem
(fitting U givenV and vice versa) again decomposes into a collection of standard, this time
regularized, linear prediction problems. With an appropriate loss function, or constraints
on the observed entries, these correspond to large-margin linear discrimination problems.
For example, if we learn a binary observation matrix by minimizing a hinge loss plus such
a regularization term, each conditional problem decomposes into a collection of SVMs.

3 Large-Margin Matrix Factorizations

Matrices with a factorizationX = UV ′, whereU andV have low Frobenius norm (recall
that the dimensionality ofU andV is no longer bounded!), can be characterized in several
equivalent ways, and are known as lownuclear normmatrices:

Definition 1. The nuclear norm‖X‖Σ is the sum of the singular values ofX.

Lemma 1. ‖X‖Σ = minX=UV ′ ‖U‖Fro ‖V ‖Fro = minX=UV ′
1
2 (‖U‖2Fro + ‖V ‖2Fro)

The characterization in terms of the singular value decomposition allows us to characterize
low nuclear norm matrices as the convex hull of low-norm rank-one matrices:

Lemma 2. {X | ‖X‖Σ ≤ B} = conv
{

uv′ |u ∈ Rn, v ∈ Rm, |u|2 = |v|2 = B
}

In particular, the nuclear norm is a convex function, and the set of bounded nuclear norm



matrices is a convex set. For convex loss functions, seeking a bounded nuclear norm matrix
minimizing the loss versus some target matrix is a convex optimization problem.

This contrasts sharply with minimizing loss over low-rank matrices—a non-convex prob-
lem. Although the sum-squared error versus afully observedtarget matrix can be min-
imized efficiently using the SVD (despite the optimization problem being non-convex!),
minimizing other loss functions, or even minimizing a squared loss versus a partially ob-
served matrix, is a difficult optimization problem with multiple local minima [3].

In fact, the nuclear norm has been suggested as a convex surrogate to the rank for various
rank-minimization problems [9]. Here, we justify the nuclear norm directly, both as a
natural extension of large-margin methods and by providing generalization error bounds.

To simplify presentation, we focus on binary labels,Y ∈ {±1}n×m. We considerhard-
margin matrix factorization, where we seek a minimum nuclear norm matrixX that
matches the observed labels with a margin of one:

minimize ‖X‖Σ
subject toYiaXia ≥ 1 for all ia ∈ S

(1)

We also considersoft-marginlearning, where we minimize a trade-off between the nuclear
norm ofX and its hinge-loss relative toYS :

minimize ‖X‖Σ + c
∑
ia∈S

max(0, 1− YiaXia). (2)

As in large-margin linear discrimination, there is an inverse dependence between the norm
and the margin. Fixing the margin and minimizing the nuclear norm is equivalent to fixing
the nuclear norm and maximizing the margin. As in large-margin discrimination with cer-
tain infinite dimensional (e.g. radial) kernels, the data is always separable with sufficiently
high nuclear norm (a nuclear norm of

√
n|S| is sufficient to attain a margin of one).

4 Learning Large-Margin Matrix Factorizations

In this section we investigate the optimization problem of learning with low nuclear norm
matrices, focusing on learning a binary target matrix, and see how this optimization prob-
lem can be written as a semi-definite program.

Bounding the nuclear norm ofUV ′ by 1
2 (‖U‖2Fro+‖V ‖

2
Fro), we can characterize the nuclear

norm in terms of the trace of a positive semi-definite matrix:

Lemma 3 ([9, Lemma 1]). For anyX ∈ Rn×m and t ∈ R: ‖X‖Σ ≤ t iff there exists
A ∈ Rn×n andB ∈ Rm×m such that1

[
A X
X′ B

]
< 0 andtrA + trB ≤ 2t.

Proof. Note that for any matrixW , ‖W‖Fro = trWW ′. If
[

A X
X′ B

]
is p.s.d. withtrA +

trB ≤ 2t, we can write it as a product[ U
V ] [ U ′ V ′ ]. We haveX = UV ′ and 1

2 (‖U‖2Fro +
‖V ‖2Fro) = 1

2 (trA + trB) ≤ t, establishingnnormX ≤ t. Conversely, if‖X‖Σ ≤ t
we can write it asX = UV ′ with trUU ′ + tr V V ′ ≤ 2t and consider the p.s.d. matrix[

UU ′ X
X′ V V ′

]
.

Lemma 3 can be used in order to formulate minimizing the nuclear norm as a semi-definite
optimization problem (SDP). The hard-margin matrix factorization problem (1) can be

1A < 0 denotesA is positive semi-definite



written as:

min
1
2
(trA + trB) s.t.

[
A X
X ′ B

]
< 0

yiaXia ≥ 1 ∀ia ∈ S

(3)

And introducing slack, soft-margin matrix factorization (2), can be written as:

min
1
2
(trA + trB) + c

∑
ia∈S

ξia s.t.

[
A X
X ′ B

]
< 0,

yiaXia ≥ 1− ξia

ξia ≥ 0
∀ia ∈ S (4)

Associating a dual variableQia with each constraint onXia, the dual of (4) is [10]:

max
∑
ia∈S

Qia s.t.

[
I (−Q⊗ Y )

(−Q⊗ Y )′ I

]
< 0, 0 ≤ Qia ≤ c (5)

whereQ ⊗ Y denotes the sparse matrix(Q ⊗ Y )ia = QiaYia for ia ∈ S and zeros
elsewhere. The dual of the hard-margin problem is similar, but without the box constraints
qia ≤ c. In either case, problem is strictly feasible, and there is no duality gap.

The p.s.d. constraint in the dual (5) is equivalent to bounding the spectral norm ofQ⊗ Y ,
and the dual can also be written as an optimization problem subject to a bound on the
spectral norm, i.e. a bound on the singular values ofQ⊗ Y :

max
∑
ia∈S

Qia s.t.
‖Q⊗ Y ‖2 ≤ 1

0 ≤ Qia ≤ c ∀ia ∈ S
(6)

In typical collaborative prediction problems, we observe only a small fraction of the entries
in a large target matrix. Such a situation translates to a sparse dual semi-definite program,
with the number of variables equal to the number of observed entries. Large-scale SDP
solvers can take advantage of such sparsity.

4.1 Using the dual solution

Most SDP solvers use internal point methods and return a pair of primal and dual optimal
solutions. The prediction matrixX∗ minimizing (2) is part of the primal optimal solution
of (4), and can be extracted from it directly.

Nevertheless, it is interesting to study how the optimal prediction matrixX∗ can be directly
recovered from a dual optimal solutionQ∗ alone. Although unnecessary when relying on
standard internal point SDP solvers, this might enable us to use specialized optimization
methods, taking advantage of the simple structure of the dual.

RecoveringX∗ from Q∗ As for linear programming, recovering a primal optimal so-
lution directly from a dual optimal solution is not always possible for SDPs in general.
However, at least for the hard-margin problem (1) this is possible, and we describe below
how an optimal prediction matrixX∗ can be recovered from a dual optimal solutionQ∗ by
calculating a singular value decomposition and solving linear equations.

Given a dual optimalQ∗, consider its singular value decompositionQ∗⊗Y = UΛV ′. Re-
call that all singular values ofQ∗ ⊗ Y are bounded by one, and consider only the columns
Ũ ∈ Rn×p of U andṼ ∈ Rm×p of V with singular values one. It is possible to show [10],
using complimentary slackness, that for some matrixR ∈ Rp×p, X∗ = ŨRR′Ṽ ′ is an
optimal solution to the maximum margin matrix factorization problem (2). Furthermore,
p(p+1)

2 is bounded above by the number of non-zeroQ∗
ia. WhenQ∗

ia > 0, and assuming



hard-margin constraints, i.e. no box constraints in the dual, complimentary slackness dic-
tates thatX∗

ia = ŨiRR′Ṽ ′
a = Yia, providing us with a linear equation on thep(p+1)

2 entries
in the symmetricRR′. For hard-margin matrix factorization, we can therefore recover the
entries ofRR′ by solving a system of linear equations, with a number of variables bounded
by the number of observed entries.

Recovering specific entries The approach described above requires solving a large sys-
tem of linear equations (with as many variables as observations). Furthermore, especially
when the observations are very sparse (only a small fraction of the entries in the target
matrix are observed), the dual solution is much more compact then the prediction matrix:
the dual involves a single number for eachobservedentry. It might be desirable to avoid
storing the prediction matrixX∗ explicitly, and calculate a desired entryX∗

i0a0
, or at least

its sign, directly from the dual optimal solutionQ∗.

Consider adding the constraintXi0a0 > 0 to the primal SDP (4). If there exists an optimal
solutionX∗ to the original SDP withX∗

i0a0
> 0, then this is also an optimal solution to

the modified SDP, with the same objective value. Otherwise, the optimal solution of the
modified SDP is not optimal for the original SDP, and the optimal value of the modified
SDP is higher (worse) then the optimal value of the original SDP.

Introducing the constraintXi0a0 > 0 to the primal SDP (4) corresponds to introducing a
new variableQi0a0 to the dual SDP (5), appearing inQ⊗Y (with Yi0a0 = 1) butnot in the
objective. In this correspondingly modified dual, the optimal solutionQ∗ of the original
dual would always be feasible. But, ifX∗

i0a0
≤ 0 in all primal optimal solutions, and

the modified primal SDP has a higher value, then so does the dual, andQ∗ is no longer
optimal for the new dual. By checking the optimality ofQ∗ for the modified dual, e.g. by
attempting to re-optimize it, we can recover the sign ofX∗

i0a0
.

We can repeat this test once withYi0a0 = 1 and once withYi0a0 = −1, corresponding
to Xi0a0 < 0. If Yi0a0X

∗
i0a0

< 0 (in all optimal solutions), then the dual solution can be
improved by introducingQi0a0 with a sign ofYi0a0 .

4.2 Predictions for new users

So far, we have assumed that learning is done on the known entries in all rows. It is
commonly desirable to predict entries in a new partially observed row ofY (a new user
in a collaborative filtering task), not included in the original training set. This essentially
requires solving a “conditional” problem, whereV is already known, and a new row of
U is learned (the predictor for the new user) based on a new partially observed row ofX.
Using large-margin matrix factorization, this is a standard SVM problem.

5 Generalization Error Bounds for Low Norm Matrix Factorizations

Similarly to standard feature-based prediction approaches, collaborative prediction meth-
ods can also be analyzed in terms of their generalization ability: How confidently can we
predict all the entries ofY based on our error on the observed entriesYS? We present here
generalization error bounds that hold forany target matrixY , and for a random subset of
observationsS, and bound the average error across all entries by the observed empirical
error. The central assumption, paralleling the i.i.d. source assumption for standard feature-
based prediction, is that the observed subsetS is picked uniformly at random.

Theorem 4. For all target matricesY ∈ {±1}n×m and sample sizes|S| > n log n, and
for a uniformly selected sampleS of |S| entries inY , with probability at least1 − δ over



the sample selection, the following holds for all matricesX ∈ Rn×m:

1
nm

∑
loss(Xia;Yia) <

1
|S|

∑
ia∈S

loss(Xia;Yia)+

KL
‖X‖Σ√

nm
4
√

lnm

√
(n + m) lnn

|S|
+

√
ln(1 + | log ‖X‖Σ |)

|S|
+

√
ln(4/δ)

2|S|

WhereK is a universal constant that does not depend onY ,n,m, the loss function or any
other quantity, and loss is Lipschitz continuous with constantL, and we assumen ≥ m.

By bounding the zero-one error in terms of a picewise linear margin loss loss(x, y) =
max(0,min(yx− 1, 1)), which in turn is bounded by the zero-one margin loss, the gener-
alization error bound can be specialized to bounding the true zero-one error in terms of the
empirical zero-one margin error:

Corollary 5. For all target matricesY ∈ {±1}n×m and sample sizes|S| > n log n, and
for a uniformly selected sampleS of |S| entries inY , with probability at least1 − δ over
the sample selection, the following holds for all matricesX ∈ Rn×m and allγ > 0:

1
nm

|{ia|XiaYia ≤ 0}| < 1
|S|
|{ia ∈ S|XiaYia ≤ γ}|+

K
‖X‖Σ
γ
√

nm
4
√

lnm

√
(n + m) ln n

|S|
+

√
ln(1 + | log ‖X‖Σ /γ|)

|S|
+

√
ln(4/δ)

2|S|

To understand the scaling of this bound, it is useful to consider the scaling of the nuclear
norm for matrices that can be factored intoX = UV ′ where the norm of each row ofU
andV is bounded byr. The nuclear norm of such matrices is at mostr2

√
nm, leading to

a complexity term ofr2. Recall that the conditional problem, whereV is fixed and only
U is learned, is a collection of low-norm (large-margin) linear prediction problems. When
the norms of rows inU andV are bounded byr, a similar generalization error bound on
the conditional problem would include the termr2

√
n
|S| , matching the term in Theorem 4

up to log-factors. We see, then, that learningbothU andV does not introduce significantly
more structural risk than learning just one of them.

Also of interest are low-rank matrices, for which‖X‖Σ ≤
√

rank X ‖X‖Fro. In particular,
for rank-k X with entries bounded byB, we have (for fixedB andk):

1
nm

∑
loss(Xia;Yia) <

1
|S|

∑
ia∈S

loss(Xia;Yia)+KLB
4
√

lnm

√
k(n + m) lnn + ln(4/δ)

|S|

This is the best (up to log factors) that can be achieved without explicitly bounding the
loss function. But for bounded loss functions, analyzing the covering number of bounded
low-rank matrices directly, yields a bound that scales only logarithmically withB.

6 Implementation and Experiments

Ratings In many collaborative prediction tasks, the labels are not binary, but rather are
discrete “ratings” in several ordered levels (e.g. one star through five stars). SeparatingR
levels by thresholds−∞ = θ0 < θ1 < · · · < θR = ∞, and generalizing hard-margin
constraints for binary labels, one can requireθYia

+ 1 ≤ Xia ≤ θYia+1 − 1. A soft-
margin version of these constraints, with slack variables for the two constraints on each
observed rating, corresponds to a generalization of the hinge loss which is a convex bound



on the zero/one level-agreement error [11]. To obtain a loss which is a convex bound on
the mean-absolute-error (the difference, in levels, between the predicted level and the true
level), we introduceR − 1 slack variables for each observed rating—one for each of the
R − 1 constraintsXia ≥ θr for r < Yia andXia ≤ θr for r ≥ Yia. Both of these soft-
margin problems (“immediate-threshold” and “all-threshold”) can be formulated as SDPs
similar to (4)-(5). Furthermore, it is straightforward to learn also the thresholds (they appear
as variables in the primal, and correspond to constraints in the dual)—either a single set of
thresholds for the entire matrix, or a separate threshold vector for each row of the matrix
(each “user”). Doing the latter allows users to “use ratings differently” and alleviates the
need to normalize the data.

Experiments We conducted preliminary experiments on a subset of the MovieLens
dataset2, consisting of the 100 users and 100 movies with the most ratings. The ratings are
on a discrete scale of one through five, and we experimented with both generalizations of
the hinge loss described above, allowing per-user thresholds. We used CSDP [12] to solve
the resulting SDPs3. We compared against methods described in [13], randomly selecting
50% of the entries for training and 50% for testing. We tested a range of regularization
parameters (C/K) and present the best zero-one agreement error (ZOE) and mean-absolute-
error (MAE) result for each method, with the regularization parameters attaining it.

all-θ immediate-θ K-medians WLRA WLRA
LMMF ,c=0.2 LMMF ,c=0.3 K=2 K=1 K=2

MAE 0.508 /0.670 0.621 / 0.715 0.620 / 0.674 0.679 / 0.698 0.622 / 0.714
ZOE 0.450 / 0.553 0.462 /0.542 0.510 / 0.558 0.550 / 0.559 0.519 / 0.553

Table 1: Lowest train/test errors for various methods.

7 Discussion

Learning large-margin matrix factorizations requires solving a sparse semi-definite pro-
gram. We experimented with generic SDP solvers, and were able to learn with up to tens
of thousands of labels. We propose that just as generic QP solvers do not perform well
on SVM problems, special purpose techniques, taking advantage of the very simple struc-
ture of the dual (5), might be necessary in order to solve large-scale large-margin matrix
factorization problems.

SDPs were recently suggested for a related, but different, problem: learning the features
(or equivalently, kernel) that are best for asingleprediction task [14]. This task is hope-
less if the features are completely unconstrained, as they are in our formulation. Gertet al
suggest constraining the allowed features, e.g. to a linear combination of a few “base fea-
ture spaces” (or base kernels), which represent the external information necessary to solve
a single prediction problem. It is possible to combine the two approaches, seeking con-
strained features for multiple related prediction problems, as a way of combining external
information (e.g. details of users and of items) and collaborative information.

An alternate method for introducing external information into our formulation is by adding
to U and/orV additional fixed (non-learned) columns representing the external features.
This method degenerates to standard SVM learning whenY is a vector rather than a matrix.

A variant of the approach suggested here (which can also be written as a SDP) is bound-
ing the maximumnorm of rows in the factorization, replacing the nuclear norm with

2http://www.cs.umn.edu/Research/GroupLens/
3Solving with immediate-threshold loss took about 25 CPU minutes on a 3.06GHz Intel Xeon.

Solving with all-threshold loss took up to eight hours. TheMATLAB code used to generate the SDPs
(in SDPA format) is available atwww.ai.mit.edu/˜nati/lmmf



‖X‖max = minX=UV ′(maxi |Ui|)(maxa |Va|) whereUi, Va are rows ofU, V . Low-max-
norm discrimination has a clean geometric interpretation. First, note that predicting the tar-
get matrix with the signs of a rank-k matrix corresponds to mapping the “items” (columns)
to points inRk, and the “users” (rows) to homogeneous hyperplanes, such that each user’s
hyperplane separates his positive items from his negative items. Hard-margin low-max-
norm prediction corresponds to mapping the users and items to points and hyperplanes in
a high-dimensional unit sphere such that each user’s hyperplane separates his positive and
negative items with a large-margin (the margin being the inverse of the max-norm).

An important limitation of the approach we have described, is that observed entries are
assumed to be uniformly sampled. This is made explicit in the generalization error bounds.
Such an assumption is typically unrealistic, as, e.g., users tend to rate items they like. At
an extreme, it is often desirable to make predictions based only on positive samples. Even
in such situations, it is still possible to learn a low-norm factorization, by using appropriate
loss functions, e.g. derived from probabilistic models incorporating the observation pro-
cess. However, obtaining generalization error bounds in this case is much harder. Simply
allowing an arbitrary sampling distribution and calculating the expected loss based on this
distribution (which is not possible with the nuclear norm, but might be possible with the
max-norm) is not satisfying, as this would guarantee low error on items the user is likely to
want anyway, but not on items we predict he would like.

A Proof of Theorem 4

We sketch here the main arguments of the proof of Theorem 4. Complete details are
available in [15]. To prove the theorem, we consider matricesX ∈ Rn×m as functions
X : [n]× [m] → R from index pairs to entries in the matrix, and bound their Rademacher
complexity [16] as such. The proof is then an application of Theorem 2 of [16].

In order to calculate the Rademacher complexity of matrices with bounded nuclear
norm, we calculate the Rademacher complexity of unit-norm rank-one matrices,X1[1] .=
{uv′ | u ∈ Rn, v ∈ Rm, |u| = |v| = 1}, and use the fact that the Rademacher complexity
does not change when we take the convex hull of this class. We first analyze the empirical
Rademacher complexity, for any fixed sampleS, possibly with repeating index pairs. We
then bound the (average) Rademacher complexity for a sample of|S| index pairs drawn
uniformly at random from[n] × [m] (with repetitions). The resulting generalization er-
ror bound applies to samples selected by this process, and therefore also bounds the more
concentrated situation of samples drawn without repetitions.

The Empirical Rademacher Complexity For a sampleS = {(i1, a1), (i2, a2), . . .} of
|S| index pairs, we need to take an expectation over random signsσα for each appearance
of an index pair(iα, aα) in the sample. For each index pair(i, a) we will denotesia the
number of times it appears inS (possibly zero), and consider instead the random variable
σia =

∑
(iα,aα)=(i,a) σα, the sum ofsia random signs. We can now calculate:

R̂S(X1[1]) = Eσ

 sup
|u|=|v|=1

∣∣∣∣∣∣ 2
|S|
∑
i,a

σiauiva

∣∣∣∣∣∣
 =

2
|S|

Eσ

[
sup

|u|=|v|=1

|u′σv|

]
=

2Eσ [‖σ‖2]
|S|

whereσ is an n × m matrix of σia. Using the Frobenius norm to bound the spectral
norm,R̂S(X1[1]) ≤ 2

|S|Eσ

[
‖σ‖Fro

]
≤ 2

|S|

√∑
ia Eσ [σ2

ia] = 2√
|S|

. As a supremum over

all sample setsS, this bound is tight (and not very useful), but for uniformly distributed
samples the expected Rademacher complexity is much lower.



Bounding Eσ [‖σ‖2] Instead of using the Frobenius norm, we bound the expected spec-
tral norm directly. We do so by applying Theorem 3.1 of [17], which bounds the expected
spectral norm of matrices with entries of fixed magnitudes but random signs in terms of
the maximum row and column magnitude norms. IfS contains no repeated index pairs
(sia = 0 or 1), we are already in this situation, as the magnitudes ofσ are equal tos. When
some index pairs are repeated, we consider a different random matrix,σ̃ which consists of
sign flips ofsia: σ̃ia = εiasia whereεia are i.i.d. unbiased signs. Using̃σ instead ofσ
gives us an upper bound on the empirical Rademacher complexity [15]:

R̂S(X1[1]) ≤ 2
|S|

Eε [‖σ̃‖2] ≤ K(lnm)
1
4

(
max

i
|si·|+ max

a
|s·a|

)
wheresi· ands·a are row and column vectors of the matrixs, andK is the absolute constant
guaranteed by Theorem 3.1 of [17].

Bounding the Row and Column Norms of a Uniformly Random Sample For the worst
samples, the norm of a single row or column vector ofs might be as high as|S|, but for
random uniformly drawn samples, we would expect the norm of row vectors to be roughly
|S|
n and of column vectors to be roughly|S|m . To make this estimate precise we proceed

in two steps. We first use Bernstein’s inequality to bound the maximum value ofsia,
uniformly over all index pairs:PrS (maxia sia > 9 ln n) ≤ 1

|S| . When the maximum entry
in s is bounded, the norm of a row can be bounded by the number of observations in the row.
In the second step we use Bernstein’s inequality again to bound the expected maximum
number of observations in a row (similarly column) by6( |S|n + ln |S|). Combining these
results we can bound the Rademacher complexity, for a random sample set where each
index pair is chosen uniformly and independently at random:

R|S|(X1[1]) = ES [RS ] ≤ Pr
(
max

ia
sia > 9 ln n

)
sup

S
RS + ES

[
RS

∣∣∣max
ia

sia ≤ 9 ln n
]

≤ 2
|S|

+
K

|S|
(lnm)

1
4

(√
9 ln n6(

|S|
n

+ ln |S|) +

√
9 ln n6(

|S|
m

+ ln |S|)

)

Taking the convex hull ofX1[1], scaling byM and rearranging terms:

Theorem 6. For some universal constantK, the Rademacher complexity of matrices of
nuclear norm at mostM , over uniform samplings of index pairs, is at most (forn ≥ m):

R(X [M ]) ≤ K
M√
nm

(lnm)
1
4

√
(n + m + nm

|S| lnn) ln n

|S|

When|S| > n lnn, the last term can be subsumed in the constantK.
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