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72076 Tübingen, Germany

Jeremy Jancsary jermyj@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

Christoph Lampert chl@ist.ac.at

IST Austria

A-3400 Klosterneuburg, Austria

This is a draft version of the author chapter.

The MIT Press

Cambridge, Massachusetts

London, England





1 Smoothed Coordinate Descent for MAP

Inference

Ofer Meshi meshi@ttic.edu

Toyota Technological Institute at Chicago

Chicago, IL

Tommi Jaakkola tommi@csail.mit.edu

CSAIL, MIT

Cambridge, MA

Amir Globerson gamir@cs.huji.ac.il

The Hebrew University

Jerusalem, Israel

Finding maximum a posteriori (MAP) assignments in graphical models is

an important task in many applications. Since the problem is generally

hard, linear programming (LP) relaxations are often used. Solving these

relaxations efficiently is thus an important practical problem. In recent

years, several authors have proposed message passing updates corresponding

to coordinate descent in the dual LP. However, these are generally not

guaranteed to converge to a global optimum. One approach to remedy this

is to smooth the LP, and perform coordinate descent on the smoothed dual.

Here we provide a tutorial introduction to such algorithms, followed by an

analysis of their convergence rate. We analyze the rate of convergence to

both the primal and dual optima of the problems, under different coordinate

update schedules. Empirical evaluation supports our theoretical claims and

shows that the method is highly competitive with state of the art approaches

that yield global optima.
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1.1 Introduction

Many applications involve simultaneous prediction of multiple variables. For

example, we may seek to label pixels in an image with their semantic classes

or find the semantic role of words in a sentence. These problems can be

cast as maximizing a function over a set of labels (or minimizing an energy

function). The function typically decomposes into a sum of local functions

over overlapping subsets of variables.

Such maximization problems are nevertheless typically hard (Koller and

Friedman, 2009). Even for simple decompositions (e.g., subsets correspond

to pairs of variables), maximizing over the set of labels is often provably

NP-hard. One approach would be to reduce the problem to a tractable one,

e.g., by constraining the model to a low tree-width graph. However, empiri-

cally, using more complex interactions together with approximate inference

methods is often advantageous. One popular family of approximate methods

is the linear programming (LP) relaxation approach (e.g., see Chapter 8 in

Wainwright and Jordan, 2008). Although these LPs are tractable, general

purpose LP solvers typically do not exploit the problem structure (Yanover

et al., 2006). Therefore a great deal of effort has gone into designing solvers

that are specifically tailored to typical MAP-LP relaxations. These include,

for example, cut based algorithms (Boykov et al., 1999; Kolmogorov and

Rother, 2007), accelerated gradient methods (Jojic et al., 2010; Savchyn-

skyy et al., 2011), and augmented Lagrangian methods (Martins et al., 2011;

Meshi and Globerson, 2011).

One class of particularly simple algorithms, which we will focus on here,

are coordinate minimization based approaches. Examples include max-sum-

diffusion (Werner, 2007), MPLP (Globerson and Jaakkola, 2008) and TRW-

S (Kolmogorov, 2006).1 These work by first taking the dual of the LP and

then optimizing the dual in a block coordinate fashion (see Sontag et al.,

2011, for a review). In many cases, the coordinate block operations can be

performed in closed form, resulting in updates quite similar to the max-

product message passing algorithm. By coordinate minimization we mean

that at each step a set of coordinates is chosen, all other coordinates are

fixed, and the chosen coordinates are set to their optimal value given the rest.

This is different from a coordinate descent strategy where instead a gradient

step is performed on the chosen coordinates (rather than full optimization).

A main caveat of the coordinate minimization approach is that it will

1. See Chapter by Schoenemann and Kolmogorov in this volume for a generalized version
of TRW-S
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not necessarily find the global optimum of the LP (although in practice

it often does). This is a direct result of the LP objective not being strictly

convex. Several authors have proposed to smooth the LP with entropy terms

and employ variants of coordinate minimization (Hazan and Shashua, 2010;

Werner, 2009). However, the convergence rate of these methods has not

been analyzed. Moreover, since the algorithms work in the dual, there is no

simple procedure to map the result back into primal feasible variables. In

this chapter, we provide a tutorial introduction to the smoothing approach

to MAP LP relaxations, and analyze its convergence rate.

Convergence rates for coordinate minimization are typically hard to ob-

tain. As mentioned above, convergence to the global optimum is in fact not

always achieved, and in these cases the rate of convergence (e.g., to a lo-

cal optimum) is not of much interest. However, there are many cases where

global convergence is guaranteed asymptotically (e.g., Tseng, 2001) but the

number of iterations needed to reach a given accuracy ε is not known.

The rate of convergence and its analysis depend on the update schedule

used by the algorithm. Namely, the choice of which coordinate (or block of

coordinates) to update at each step. The simplest schedule is to decide on

a given fixed permutation of the coordinates and update those in a cyclic

manner. However, this seems to be the hardest case to analyze, and only

recently have results been obtained for convergence rate in specific problem

settings (Saha and Tewari, 2013).

Choosing non-cyclic update schedules seems to considerably simplify the

analysis. One variant is to randomly choose the next coordinate block.

The convergence rate of this stochastic schedule has been analyzed recently

in Nesterov (2010); Shalev-Shwartz and Tewari (2011). However, this was

done not for coordinate minimization (which we study here) but rather for

gradient descent steps along each coordinate. Another non-cyclic update

is a greedy schedule, where at each step one chooses the coordinate that

has the most “potential” for improving the objective.2 Such greedy schemes

have been studied for example in the context of coreset optimization and

the Frank Wolfe method (Clarkson, 2010), but the resulting algorithms are

different from coordinate minimization.3

In what follows, we review the smoothing approach to MAP LP relax-

ations, and analyze its convergence rate. We study both greedy and stochas-

tic schedules and analyze their rate of convergence to the dual optimum. We

also introduce a simple mapping to primal variables, and analyze the rate

2. This can be measured in various ways.
3. For example, they do not fully optimize each coordinate.
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of convergence of these to the primal optimum.4 Finally, we provide a brief

review of the ADMM method, which illustrates a different way of using

smoothing and coordinate descent to globally solve the MAP LP problem.

1.2 MAP and LP Relaxations

Consider a set of n discrete variables X1, . . . , Xn, and a set C of subsets

of these variables (i.e., c ∈ C is a subset of {1, . . . , n}). We use xi to

denote particular assignments to these variables. Next, consider functions

that decompose according to these subsets. In particular, each subset c is

associated with a local function or factor θc(xc) and we also include factors

θi(xi) for each individual variable.5 These can be used to define the following

“score” function, which returns a real value for any assignment to the n

variables:

f(x1, . . . , xn; θ) =
∑
c∈C

θc(xc) +

n∑
i=1

θi(xi) . (1.1)

We will often write f(x; θ) where x corresponds to the assignment to the n

variables.

The MAP problem is to find an assignment x to all the variables which

maximizes f(x; θ). Namely:

MAP(θ) = max
x1,...,xn

f(x1, . . . , xn; θ) . (1.2)

The above is a combinatorial optimization problem, whose naive solution re-

quires searching over 2n possible assignments (for binary variables). This is

indeed the worst-case complexity of such problems.6 Linear programming re-

laxations are a popular approach to approximating combinatorial optimiza-

tion problems. In what follows we review the most common LP relaxation for

the MAP problem (Wainwright and Jordan, 2008; Wainwright et al., 2005;

Werner, 2007). See also Živný et al. and Schoenemann and Kolmogorov in

this volume.

To obtain an LP relaxation for Eq. (1.2), we first write it as an integer

linear program, and then relax the integrality constraints. Consider a set

4. A related analysis of MAP-LP using smoothing appeared in Burshtein (2009). However,
their approach is specific to LDPC codes, and does not apply to general MAP problems
as we analyze here.
5. Although singleton factors are not needed for generality, we keep them for notational
convenience.
6. For example max-cut can be easily seen as an instance of Eq. (1.2).
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of boolean variables µi(xi) ∈ {0, 1} (one for each i ∈ {1, . . . , n} and value

of xi), that are constrained to be either zero or one. A setting µi(xi) = 1

will reflect the fact that the ith variable has the value xi. Similarly, consider

variables µc(xc) (one for each c ∈ C and value of xc). A setting µc(xc) = 1

will reflect the fact that the variables in c are set to the value xc. We denote

an assignment to all the µ’s by a vector µ

We can now cast the MAP problem as an integer linear program as

follows:7

max
∑

c

∑
xc
θc(xc)µc(xc) +

∑
i

∑
xi
θi(xi)µi(xi)

s.t.
∑

xc\i
µc(xc) = µi(xi) , ∀c, i ∈ c, xi∑

xi
µi(xi) = 1 , ∀i∑

xc
µc(xc) = 1 , ∀c

µi(xi) ∈ {0, 1} , ∀i, xi
µc(xc) ∈ {0, 1} , ∀c, xc ,

(1.3)

where in
∑

xc\i
µc(xc) we sum out all variables in c except i. To see that this

is equivalent to the MAP problem, note that any feasible µ corresponds to an

assignment x1, . . . , xn.8 The mapping is obtained by setting Xi = xi where

xi is the value such that µi(xi) = 1 (There is only one such value, because of

the constraints). Denote the assignment corresponding to µ by x(µ). Then

the objective in Eq. (1.3) is f(x(µ); θ). Finally, since each assignment x has

a corresponding µ we have the equivalence to MAP.
The above ILP can be naturally converted into an LP by relaxing the

integrality constraint µα(xα) ∈ {0, 1} to µα(xα) ∈ [0, 1] (where α is either a
variable i or a factor c). The resulting LP is:

PMAP : max
µ∈ML

P (µ) = max
µ∈ML

{∑
c

∑
xc

θc(xc)µc(xc) +
∑
i

∑
xi

θi(xi)µi(xi)

}
= max

µ∈ML

µ · θ , (1.4)

where P (µ) is the primal (linear) objective and ML is given by:9

ML =

{
µ ≥ 0 :

∑
xc\i

µc(xc) = µi(xi) ∀c, i ∈ c, xi∑
xi
µi(xi) = 1 ∀i

}
. (1.5)

The set ML is often referred to as the local marginal polytope (Wainwright

and Jordan, 2008).

7. Note that the normalization constraint on µc is redundant, but is usually included.
8. Our derivation here is similar to Weiss et al. (2007).
9. We can neglect the upper bound on µ, since it is enforced by the normalization
constraint.
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If the maximizer of PMAP has only integral values, then it solves the ILP

and x(µ) is the MAP solution. However, in the general case the solution may

be fractional (Wainwright and Jordan, 2008) and the maximum of PMAP

is an upper bound on MAP(θ).

1.2.1 The Dual LP

The linear program in Eq. (1.4) can be solved in polynomial time using

generic LP solvers. However, these do not use the special structure of

the problem, and can often result in impractical running times (Yanover

et al., 2006). Thus, in recent years considerable research effort has gone into

designing specific algorithms for solving Eq. (1.4). Many of these are based

on the notion of dual coordinate descent. Namely, they take the convex dual

of Eq. (1.4) and perform block coordinate descent on its variables. Since our

algorithms will be closely related to this approach, we briefly introduce the

dual objective.

The dual variables will be denoted by δci(xi), where there is one such

variable for each i, c, xi. These can be intuitively understood as messages

from subset c to node i, reflecting a belief that the ith variable has value xi.

The convex dual of Eq. (1.4) is then:

min
δ

∑
c

max
xc

(
θc(xc)−

∑
i:i∈c

δci(xi)

)
+
∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
. (1.6)

This objective may also be derived using the dual decomposition framework

(e.g., see Sontag et al., 2011; Komodakis et al., 2011).

The advantage of the optimization problem in Eq. (1.6) is that it is

unconstrained, and thus can be optimized using simple convex optimization

approaches. One example is sub-gradient descent and its accelerated variants

(e.g., see Komodakis et al., 2011; Savchynskyy et al., 2011; Jojic et al., 2010).

Another nice property of Eq. (1.6) is that minimizing over some blocks

of coordinates can be done in closed form given a fixed value of the other

coordinates. This is the basis of the dual coordinate descent algorithms

mentioned earlier. However, as also mentioned earlier, these algorithms

are generally not guaranteed to converge to a global optimum. In what

follows, we review a smoothing approach that preserves that nice structure

of coordinate descent algorithms, but results in global convergence.

1.2.2 Smoothing the LP

Since global convergence is desirable, several authors have considered a

smoothed version of the LP in Eq. (1.4). As we shall see, this offers several
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advantages over solving the LP directly. The basic idea is as follows: given a

parameter τ > 0, we construct a new primal problem PMAPτ that is O( 1
τ )

close to the original PMAP (see below for a precise definition). The dual of

PMAP is denoted by DMAPτ . It is very similar in structure to Eq. (1.6),

but with one key difference: the global optimum of DMAPτ can be found

using coordinate descent, and with guarantees on convergence rate.

Define the following primal objective:

Pτ (µ) = µ · θ +
1

τ

∑
c

H(µc) +
1

τ

∑
i

H(µi) , (1.7)

where H(µc) and H(µi) are the entropies of the corresponding distribu-

tions.10 Now define the following smoothed primal optimization problem:

PMAPτ : max
µ∈ML

Pτ (µ) . (1.8)

Note that as τ → ∞ we obtain the original primal problem. In fact, a

stronger result can be shown. Specifically, the optimal value of PMAP

is O( 1
τ ) close to the optimal value of PMAPτ . This justifies using the

smoothed objective Pτ as a proxy to P in Eq. (1.4). We express this in

the following lemma (which appears in similar forms in Hazan and Shashua

(2010); Nesterov (2005)).

Lemma 1.1. Denote by µ∗ the optimum of problem PMAP in Eq. (1.4)

and by µ̂∗ the optimum of problem PMAPτ in Eq. (1.8). Then:

µ̂∗ · θ ≤ µ∗ · θ ≤ µ̂∗ · θ +
Hmax

τ
, (1.9)

where Hmax =
∑

c log |xc| +
∑

i log |xi| (here |xα| is the number of possible

configurations of variables or factors). In other words, the smoothed optimum

is an O( 1
τ )-optimal solution of the original non-smoothed problem.

1.2.3 The Dual of the Smoothed LP

As mentioned above, we shall be particularly interested in the dual of

PMAPτ since it facilitates simple coordinate minimization updates. As in

the non smooth case (see Section 1.2.1), our dual variables will be denoted

by δci(xi). Before introducing the dual objective, we define the soft-max

function, which plays a key role in this dual. Given a function v(x) over

10. Namely, H(µi) = −
∑
xi
µi(xi) log µi(xi), and H(µc) = −

∑
xc
µc(xc) logµc(xc).
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some variable x, and a parameter τ , we define the soft-max of v by:

smax
x

(v(x); τ) =
1

τ
log
∑
x

exp (τv(x)) . (1.10)

The soft-max is closely related to the max function in several ways:

It upper bounds the max, namely: smaxx (v(x); τ) ≥ maxx v(x) for all τ

values.

As τ →∞ the soft-max approaches the max. Namely:

lim
τ→∞

smax
x

(v(x); τ) = max
x

v(x) . (1.11)

We now turn to the dual of PMAPτ . Standard duality transformation show
that the dual objective is (e.g., see Boyd and Vandenberghe, 2004):11

F (δ) =
∑
c

smax
xc

(
θc(xc)−

∑
i:i∈c

δci(xi); τ

)
+
∑
i

smax
xi

(
θi(xi) +

∑
c:i∈c

δci(xi); τ

)
.

(1.12)

The dual is an unconstrained smooth minimization problem:

DMAPτ : min
δ
F (δ) . (1.13)

Convex duality implies that the optima of DMAPτ and PMAPτ coincide.

Comparing Eq. (1.6) to Eq. (1.12), we see that the original and smooth

duals are identical with the exception that max in the original is replaced

with soft-max in the smoothed version. This is rather convenient as most

of the structure that facilitated simple coordinate descent algorithms in the

original dual can still be exploited.

Finally, we shall be interested in transformations between dual variables

δ and primal variables µ (see Section 1.5). The following are the transfor-

mations obtained from the Lagrangian derivation (i.e., they can be used to

switch from optimal dual variables to optimal primal variables).

µc(xc; δ) ∝ exp

(
τθc(xc)− τ

∑
i:i∈c

δci(xi)

)

µi(xi; δ) ∝ exp

(
τθi(xi) + τ

∑
c:i∈c

δci(xi)

)

11. This results from the fact that the conjugate of the entropy function is the log
∑

exp
function.
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We denote the vector of all such marginals by µ(δ). For the dual variables δ

that minimize F (δ) it holds that µ(δ) are feasible (i.e., µ(δ) ∈ML). However,

we will also consider µ(δ) for non optimal δ, and show how to obtain primal

feasible approximations from µ(δ). These will be helpful in obtaining primal

convergence rates.

It is easy to see that:
(
∇F (δt)

)
c,i,xi

= µi(xi; δ
t) − µc(xi; δt), where (with

some abuse of notation) we denote: µc(xi) =
∑

xc\i
µc(xc\i, xi). The elements

of the gradient thus correspond to inconsistency between the marginals µ(δt)

(i.e., the degree to which they violate the constraints in Eq. (1.5)). We shall

make repeated use of this fact to link primal and dual variables.

1.3 Coordinate Minimization Algorithms

In this section we propose several coordinate minimization procedures for

solving DMAPτ (Eq. (1.13)). We first set some notation to define block

coordinate minimization algorithms. Denote the objective we want to min-

imize by F (δ) where δ corresponds to a set of N variables. Now define

S = {S1, . . . , SM} as a set of subsets, where each subset Si ⊆ {1, . . . , N}
describes a coordinate block. We will assume that Si∩Sj = ∅ for all i, j and

that ∪iSi = {1, . . . , N}.
Block coordinate minimization algorithms work as follows: at each itera-

tion, first set δt+1 = δt. Next choose a block Si and set:

δt+1
Si

= argmin
δSi

Fi(δSi ; δ
t) , (1.14)

where we use Fi(δSi ; δ
t) to denote the function F restricted to the variables

δSi and where all other variables are set to their value in δt. In other words,

at each iteration we fully optimize only over the variables δSi while fixing all

other variables. We assume that the minimization step in Eq. (1.14) can be

solved in closed form, which is indeed the case for the updates we consider

below.

Regarding the choice of an update schedule, several options are available:

Cyclic: Decide on a fixed order (e.g., S1, . . . , SM ) and cycle through it.

Stochastic: Draw an index i uniformly at random12 at each iteration and

use the block Si.

Greedy: Denote by ∇SiF (δt) the gradient ∇F (δt) evaluated at co-

12. Non uniform schedules are also possible. We consider the uniform for simplicity.
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ordinates Si only. The greedy scheme is to choose Si that maximizes

‖∇SiF (δt)‖∞. In other words, choose the set of coordinates that corre-

spond to maximum gradient of the function F . Intuitively this corresponds

to choosing the block that promises the maximal (local) decrease in objec-

tive. Note that to find the best coordinate we presumably must process all

sets Si to find the best one. We will show later that this can be done rather

efficiently in our case.

In our analysis, we shall focus on the Stochastic and Greedy cases, and

analyze their rate of convergence. The cyclic case is typically hard to analyze,

with results only under multiple conditions which do not hold here (e.g., see

Saha and Tewari, 2013).

Another consideration when designing coordinate minimization algo-

rithms is the choice of block size. One possible choice is all variables δci(·)
(for a specific pair c, i). This is the block chosen in the max-sum-diffusion

(MSD) algorithm (see Werner, 2007, 2009, for non-smooth and smooth

MSD). A larger block that also facilitates closed form updates is the set of

variables δ·i(·). Namely, all messages into a variable i from factors c such

that i ∈ c. We call this a star update. The update is used in Meshi et al.

(2010) for the non-smoothed dual (but the possibility of applying it to the

smoothed version is mentioned).

To derive the block updates, one needs to fix all variables except those in

the block and then set the latter to minimize F (δ). Since F (δ) is differen-

tiable this is pretty straightforward. The MSD update turns out to be:

δt+1
ci (xi) = δtci(xi) +

1

2τ
log

µtc(xi)

µti(xi)

for all xi. Here we use µti(xi), µ
t
c(xc) to denote the marginal obtained from

Eq. (1.14) when using δt. Similarly, the star update is given by:

δt+1
ci (xi) = δtci(xi) +

1

τ
logµtc(xi)−

1

Ni + 1
· 1
τ

log

(
µti(xi) ·

∏
c′:i∈c′

µtc′(xi)

)
for all c : i ∈ c and all xi, where Ni = |{c : i ∈ c}|.

It is interesting to consider the improvement in F (δ) as a result of an

update. For the MSD update, it can be shown to be exactly:

F (δt)− F (δt+1) = −1

τ
log

(∑
xi

√
µti(xi) · µtc(xi)

)2

.

This is known as the Bhattacharyya divergence measure between the pair

of distributions µti(xi) and µtc(xi) (Bhattacharyya, 1946). Similarly, for the
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star update the improvement in objective is exactly:

F (δt)− F (δt+1) = −1

τ
log

∑
xi

(
µti(xi) ·

∏
c:i∈c

µtc(xi)

) 1

Ni+1

Ni+1

,

which is known as Matusita’s divergence measure (Matusita, 1967), and is

a generalization of the Bhattacharyya divergence to several distributions.

Thus in both cases the improvement can be easily computed before actually

applying the update and is directly related to how consistent the distri-

butions µtc(xi), µ
t
i(xi) are. Recall that at the optimum they all agree since

µ ∈ML, and thus the anticipated improvement is zero.

1.4 Dual Convergence Rate Analysis

We begin with the convergence rates of the dual F using greedy and random

schemes described in Section 1.3. In Section 1.5 we subsequently show how

to obtain a primal feasible solution and how the dual rates give rise to

primal rates. Our analysis builds on the fact that we can lower bound the

improvement at each step, as a function of some norm of the block gradient.

1.4.1 Greedy Block Minimization

Theorem 1.2. Define B1 to be a constant such that ‖δt − δ∗‖1 ≤ B1 for

all t. If there exists k > 0 so that coordinate minimization of each block Si
satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇SiF (δt)‖2∞ (1.15)

for all t, then for any ε > 0 after T = kB2
1

ε iterations of the greedy algorithm,

F (δT )− F (δ∗) ≤ ε.

Proof. Using Hölder’s inequality we obtain the bound:

F (δt)− F (δ∗) ≤ ∇F (δt)>(δt − δ∗) ≤ ‖∇F (δt)‖∞ · ‖δt − δ∗‖1 .

This implies: ‖∇F (δt)‖∞ ≥ 1
B1

(
F (δt)− F (δ∗)

)
. Now, using the condition

on the improvement and the greedy nature of the update, we obtain a bound
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on the improvement:

F (δt)− F (δt+1) ≥ 1

k
‖∇SiF (δt)‖2∞ =

1

k
‖∇F (δt)‖2∞

≥ 1

kB2
1

(
F (δt)− F (δ∗)

)2
≥ 1

kB2
1

(
F (δt)− F (δ∗)

) (
F (δt+1)− F (δ∗)

)
.

Hence,

1

kB2
1

≤
F (δt)− F (δ∗)−

(
F (δt+1)− F (δ∗)

)
(F (δt)− F (δ∗)) (F (δt+1)− F (δ∗))

=
1

F (δt+1)− F (δ∗)
− 1

F (δt)− F (δ∗)
.

Summing over t we obtain:

T

kB2
1

≤ 1

F (δT )− F (δ∗)
− 1

F (δ0)− F (δ∗)
≤ 1

F (δT )− F (δ∗)
,

and the desired result follows.

1.4.2 Stochastic Block Minimization

Theorem 1.3. Define B2 to be a constant such that ‖δt − δ∗‖2 ≤ B2 for

all t. If there exists k > 0 so that coordinate minimization of each block Si
satisfies:

F (δt)− F (δt+1) ≥ 1

k
‖∇SiF (δt)‖22 (1.16)

for all t, then for any ε > 0 after T = k|S|B2
2

ε iterations of the stochastic

algorithm we have that E[F (δT )]−F (δ∗) ≤ ε, where the expectation is taken

with respect to the randomization of blocks.

The proof is similar to Nesterov’s analysis (see Theorem 1 in Nesterov

(2010)). The proof in Nesterov (2010) relies on the improvement condition

in Eq. (1.16) and not on the precise nature of the update. Note that since the

cost of the update is roughly linear in the size of the block then this bound

does not tell us which block size is better (the cost of an update times the

number of blocks is roughly constant).

1.4.3 Analysis of DMAPτ Block Minimization

We can now obtain rates for our coordinate minimization scheme for opti-

mizing DMAPτ by finding the k to be used in the conditions of Eqs. (1.15)
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and (1.16). The results for the MSD and star updates are given below.

Proposition 1.4. The MSD update satisfies the conditions in Eqs. (1.15)

and (1.16) with k = 4τ .

Proposition 1.5. The star update for variable i satisfies the conditions in

Eqs. (1.15) and (1.16) with k = 4τNi.

This can be shown using Equation 2.4 in Nesterov (2004), which states

that if Fi(δSi ; δ) (see Eq. (1.14)) has Lipschitz constant Li then Eq. (1.16)

is satisfied with k = 2Li. We can then use known bounds on the Lipschitz

constant of the blocks (this can be calculated as in Savchynskyy et al. (2011))

to obtain the result.13 To complete the analysis, it turns out that B1 and

B2 can be bounded via a function of θ by bounding ‖δ‖1 (see Appendix).

We proceed to discuss the implications of these bounds.

1.4.4 Comparing the Different Schemes

The results we derived have several implications. First, we see that both

stochastic and greedy schemes achieve a rate of O( τε ). This matches the

known rates for regular (non-accelerated) gradient descent on functions

with Lipschitz continuous gradient (e.g., see Nesterov (2004)), although in

practice coordinate minimization is often much faster.

The main difference between the greedy and stochastic rates is that the

factor |S| (the number of blocks) does not appear in the greedy rate, and

does appear in the stochastic one. This can have a considerable effect since

|S| is either the number of variables n (in the star update) or the sum of

factor sizes
∑

c |{i : i ∈ c}| (in MSD). Both can be significant (e.g., the

number of edges in a pairwise MRF model). The greedy algorithm does pay

a price for this advantage, since it has to find the optimal block to update

at each iteration. However, for the problem we study here this can be done

efficiently using a priority queue. To see this, consider the star update. A

change in the variables δ·i(·) will only affect the blocks that correspond to

variables j that are in factors c such that i ∈ c. In many cases this is small

(e.g., low degree pairwise MRFs) and thus we will only have to change the

priority queue a small number of times, and this cost would be negligible

when using a Fibonacci heap for example.14 Indeed, our empirical results

show that the greedy algorithm consistently outperforms the stochastic one

13. This can be also shown directly. For the MSD block see Kailath (1967), and for the
star block we provide a direct proof in Meshi et al. (2012).
14. This was also used in the residual belief propagation approach (Elidan et al., 2006),
which however is less theoretically justified than what we propose here.
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(see Section 1.7).

As mentioned before, our analysis does not provide insight on which block

size should be preferred, however in practice larger blocks usually perform

better (see Section 1.7).

1.5 Primal Convergence

Thus far we have considered only dual variables. However, it is often

important to recover the primal variables. We therefore focus on extracting

primal feasible solutions from current δ, and characterize the degree of

primal optimality and associated rates. The primal variables µ(δ) (see Eq.

(1.14)) need not be feasible in the sense that the consistency constraints in

Eq. (1.5) are not necessarily satisfied. This is true also for other approaches

to recovering primal variables from the dual, such as averaging subgradients

when using subgradient descent (e.g., see Sontag et al., 2011).

We propose a simple two-step algorithm for transforming any dual vari-

ables δ into primal feasible variables µ̃(δ) ∈ML. The resulting µ̃(δ) will also

be shown to converge to the optimal primal solution in Section 1.5.1. The

procedure is described in Algorithm 1.1 below.

Algorithm 1.1 Mapping to a Feasible Primal Point

Step 1: Make marginals consistent.

For all i do: µ̄i(xi) = 1

1+
∑
c:i∈c

1
|Xc\i|

(
µi(xi) +

∑
c:i∈c

1
|Xc\i|

µc(xi)
)

For all c do: µ̄c(xc) = µc(xc)−
∑
i:i∈c

1
|Xc\i|

(µc(xi)− µ̄i(xi))
Step 2: Make marginals non-negative.
λ = 0
for c ∈ C, xc do

if µ̄c(xc) < 0 then

λ = max

{
λ, −µ̄c(xc)
−µ̄c(xc)+ 1

|Xc|

}
else if µ̄c(xc) > 1 then

λ = max

{
λ, µ̄c(xc)−1

µ̄c(xc)− 1
|Xc|

}
end if

end for
for ` = 1, . . . , n; c ∈ C do

µ̃`(x`) = (1− λ)µ̄`(x`) + λ 1
|X`|

end for

Importantly, all steps consist of cheap elementary local calculations in

contrast to other methods previously proposed for this task (compare to

Savchynskyy et al., 2011; Werner, 2011). The first step performs a Euclidian
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projection of µ(δ) to consistent marginals µ̄. Specifically, it solves:

minµ̄
1
2‖µ(δ)− µ̄‖2

s.t. µ̄c(xi) = µ̄i(xi) , ∀ c, i ∈ c, xi∑
i µ̄i(xi) = 1 , ∀i .

(1.17)

Note that we did not include non-negativity constraints above, so the

projection might result in negative µ̄. In the second step we “pull” µ̄ back

into the feasible regime by taking a convex combination with the uniform

distribution u (see Burshtein (2009) for a related approach). In particular,

this step solves the simple problem of finding the smallest λ ∈ [0, 1] such that

0 ≤ µ̃ ≤ 1 (where µ̃ = (1 − λ)µ̄ + λu). Since this step interpolates between

two distributions that satisfy consistency and normalization constraints, µ̃

will be in the local polytope ML.

1.5.1 Primal Convergence Rate

Now that we have a procedure for obtaining a primal solution we analyze the

corresponding convergence rate. First, we show that if we have δ for which

‖∇F (δ)‖∞ ≤ ε then µ̃(δ) (after Algorithm 1) is an O(ε) primal optimal

solution.

Theorem 1.6. Denote by P ∗τ the optimum of the smoothed primal PMAPτ .

For any set of dual variables δ, and any ε ∈ R(τ) (see Appendix for definition

of R(τ)) it holds that if ‖∇F (δ)‖∞ ≤ ε then P ∗τ − Pτ (µ̃(δ)) ≤ C0ε. The

constant C0 depends only on the parameters θ and is independent of τ .

The proof is given in the Appendix. The key idea is to break F (δ) −
Pτ (µ̃(δ)) into components, and show that each component is upper bounded

by O(ε). The range R(τ) consists of ε ≥ O( 1
τ ) and ε ≤ O(e−τ ). As we show in

the Appendix this range is large enough to guarantee any desired accuracy

in the non-smoothed primal. We can now translate dual rates into primal

rates. This can be done via the following well known lemma:

Lemma 1.7. Any convex function F with Lipschitz continuous gradient and

Lipschitz constant L satisfies ‖∇F (δ)‖22 ≤ 2L (F (δ)− F (δ∗)).

These results lead to the following theorem.

Theorem 1.8. Given any algorithm for optimizing DMAPτ and ε ∈ R(τ),

if the algorithm is guaranteed to achieve F (δt) − F (δ∗) ≤ ε after O(g(ε))

iterations, then it is guaranteed to be ε primal optimal, i.e., P ∗τ −Pτ (µ̃(δt)) ≤
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ε after O(g( ε
2

τ )) iterations.15

Proof. Using F (δt) − F (δ∗) ≤ ε and Lemma 1.7 we have that ‖∇F (δ)‖22 ≤
2Lε. Since the Lipschitz constant of F (δ) is O(τ), this implies ‖∇F (δ)‖22 ≤
O(τε). We then use the fact that ‖∇F (δ)‖2∞ ≤ ‖∇F (δ)‖22 to get ‖∇F (δ)‖∞ ≤
O(
√
τε). Finally, using Theorem 1.6 we obtain P ∗τ − Pτ (µ̃(δ)) ≤ O(

√
τε),

which completes the proof.

The theorem lets us directly translate dual convergence rates into primal

ones. Note that it applies to any algorithm for DMAPτ (not only coordinate

minimization), and the only property of the algorithm used in the proof

is F (δt) ≤ F (0) for all t. Put in the context of our previous results, any

algorithm that achieves F (δt) − F (δ∗) ≤ ε in t = O(τ/ε) iterations is

guaranteed to achieve P ∗τ − Pτ (µ̃(δt
′
)) ≤ ε in t′ = O(τ2/ε2) iterations.

1.6 The Augmented Dual LP Algorithm

An alternative approach to deal with the non-smoothness of the dual MAP-

LP objective Eq. (1.6) is based on an augmented Lagrangian method known

as the Alternating Direction Method of Multipliers (ADMM) (Glowinski

and Marrocco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011). Here

we provide a short review of this approach and its application to MAP LP

relaxations.

The ADMM framework is designed to handle convex optimization prob-

lems with the following constrained form:

minimize f(x) + g(z) s.t. Ax = z , (1.18)

where f and g are general convex functions.

The ADMM approach begins by adding the function ρ
2 ‖Ax− z‖

2 to the

above objective, where ρ > 0 is a penalty parameter. This results in the

optimization problem:

minimize f(x) + g(z) +
ρ

2
‖Ax− z‖2 s.t. Ax = z . (1.19)

The augmenting quadratic term can be seen as smoothing the objective

function. Clearly the above has the same optimum as Eq. (1.18) since when

the constraints Ax = z are satisfied, the added quadratic term equals zero.

15. We omit constants not depending on τ and ε.
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The Lagrangian of the augmented problem Eq. (1.19) is given by:

Lρ(x, z, ν) = f(x) + g(z) + ν>(Ax− z) +
ρ

2
‖Ax− z‖2 , (1.20)

where ν is a vector of Lagrange multipliers. The solution to the problem of

Eq. (1.19) is given by maxν minx,z Lρ(x, z, ν). The ADMM method provides

an elegant algorithm for finding this saddle point. The idea is to combine

subgradient ascent over ν with coordinate descent over the x and z variables.

The method applies the following iterations:

xt+1 = argmin
x

Lρ(x, z
t, νt)

zt+1 = argmin
z

Lρ(x
t+1, z, νt)

νt+1 = νt + ρ
(
Axt+1 − zt+1

)
. (1.21)

The algorithm consists of primal and dual updates, where the primal update

is executed sequentially, minimizing first over x and then over z. This split

retains the decomposition of the objective that has been lost due to the

introduction of the quadratic term. Furthermore, it can be viewed as a

coordinate descent algorithm with x and z blocks on L(x, z, νt) for some

fixed νt.

The ADMM algorithm is guaranteed to converge to the global optimum

of Eq. (1.18) under rather mild conditions (Boyd et al., 2011). Moreover, it

was recently shown that it has a convergence rate of O(1/ε) (He and Yuan,

2012; Wang and Banerjee, 2012), which is similar to accelerated gradient

(Nesterov, 2005; Jojic et al., 2010), but does not require pre-smoothing of

the objective.

There are various ways to apply ADMM to the dual LP Eq. (1.6). The

challenge is to design the constraints in a way that facilitates efficient closed-

form solutions for all updates. To this end, we duplicate the variables δ and

denote the second copy by δ̄. We then introduce additional variables λc
corresponding to the summation of δ’s pertaining to factor c. To enforce

overall agreement we introduce the constraints δci(xi) = δ̄ci(xi) for all

c, i : i ∈ c, xi, and λc(xc) =
∑

i:i∈c δ̄ci(xi) for all c, xc.
Following the ADMM framework, we add quadratic terms and obtain the
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Figure 1.1: Comparison of smooth and non-smooth coordinate minimization
algorithms on a toy MAP problem. The figure shows for each algorithm the dual
objective as a function of the number of iterations. The optimal value of the non-
smooth LP is marked with a thin dashed line.

augmented Lagrangian for the dual MAP-LP problem of Eq. (1.6):

Lρ(δ, λ, δ̄, γ, µ) =∑
i

max
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)

)
+
∑
c

max
xc

(θc(xc)− λc(xc))

+
∑
c

∑
i:i∈c

∑
xi

γci(xi)
(
δci(xi)− δ̄ci(xi)

)
+
ρ

2

∑
c

∑
i:i∈c

∑
xi

(
δci(xi)− δ̄ci(xi)

)2
+
∑
c

∑
xc

µc(xc)

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)
+
ρ

2

∑
c

∑
xc

(
λc(xc)−

∑
i:i∈c

δ̄ci(xi)

)2

.

To see the relation of this formulation to Eq. (1.20), notice that the

variables (δ, λ) correspond to x, the variables δ̄ correspond to z (with

g(z) = 0), and the multipliers (γ, µ) correspond to ν. The nice property

of this decomposition is that all algorithmic steps in Eq. (1.21) can be done

in simple closed form updates. These updates as well as a detailed derivation

can be found in Meshi and Globerson (2011).

Finally, we note that ADMM can be also applied to the primal. e.g., see

Martins et al. (2011) and Chapter by André Martins in this volume.
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1.7 Experiments

In this section we evaluate the performance of coordinate minimization

algorithms on toy and real-world MAP problems. We begin with a toy

problem to demonstrate the effect of smoothing on the convergence of

coordinate minimization. This toy problem was given in Kolmogorov (2006)

(Appendix D therein) to illustrate that coordinate descent for the non-

smooth dual LP can get stuck at non-optimal points. In Figure 1.1 we

compare the convergence behavior of non-smooth MSD, smooth MSD, and

ADLP.16 We first see that non-smooth coordinate minimization (MSD) is

caught in a suboptimal fixed point. In contrast, the smooth MSD algorithm

is able to converge to the optimum of the smoothed dual objective Eq. (1.12).

Figure 1.1 also shows the effect of the smoothing parameter τ . As τ increases

the smoothed optimum gets closer to the LP optimum, but convergence

time grows linearly with τ , as our analysis suggests. Finally, we observe that

ADLP quickly converges to the optimum of the non-smooth LP.

We next compare coordinate minimization algorithms to state-of-the-

art baselines on a real-world MAP problem. Since the MSD block has

similar or slightly inferior performance compared to the star block, we show

here results only for the latter. We compare the running time of greedy

coordinate minimization, stochastic coordinate minimization, full gradient

descent, and FISTA – an accelerated gradient method (Beck and Teboulle,

2009). For completeness, we provide here the updates of both gradient-based

algorithms:

Algorithm 1.2 Gradient descent

1: for t = 1, . . . do
2: δt+1 = δt − 1

L
∇F (δt)

3: end for

16. We run both MSD algorithms in stochastic schedule. Results are reported per iteration.
Runtime is not identical to those, since the ADLP update is more costly.
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Figure 1.2: Comparison of coordinate minimization, gradient descent, and the
accelerated gradient algorithms on protein side-chain prediction task. Figure (a)
shows a typical run of the algorithms. For each algorithm the dual objective of
Eq. (1.12) is plotted as a function of execution time (upper solid line). The value
(Eq. (1.8)) of the feasible primal solution of Algorithm 1.1 is also shown (lower
solid line), as well as the objective (Eq. (1.3)) of the best decoded integer solution
(dashed line; those are decoded directly from the dual variables δ). Table (b) shows
the ratio of runtime of each algorithm w.r.t. the greedy algorithm. The mean ratio
over the proteins in the dataset is shown followed by standard error.

Algorithm 1.3 FISTA

1: δ̄1 = δ0, α1 = 1
2: for t = 1, . . . do
3: δt = δ̄t − 1

L
∇F (δ̄t)

4: αt+1 =
1+
√

1+4(αt)2

2

5: δ̄t+1 = δt +
(
αt−1
αt+1

) (
δt − δt−1

)
6: end for

Gradient descent is known to converge in O
(

1
ε

)
iterations while FISTA

converges in O
(

1√
ε

)
iterations (Beck and Teboulle, 2009). We compare the

performance of the algorithms on protein side-chain prediction problems

from the dataset of Yanover et al. (2006). These problems involve finding

the 3D configuration of rotamers given the backbone structure of a protein.

The problems are modeled by singleton and pairwise factors and can be

posed as finding a MAP assignment for the given model.

Figure 1.2(a) shows the objective value for each algorithm over time. We

first notice that the greedy algorithm converges faster than the stochastic

one. This is in agreement with our theoretical analysis. Second, we observe

that the coordinate minimization algorithms are competitive with the ac-

celerated gradient method FISTA and are much faster than the gradient
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method. Third, as Theorem 1.8 predicts, primal convergence is slower than

dual convergence (notice the logarithmic timescale). Finally, we can see that

better convergence of the dual objective corresponds to better convergence of

the primal objective, in both fractional and integral domains. In our experi-

ments the quality of the decoded integral solution (dashed lines) significantly

exceeds that of the fractional solution. Although sometimes a fractional so-

lution can be useful in itself, this suggests that if only an integral solution is

sought then it could be enough to decode directly from the dual variables.

The table in Figure 1.2(b) shows overall statistics for the proteins in the

dataset. Here we run each algorithm until the duality gap drops below a

fixed desired precision (ε = 0.1) and compare the total runtime. The table

presents the ratio of runtime of each algorithm w.r.t. the greedy algorithm

(talg/tgreedy). These results are consistent with the example in Figure 1.2(a).

1.8 Discussion

The chapter provided a tutorial introduction to the smoothing approach to

MAP LP relaxations. It was shown that coordinate descent on the smoothed

dual results in simple updates, and that the rate of convergence can be

analyzed for different coordinate update schedules.

We also showed how such dual iterates can be turned into primal feasible

iterates and analyzed the rate with which these primal iterates converge to

the primal optimum. The primal mapping is of considerable practical value,

as it allows us to monitor the distance between the upper (dual) and lower

(primal) bounds on the optimum and use this as a stopping criterion. Note

that this cannot be done without a primal feasible solution. An alternative

commonly used progress criterion is to decode an integral solution from the

dual variables, and see if its value is close to the dual upper bound. However,

this will only work if PMAP has an integral solution and we have managed

to decode it.

The overall rates we obtain are of the order O( τε ) for the DMAPτ problem.

If one requires an ε accurate solution for PMAP , then τ needs to be set to

O(1
ε ) (see Eq. (1.9)) and the overall rate is O( 1

ε2 ) in the dual. As noted in

Jojic et al. (2010); Savchynskyy et al. (2011), a faster rate of O(1
ε ) may be

obtained using accelerated methods such as Nesterov’s (Nesterov, 2005) or

FISTA (Beck and Teboulle, 2009). However, these also have an extra factor

of N which does not appear in the greedy rate. This could partially explain

the excellent performance of the greedy scheme when compared to FISTA

(see Section 1.7).

As mentioned earlier, there are various ways of choosing the block of
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coordinates to update. Here we focused mainly on the star update where

a variable i is chosen and δci(xi) are updated for all values of c, xi. An

alternative choice is to choose c, i and update δci(xi) for all xi values. This

corresponds to the MSD update of Werner (2007). While we have provided

some of the results for the MSD case (e.g., see Proposition 1.4), we did not

analyze the overall runtime expected for the two variants (e.g., for the greedy

scheme, different queue maintenance costs will be incurred). Empirically,

we observed that the star update is typically faster, as may intuitively be

expected due to more coordinates being updated. Understanding the effect of

block length and the resulting tradeoffs is an interesting problem for further

study.

Another block update strategy is the so-called MPLP update, where for

a given c, the variables δci(xi) are updated for all i ∈ c, xi. Interestingly,

we were unable to obtain these in closed form for the particular entropy

smoothing we use here (i.e., for the dual in Eq. (1.12)). It would be inter-

esting to seek primal regularization schemes where such coordinate blocks

have closed form updates.

The main goal of smoothing was to obtain a dual that is differentiable,

and where coordinate descent globally converges. The way this is achieved

here is by introducing entropy regularization into the primal. It would be

interesting to study other forms of primal regularization and the resulting

smooth duals. For example, one may consider `2 regularization on µ. It is

not clear however, that closed form updates are available in this case for dual

coordinate minimization. An additional regularization form to consider is `2
regularization on δ in the dual.

Both our empirical and theoretical results highlight the advantage of

greedy update schedules. The advantage comes from the fact that the choice

of block to update is quite efficient since its cost is of the order of the

other computations required by the algorithm. This can be viewed as a

theoretical reinforcement of selective scheduling algorithms such as Residual

Belief Propagation (Elidan et al., 2006).

The convergence rates we provided were for obtaining an accuracy ε

with respect to the primal or dual objective optima. However, in analyzing

combinatorial optimization problems with polynomial time algorithms, one

typically obtains the number of iterations required to find the optimal

(discrete) solution, without reference to accuracy. To obtain such runtimes

in our case, we can focus on problems where the LP is integral (e.g., mincut;

See proof in Taskar et al., 2006). If the LP solution is close enough to optimal,

this can be shown to imply that it can be rounded to the optimal integral
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assignment.17 Such an analysis was performed in Ravikumar et al. (2010)

and can be done in our case as well.

Finally, our analysis relates to sequential updates of coordinates. Thus, it

is not immediately applicable to distributed asynchronous implementations.

It would be very interesting to extend the results to the distributed setting

(e.g., Bradley et al., 2011).

Acknowledgments:

This work was supported by BSF grant 2008303. Ofer Meshi is a recipient of

the Google Europe Fellowship in Machine Learning, and this research was

supported in part by this Google Fellowship.

Appendix: Primal Convergence Rate

In this section we prove Theorem 1.6.

Proof. ‖∇F (δ)‖∞ ≤ ε guarantees that µ = µ(δ) are ε-consistent in the sense

that |µi(xi)−µc(xi)| ≤ ε for all c, i ∈ c and xi. Algorithm 1.1 maps any such

ε-consistent µ to locally consistent marginals µ̃ such that

|µi(xi)− µ̃i(xi)| ≤ 3εNmax, |µc(xc)− µ̃c(xc)| ≤ 2εN2
max, (1.22)

for all i, xi, c, and xc, whereNmax = max{maxiNi,maxcNc}. In other words,

‖µ − µ̃‖∞ ≤ Kε. This can be easily derived from the update in Algorithm

1.1 and the fact that |µi(xi)− µc(xi)| ≤ ε.
Next, it can be shown that F (δ) = Pτ (µ(δ)). And it follows that P ∗τ ≤

F (δ) ≤ Pτ (µ), where the first inequality follows from weak duality.

For clarity, we define

µ · θ =
∑
i

∑
xi

µi(xi)θi(xi) +
∑
c

∑
xc

µc(xc)θc(xc) (1.23)

H(µ) =
∑
i

H(µi(·)) +
∑
c

H(µc(·)) (1.24)

17. Assuming a unique integral optimum.
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Thus we have:

P ∗τ ≤ Pτ (µ) = µ · θ +
1

τ
H(µ)

= (µ̃+ µ− µ̃) · θ +
1

τ
H(µ̃) +

1

τ
(H(µ)−H(µ̃))

≤ Pτ (µ̃) + ‖µ− µ̃‖∞‖θ‖1 +
1

τ
(H(µ)−H(µ̃))

≤ Pτ (µ̃) +Kε‖θ‖1 +
1

τ
(H(µ)−H(µ̃)) (1.25)

Where we have used Hölder’s inequality for the first inequality and Eq.

(1.22) for the second inequality.

It remains to bound 1
τ (H(µ) − H(µ̃)) by a linear function of ε. We note

that it is impossible to achieve such a bound in general (e.g., see Berend and

Kontorovich (2012)). However, since the entropy is bounded the difference

is also bounded. Now, if we also restrict ε to be large enough ε ≥ 1
τ , then we

obtain the bound:

1

τ
(H(µ)−H(µ̃)) ≤ 1

τ
Hmax ≤ εHmax (1.26)

We thus obtain that Eq. (1.25) is of the form Pτ (µ̃) +O(ε) and the result

follows.

For the high-accuracy regime (small ε) we provide a similar bound for the

case ε ≤ O(e−τ ). Let v = µ− µ̃, so we have:

H(µ)−H(µ̃) = H(µ̃+ v)−H(µ̃)

≤ H(µ̃) +∇H(µ̃)>v −H(µ̃)

= −
∑
i

∑
xi

vi(xi) log µ̃i(xi)−
∑
c

∑
xc

vc(xc) log µ̃c(xc)

where the inequality follows from the concavity of entropy, and the second

equality is true because
∑

xi
vi(xi) = 0 and similarly for vc(xc). Now, from

the definition of µi(xi; δ) we obtain the following bound:

µi(xi; δ) =
1

Zi
eτ(θi(xi)+

∑
c:i∈c δci(xi)) ≥ 1

|Xi|
e−2τ(‖θi‖∞+‖δi‖1)

We will show below (Lemma 1.9) that ‖δi‖1 remains bounded by a constant

A independent of τ . Thus we can write:

µi(xi; δ) ≥
1

|Xmax|
e−2τ(‖θi‖∞+A)

where |Xmax| = max{maxi |Xi|,maxc |Xc|}. We define γ0 = 1
(2|Xmax|)τ e

−2τ(‖θi‖∞+A),

and thus for any τ ≥ 1 we have that µi(xi; δ) is bounded away from zero by

2τγ0. Since we assume that ε ≤ γ0, we can bound µ̃ from below by γ0. As a
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result, since ‖vi‖∞ ≤ Kε,

−1

τ

∑
i

∑
xi

vi(xi) log µ̃i(xi) ≤ −1

τ
(log γ0)|Xi|Kε

= (2(‖θi‖∞ +A) + log(2|Xmax|))|Xi|Kε

and similarly for the other entropy terms.

Again, we obtain that Eq. (1.25) is of the form Pτ (µ̃)+O(ε) and the result

holds.

In conclusion, we have shown that if ‖∇F (δ)‖∞ ≤ ε, then for large

values ε ≥ 1
τ and small values ε ≤ 1

(2|Xmax|)τ e
−2τ(‖θi‖∞+A) we have that:

P ∗τ −Pτ (µ̃) ≤ O(ε). Our analysis does not cover values in the middle range,

but we next argue that the covered range is useful.

The allowed range of ε (namely ε ∈ R(τ)) seems like a restriction. However,

as we argue next taking ε ≥ 1
τ (i.e., ε ∈ R(τ)) is all we need in order to obtain

a desired accuracy in the non-smoothed primal.

Suppose one wants to solve the original problem PMAP to within ac-

curacy ε′. There are two sources of inaccuracy, namely the smoothing and

suboptimality. To ensure the desired accuracy, we require that P ∗τ −P ∗ ≤ αε′
and likewise Pτ (µ̃) − P ∗τ ≤ (1 − α)ε′. In other words, we allow αε′ subopti-

mality due to smoothing and (1− α)ε′ due to suboptimality.

For the first condition, it is enough to set the smoothing constant as:

τ ≥ Hmax

αε′ . The second condition will be satisfied as long as we use an ε

such that: ε ≤ (1−α)ε′

(K‖θ‖1+Hmax) (see Eq. (1.25) and Eq. (1.26)). If we choose

α = Hmax

K‖θ‖1+2Hmax
we obtain that this ε satisfies ε ≥ 1

τ and therefore ε ∈ R(τ).

Lemma 1.9. Assume δ is a set of dual variables satisfying F (δ) ≤ F (0)

where F (0) is the dual value corresponding to δ = 0. We can require∑
c:i∈c δci(xi) = 0 since F (δ) is invariant to constant shifts. Then it holds

that: ∑
c,i,xi

|δci(xi)| = ‖δ‖1 ≤ A (1.27)

where

A = 2 max
i
|Xi|

(
F (0) +

∑
i

max
xi
|θi(xi)|+

∑
c

max
xc
|θc(xc)|

)
(1.28)
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Proof. To show this, we bound

max
δ

∑
c,i,xi

rci(xi)δci(xi)

s.t. F (δ) ≤ F (0) (1.29)∑
c:i∈c

δci(xi) = 0

For any rci(xi) ∈ [−1, 1]. The dual problem turns out to be:

min
µ,γ,α

α(F (0)−
∑
c,xc

µc(xc)θc(xc)−
∑
i,xi

µi(xi)θi(xi)−
∑
i

H(µi(xi))−
∑
c
H(µc(xc))

s.t. µi(xi)− µc(xi) = rci(xi)−γci
α

µi(xi) ≥ 0, µc(xc) ≥ 0∑
xi
µi(xi) = 1,

∑
xc
µc(xc) = 1

α ≥ 0

(1.30)

We will next upper bound this minimum with a constant independent of

r and thus obtain an upper bound that holds for all r. To do this, we will

present a feasible assignment to the variables α, µ, γ above and use the value

they attain. First, we set α = α̂ = 2 maxi |Xi|. Next, we note that for this

α̂, the objective of Eq. (1.30) is upper bounded by A (as defined in Eq.

(1.28)). Thus we only need to show that α̂ = 2 maxi |Xi| is indeed a feasible

value, and this will be done by showing feasible values for the other variables

denoted by µ̂, γ̂. First, we set:

µ̂i(xi) =
1

|Xi|
and:

γ̂ci =
1

|Xi|
∑
xi

rci(xi) (1.31)

Next, we define νci(xi) (for all c, i, xi) as follows:

νci(xi) = µ̂i(xi)−
rci(xi)− γ̂ci

α̂
(1.32)

It can easily be shown that νci(xi) is a valid distribution over xi (i.e., non

negative and sums to one). Thus we can define:

µ̂c(xc) =
∏
i∈c

νci(xi) (1.33)

Since µ̂c(xc) is a product of distributions over the variables in c, it is also

a valid distribution. Thus it follows that all constraints in Eq. (1.30) are

satisfied by α̂, γ̂, µ̂, and the desired bound holds.
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