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Abstract

We propose a cutting-plane style algorithm
for finding the maximum a posteriori (MAP)
state and approximately inferring marginal
probabilities in discrete Markov Random
Fields (MRFs). The variational formulation
of both problems consists of an optimization
over the marginal polytope, with the latter
having an additional non-linear entropy term
in the objective. While there has been sig-
nificant progress toward approximating the
entropy term, the marginal polytope is gen-
erally approximated by the local consistency
constraints, which give only a loose outer
bound. Our algorithm efficiently finds linear
constraints that are violated by points out-
side of the marginal polytope, making use
of the cut polytope, which has been stud-
ied extensively in the context of MAX-CUT.
We demonstrate empirically that our algo-
rithm finds the MAP solution for a larger
class of MRFs than before. We also show
that tighter yet efficient relaxations of the
marginal polytope result in more accurate
pseudomarginals.

1 INTRODUCTION

Markov Random Fields (MRFs) have been useful
across a wide spectrum of problems, from computer vi-
sion and natural language processing to computational
biology. The utility of such models depends critically
on fast and accurate inference calculations, typically
either finding the most likely setting of all the variables
(referred to here as the MAP problem) or evaluating
marginal probabilities of specific subsets of the vari-
ables. With the exception of low tree-width MRFs,
or specific subclasses of models such as restricted pla-
nar graphs, solving either of these inference problems

requires approximate methods.

We will consider here a subclass of MRFs, those that
are naturally expressed in terms of pairwise dependen-
cies (potentials) between the variables1. In this con-
text, the challenging nature of inference calculations
can be traced back to the difficulty of working with
what is known as the marginal polytope. This is the
set of marginal probabilities arising from valid MRFs
with the same structure, i.e., marginal probabilities
that are realizable. In general, unless P=NP, it is not
possible to give a polynomial number of linear con-
straints characterizing the marginal polytope (a point
we will make precise in Appendix B). However, for
particular classes of graphs, such as trees and planar
graphs, a small number of constraints indeed suffice to
fully characterize the marginal polytope.

Finding the MAP assignment for MRFs with pair-
wise potentials can be cast as an integer linear pro-
gram over the marginal polytope. This problem is
also known as the MAX-CUT problem and has been
extensively studied in the mathematical programming
literature. The approximate methods solve the lin-
ear program over an easier to handle outer bound on
the marginal polytope. For example, the simple linear
programming relaxation of the MAP problem corre-
sponds to optimizing over the local marginal polytope
characterized by pairwise consistent marginals. These
simpler linear programs can be often solved efficiently
via message passing algorithms (e.g., tree-reweighted
max-product described in [9]). The famous Goemans
and Williamson’s method has the best known approx-
imation ratio and uses an outer bound based on semi-
definite constraints, together with randomized round-
ing. Another approach, often used within combinato-
rial optimization, are cutting-plane algorithms. They
find linear inequalities that separate the current frac-

1MRFs with higher order interactions can in principle
be mapped back to MRFs with pairwise potentials though
with a possible loss in representational power or efficiency
of inference calculations.



tional solution from all feasible integral solutions, iter-
atively adding such constraints into the linear program
and thereby adaptively tightening the approximation
of the marginal polytope.

The marginal polytope also plays a critical role in ap-
proximate (or exact) variational evaluation of marginal
probabilities in MRFs (cf. convex duality and the ex-
ponential family of distributions [12]). For example, in
the tree-reweighted sum-product (TRW) algorithm of
Wainwright et al. [10] the inference problem is posed
as a convex optimization problem over the marginal
polytope, then relaxed to an outer bound. The addi-
tional difficulty in this context is in representing the
entropy corresponding to any approximate (pseudo)
marginal probabilities. The relative value of the en-
tropy approximation in comparison to the relaxation
of the marginal polytope is not well-understood. We
will address this point further in the paper.

The main contribution of our work is to show how to
achieve tighter outer bounds on the marginal polytope
in an efficient manner using the cutting-plane method-
ology, iterating between solving a relaxed problem and
adding additional constraints. While extensively used
for solving integer linear programs, such methods have
yet to be demonstrated in the context of evaluating
marginals. One key intuition for why this type of algo-
rithm may be successful is that the marginal polytope
only needs to be well-specified near the optimum of the
objective, and that for real-world problems that have
structure, only a small number of constraints may be
necessary to sufficiently constrain the marginal poly-
tope at the optimum. The approach can also be used
as an anytime algorithm, allowing us to trade-off in-
creased running time for possibly better approxima-
tions.

1.1 RELATED WORK

A number of existing methods for evaluating marginals
can be related to approximations of the marginal poly-
tope. Mean field methods, for example, use inner
bounds on the marginal polytope by restricting the ap-
proximating distributions to lie within specific families
of distributions, subsets of the model in question. As a
result, one obtains a lower bound on the log-partition
function as opposed to an upper bound characteristic
of outer bound approximations. The advantage of in-
ner bounds is that for these points within the marginal
polytope, e.g., trees or completely factored distribu-
tions, the corresponding entropy functions have closed
form expressions. The primary disadvantage is the loss
of convexity and the accompanying difficulties with lo-
cally optimal solutions.

Most message passing algorithms for evaluating

marginals, including belief propagation (sum prod-
uct) and tree-reweighted sum-product (TRW), operate
within the local marginal polytope. In TRW, for ex-
ample, the key contribution involves the entropy func-
tion rather than the marginal polytope. The entropy is
decomposed into a weighted combination of entropies
of tree-structured distributions with the same pairwise
marginals.

Stronger effective constraints on the marginal poly-
tope can be obtained by decomposing the model in
terms of planar graphs as opposed to trees (Globerson
et al. [8]). The marginal polytope for a class of pla-
nar graphs can be fully characterized using so called
triangle inequalities (see below). A different type of
restriction on the marginal polytope comes from semi-
definite constraints (any valid covariance matrix has
to be positive semi-definite). Such a restriction on
the marginal polytope can be enforced either explic-
itly in the context of MAP, or implicitly through a
log-determinant approximation to the entropy when
evaluating marginals. The log-determinant serves as
a barrier function for selecting approximate marginals
(Wainwright and Jordan [11]).

Previous work most related to ours is by Barahona et
al. [2] in the context of finding the MAP assignment
in Ising models. Their approach iterates between solv-
ing the LP and adding in constraints corresponding to
violated cycle inequalities (discussed below). Our key
observation is that similar ideas can be used to approx-
imately solve any objective function which is defined
on the marginal polytope M. In particular, we can
use any approximation of the entropy (e.g. TRW or
log-determinant) to find pseudomarginals.

2 BACKGROUND

2.1 MARKOV RANDOM FIELDS

We consider Markov Random Fields (MRFs) with
pairwise potentials. Given a graph G = (V,E) with
vertices V and edges E, the model is parameterized
by potential functions defined on the edges (i, j) ∈ E
in the graph. To simplify the exposition we will restrict
ourselves to the case of binary variables, Xi ∈ {0, 1},
and provide the multinomial extension in Appendix A.
The joint distribution over X = {X1, . . . , Xn} is now
given by:

log P (X; ~θ) =
∑
i∈V

θiXi +
∑

(i,j)∈E

θijXiXj −A(~θ)

= 〈~θ, ~φ(X)〉 −A(~θ) (1)

where A(~θ) is the log-normalization (partition) func-
tion and the vector ~φ(X) of dimension d = |V | + |E|



collects together Xi for i ∈ V and XiXj for (i, j) ∈ E.
The log-partition function plays a critical part in the
inference calculations.

The inference task is to evaluate the mean vector
~µ = Eθ[~φ(X)] containing the sufficient statistics µi =
Eθ[Xi] for i ∈ V , and µij = Eθ[XiXj ] for (i, j) ∈ E.
Knowing A(~θ) would suffice to calculate ~µ since,

1. ∂A(~θ)
∂θi

= Eθ[Xi] = µi,

2. ∂2A(~θ)
∂θi∂θj

= Eθ[XiXj ]− Eθ[Xi]Eθ[Xj ] = µij − µiµj

A(~θ) is clearly convex in the parameters ~θ since the
second moment matrix is positive semi-definite. This
suggests an alternative definition of the log-partition
function, in terms of its Fenchel-Legendre conjugate
[12]

A(~θ) = sup
~µ∈M

{
〈~θ, ~µ〉 −B(~µ)

}
, (2)

where B(~µ) = −H(~µ) is the negative entropy of the
distribution parameterized by ~µ and is also convex. M
is the set of realizable mean vectors ~µ known as the
marginal polytope2:

M :=
{

~µ ∈ Rd | ∃p(X) s.t.
µi = Ep[Xi],
µij = Ep[XiXj ]

}
(3)

The value ~µ∗ ∈M that maximizes (2) is precisely the
desired mean vector corresponding to ~θ. In general
both M and the entropy H(~µ) are difficult to char-
acterize. We can try to obtain the mean vector ap-
proximately by using an outer bound on the marginal
polytope and by bounding the entropy function. We
will demonstrate later in the paper that tighter outer
bounds on M are valuable, especially for realistic
models where the couplings θij are large.

The MAP problem is to find the assignment X = x
which maximizes P (x; ~θ), or equivalently

max
x∈{0,1}n

log P (x; ~θ) = max
x∈{0,1}n

〈~θ, ~φ(x)〉 −A(~θ)(4)

= sup
~µ∈M
〈~θ, ~µ〉 −A(~θ) (5)

where the log-partition function A(~θ) is a constant for
the purpose of finding the maximizing assignment and
can be ignored. The last equality comes from the fact
that the distribution whose mean vector attains the
maximum is simply the one peaked at the maximiz-
ing assignment x∗. In other words, the maximizing
~µ∗ = ~φ(x∗) (if unique). In summary, both inferring
marginals and the MAP assignments correspond to
optimizing some objective over the marginal polytope
M.

2The definition here is adapted to the case of binary
variables.

2.2 THE CUT POLYTOPE

In this section we will show that the marginal poly-
tope3 is equivalent to the cut polytope, which has been
studied extensively within the fields of combinatorial
and polyhedral optimization [3, 1, 7]. This equivalence
enables us to translate relaxations of the cut polytope
into relaxations of the marginal polytope.
Definition 1. Given a graph G = (V,E) and S ⊆ V ,
let δ(S) denote the vector of RE defined for (i, j) ∈ E
by,

δ(S)ij = 1 if |S ∩ {i, j}| = 1, and 0 otherwise. (6)

In other words, the set S gives the cut in G which
separates the nodes in S from the nodes in V \ S;
δ(S)ij = 1 when i and j have different assignments.
The cut polytope projected onto G is the convex hull
of the above cut vectors:

CUT2(G) =
{ ∑

S⊆Vn

λSδ(S) |
∑

S⊆Vn

λS = 1 and (7)

λS ≥ 0 for all S ⊆ Vn

}
. (8)

The cut polytope for the complete graph on n nodes
is denoted simply by CUT2

n . We should note that the
cut cone is of great interest in metric embeddings, one
of the reasons being that it completely characterizes
`1-embeddable metrics [7].

2.2.1 Equivalence to Marginal Polytope

Suppose that we are given a MRF defined on the
graph G = (V,E). To give the mapping between
the cut polytope and the marginal polytope we need
to construct the suspension graph of G, denoted ∇G.
Let ∇G = (V ′, E′), where V ′ = V ∪ {n + 1} and
E′ = E ∪ {(i, n + 1) | i ∈ V }. The suspension graph is
necessary because a cut vector δ(S) does not uniquely
define an assignment to the vertices in G – the vertices
in S could be assigned either 0 or 1. Adding the extra
node allows us to remove this symmetry.
Definition 2. The linear bijection ξ from µ ∈ M to
~x ∈ CUT2(∇G) is given by xi,n+1 = µi for i ∈ V and
xij = µi + µj − 2µij for (i, j) ∈ E.

Using this bijection, we can reformulate the MAP
problem from (5) as a MAX-CUT problem:

sup
~µ∈M
〈~θ, ~µ〉 = max

x∈CUT2(∇G)
〈~θ, ξ−1(x)〉. (9)

Furthermore, any valid inequality for the cut poly-
tope can be transformed into a valid inequality for the

3In the literature on cuts and metrics (e.g. [7]), the
marginal polytope is called the correlation polytope, and is
denoted by COR2

n .



marginal polytope by using this mapping. In the fol-
lowing sections we will describe several known relax-
ations of the cut polytope, all of which directly apply
to the marginal polytope by using the mapping.

2.2.2 Relaxations of the Cut Polytope

It is easy to verify that every cut vector δ(S) (given
in equation 6) must satisfy the triangle inequalities:
∀i, j, k,

δ(S)ik + δ(S)kj − δ(S)ij ≥ 0
δ(S)ij + δ(S)ik + δ(S)jk ≤ 2.

Since the cut polytope is the convex combination of
cut vectors, every point x ∈ CUT2

n must also sat-
isfy the triangle inequalities. The semimetric polytope
MET2

n consists of those points x ≥ 0 which satisfy
the triangle inequalities. Note that the projection of
these O(n3) inequalities onto an incomplete graph is
non-trivial and will be addressed in the next section.
If we instead consider only those constraints that are
defined on the vertex n+1, we get a further relaxation,
the rooted semimetric polytope RMET2

n .

We could now apply the inverse mapping ξ−1 to obtain
the corresponding relaxations for the marginal poly-
tope. The ξ−1(RMET2

n ) polytope is the same as the
local marginal polytope LOCAL, which fully charac-
terizes the marginal polytope of any tree-structured
distribution:

LOCAL :=

~µ ∈ Rd
+ |
∀(i, j) ∈ E
µij ≤ µii, µij ≤ µjj

µii + µjj − µij ≤ 1

 (10)

Interestingly, the triangle inequalities suffice to de-
scribe M (i.e. M = ξ(MET2(∇G))) for a graph G if
and only if G has no K4-minor4. It can be shown that
both LOCAL and M have the same integral vertices
[12, 7], which is one of the reasons why the LOCAL
polytope provides a natural relaxation for MAP.

3 CUTTING-PLANE ALGORITHM

The main result in this paper is the proposed algorithm
given in Table 1. The algorithm iterates between solv-
ing for an upper bound of the log-partition function
(see eqn. (2)) and tightening the outer bound on the
marginal polytope by adding constraints that are vio-
lated by the pseudomarginals at the optimum µ∗. Any

4This result is applicable to any binary pairwise MRF.
However, if we are given an Ising model without a field,
then we can construct a mapping to the cut polytope with-
out using the suspension graph. By the corresponding the-
orem in [7], CUT(G)=MET(G) when the graph has no K5

minor, so it would be exact for planar Ising models with
no field.

Table 1: Inference Algorithm for Psuedomarginals

1. ( initialize ) R ← LOCAL.
2. Loop:

3. Solve optimization max~µ∈R

{
〈~θ, ~µ〉 −B∗(~µ)

}
.

4. Construct ∇G and assign weights w = ξ(µ∗).
5. Run separation algorithms from Table 2.
6. Add violated inequalities to R. If none, stop.

approximation B∗(~µ) of the entropy function can be
used with our algorithm, as long as we can efficiently
do the optimization given in line 3. In particular, we
have investigated using the log-determinant relaxation
[11] and the TRW relaxation [10]. They have two par-
ticularly appealing features. First, both give upper
bounds on the entropy function, and thus allow our
algorithm to be used to give tighter upper bounds on
the log-partition function5. Second, the resulting ob-
jectives are convex, allowing for efficient optimization
using conditional gradient or other methods. The al-
gorithm for MAP is the same, but excludes the entropy
function in line 3; the optimization is simply a linear
program.

We begin with the loose outer bound on the marginal
polytope given by the local consistency constraints. It
is also possible to use a tighter initial outer bound.
For example, we could include the constraint that the
second moment matrix is positive semi-definite, as de-
scribed by Wainwright and Jordan [11]. The disad-
vantage is that it would require explicitly representing
all O(n2) µij variables6, which may be inefficient for
large yet sparse MRFs.

3.1 SEPARATION ALGORITHMS

Here we list some of the separation algorithms that
are known for the cut polytope. Each algorithm sep-
arates a different class of inequalities. All of these in-
equalities arise from the study of the facets7 of the cut
polytope. The triangle inequalities, for example, are
a special case of a more general class of inequalities
called the hypermetric inequalities [7] for which effi-
cient separation algorithms are not known. Another
class, the Clique-Web inequalities, contains three spe-

5In principal, our algorithm could be used with any ap-
proximation of the entropy function, e.g. the Bethe free
energy approximation, which would not lead to an upper
bound on the log partition function, but may provide bet-
ter pseudomarginals.

6For triangulated graphs, it suffices to constrain the
maximal cliques to be PSD.

7A facet is a polygon whose corners are vertices of the
polytope, i.e. a maximal (under inclusion) face.



cial cases for which efficient separation are known, the
cycle inequalities, odd-wheel and bicycle odd-wheel in-
equalities.

3.1.1 Cycle Inequalities

To directly optimize over the semimetric polytope
MET2

n we would need to represent O(n2) edge vari-
ables and O(n3) triangle inequalities, even if the graph
itself was sparse (e.g. a grid Ising model). This sub-
stantial increase in complexity is perhaps the main rea-
son why they have not been used thus far for approx-
imate inference.

The cycle inequalities are a generalization of the tri-
angle inequalities. They arise from the observation
that any cycle in a graph must be cut an even (possi-
bly zero) number of times by the graph cut. Namely,
the cut must enter the cycle and leave the cycle (each
time cutting one edge), and this could occur more than
once, each time contributing two cut edges. The fol-
lowing result, due to Barahona [1], shows that the pro-
jected MET2

n polytope can be defined in terms of cycle
inequalities on just those edges in G = (V,E):

MET2(G) =

~x ∈ RE
+ |

xij ≤ 1,∀C cycle in G
and F ⊆ C, |F | odd,
x(F )− x(C\F ) ≤ |F | − 1


where C is a set of edges forming a cycle in G and
x(F ) =

∑
(i,j)∈F xij . Furthermore, the cycle inequal-

ity for a chordless circuit C defines a facet of the
CUT2(G) polytope [3].

In general there are exponentially many cycles and cy-
cle inequalities for a graph G. However, Barahona and
Mahjoub [3, 7] give a simple algorithm to separate the
whole class of cycle inequalities. Each cycle inequality
(for cycle C and any F ⊆ C, |F | odd) can be written
as: ∑

e∈C\F

xe +
∑
e∈F

(1− xe) ≥ 1. (11)

To see whether a cycle inequality is violated, construct
the undirected graph G′ = (V ′, E′) where V ′ contains
nodes i′ and i′′ for each i ∈ V , and for each (i, j) ∈ E,
the edges in E′ are: (i′, j′) and (i′′, j′′) with weight xij ,
and (i′, j′′) and (i′′, j′) with weight 1− xij . Then, for
each node i ∈ V we find the shortest path in G′ from
i′ to i′′. The shortest of all these paths will not use
both copies of any node j (otherwise the path j′ to j′′

would be shorter), and so defines a cycle in G and gives
the minimum value of

∑
e∈C\F xe +

∑
e∈F (1− xe). If

this value is less than 1 then we have found a violated
cycle inequality; otherwise, ~x satisfies all cycle inequal-
ities. Using Dijkstra’s shortest paths algorithm with
a Fibonacci heap [6], the separation problem can be
solved in time O(n2 log n + n|E|).

Table 2: Summary of Separation Oracle Algorithms

SEPARATION OF COMPLEXITY

Cycle inequalities O(n2 log n + n|E|)
Odd-wheel O(n4 log n + n3|E|)
Negative-type O(n3)

3.1.2 Odd-wheel Inequalities

The odd-wheel and bicycle odd-wheel inequalities [7]
give a constraint that any odd length cycle C must
satisfy with respect to any two nodes u, v that are not
part of C:

xuv +
∑
e∈C

xe −
∑
i∈VC

(xiu + xiv) ≤ 0 (12)

xuv +
∑
e∈C

xe +
∑
i∈VC

(xiu + xiv) ≤ 2|VC | (13)

where VC refers to the vertices of cycle C. We give
a sketch of the separation algorithm for the first in-
equality (see [7] pgs. 481-482). The algorithm as-
sumes that the cycle inequalities are already satis-
fied. For each pair of nodes u, v, a new graph G′

is constructed on V \{u, v} with edge weights yij =
−xij + 1

2 (xiu + xiv + xju + xjv). Since we assumed
that all the triangle inequalities were satisfied, y must
be non-negative. Then, any odd cycle C in G′ satisfies
(12) if and only if

∑
ij∈E(C) yij ≥ xuv. The problem

thus reduces to finding an odd cycle in G′ of minimum
weight. This can be solved in time O(n2 log n + n|E|)
using an algorithm similar to the one we showed for
cycle inequalities.

3.1.3 Other Separation Algorithms

Another class of inequalities for the cut polytope are
the negative-type inequalities [7], which are the same
as the positive semi-definite constraints on the second
moment matrix [11]. While these inequalities are not
facet-defining for the cut polytope, they do provide a
tighter outer bound than the local marginal polytope,
and lead to an approximation algorithm for MAX-
CUT. If a matrix A is not positive semi-definite, a vec-
tor x can be found in O(n3) time such that xT Ax < 0,
giving us a linear constraint on A which is violated by
the current solution. Thus, these inequalities can also
be used in our iterative algorithm, although the utility
of doing so has not yet been determined.

If solving the relaxed problem results in a fractional
solution which is outside of the marginal polytope,
Gomory cuts [4] provide a way of giving, in closed
form, a hyperplane which separates the fractional so-
lution from all integral solutions. These inequalities
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Figure 1: MAP on Ising Grid Graph.

are applicable to MAP because any fractional solu-
tion must lie outside of the marginal polytope. We
show in Appendix B that it is NP-hard to test whether
an arbitrary point lies within the marginal polytope.
Thus, Gomory cuts are not likely to be of much use
for marginals.

4 EXPERIMENTS

We experimented with the algorithm shown in Table
1 for both MAP and marginals. We used the glpkmex
and YALMIP optimization packages within Matlab,
and wrote the separation algorithms in Java. We made
no attempt to optimize our code and thus omit running
times. However, MAP for the largest MRFs finished
in less than a day, and everything else was significantly
faster.

4.1 MAP

Our goal in doing experiments for MAP is to demon-
strate that our proposed algorithm can scale to large
problems, and to show that by using our algorithm we
can find the MAP solution more often than when using
the LOCAL polytope relaxation. We should note that
we are primarily interested in the setting where we
have a certificate of optimality, which our algorithm
can verify by checking that its solution is integral.
Neither the max-product algorithm nor the Goemans-
Williamson approximation algorithm give any such
guarantee of optimality.

In Figure 1 we show results for MAP on Ising grid
graphs. For each width, we generated 3 random graphs
and averaged the results. The parameters were sam-
pled θi ∼ N (0, .01) and θij ∼ N (0, 1). The local
consistency constraints alone were insufficient, giving
fractional solutions for all trials. However, using our
algorithm together with the cycle inequalities we were

able to find the MAP solution for all trials. On the
largest examples (70x70 grids), integral solutions are
found with fewer than 20,000 constraints (see “Not
squares” in figure). To contrast, note that if we had
used all of the triangle inequalities directly, we would
have needed over 50 billion constraints and 12 million
variables. We also looked at the length of the cycles
for which cycle inequalities were added. For the 50x50
grid, only 13% of the cycles were length 4, and there
was a very long tail (1% of the cycles were of length
52). Thus, the cycle inequalities appear to be captur-
ing an interesting global constraint.

Drawing insight from the success of generalized belief
propagation on Ising grids, we tried initializing R to
LOCAL plus the O(n) length 4 cycle inequalities cor-
responding to the squares of the grid. Interestingly, we
only had to add a small number of additional cycle in-
equalities before reaching the MAP solution, resulting
in much faster running times. For structured problems
such as grids, using our algorithm in this way, with a
good “basis” of cycles, may be of great practical value.

While using the cycle inequalities allowed us to find
the MAP solution for all of the grid models, we do not
expect the same to hold for less structured MRFs. For
such cases, one could try using our algorithm together
with branch-and-bound (these are called branch-and-
cut algorithms). We investigated whether using the
separation oracle for bicycle odd-wheel inequalities
was helpful for 30 and 40 node complete graphs, pa-
rameterized as before. Below 30 nodes the cycle in-
equalities are sufficient to find the MAP solution. We
found that, in the majority of the cases where there
was a fractional solution using just the cycle inequal-
ities, the odd-wheel inequalities result in an integral
solution, adding between 500 and 1000 additional con-
straints.

4.2 MARGINALS

In this section we show that using our algorithm to
optimize over the ξ−1(MET2

n ) polytope results in sig-
nificantly more accurate pseudomarginals than can
be obtained by optimizing over LOCAL. We exper-
iment with both the log-determinant [11] and the
TRW [10] approximations of the entropy function. Al-
though TRW can efficiently optimize over the span-
ning tree polytope, for these experiments we simply
use a weighted distribution over spanning trees, where
each tree’s weight is the sum of the absolute value of
its edge weights. The edge appearance probabilities
corresponding to this distribution can be efficiently
computed using the Matrix Tree Theorem [13]. We
optimize the TRW objective using conditional gradi-
ent, using linear programming at each iteration to do
the projection onto R.
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These trials were on pairwise MRFs with Xi ∈ {−1, 1}
(see eqn. (1)) and mixed potentials. In Figure 2 we
show results for 10 node complete graphs with θi ∼
U [−1, 1] and θij ∼ U [−θ, θ], where θ is the coupling
strength shown in the figure. Note that these MRFs
are among the most difficult to do inference in, due
to their being so highly coupled. For each data point
we averaged the results over 10 trials. The Y-axis,
given on a log-scale, shows the average `1 error of the
singleton marginals. Note that although the coupling
is so large, the external field is also significant, and the
actual probabilities are interesting, away from .5 and
not all the same (as you would find in a highly coupled
model with attractive potentials).

In this difficult setting, loopy belief propagation (with
a .5 decay rate) seldom converges. The TRW and log-
determinant algorithms, which optimize over the lo-
cal consistency polytope, give pseudomarginals only
slightly better than loopy BP. Even adding the posi-
tive semi-definite constraint on the second moments,
for which TRW must be optimized using conditional
gradient and semi-definite programming for the pro-
jection step, does not improve the accuracy by much.
However, both entropy approximations give signifi-
cantly better pseudomarginals when used by our algo-
rithm together with the cycle inequalities (see “TRW
+ Triangle” and “Logdet + Triangle” in the figure).

We were also interested in investigating the extent
to which further tightening of the marginal polytope
relaxations would improve pseudomarginal accuracy.
The marginal polytope has 2N vertices, where N is
the number of variables in the binary MRF. Thus,
for these small MRFs we can exactly represent the
marginal polytope as the convex hull of its vertices.
We show in Figure 2 the results for optimizing the
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Figure 3: Convergence on 10x10 Grid with θi ∈
U [−1, 1] and θij ∈ U [−4, 4] (40 trials).
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Figure 4: Convergence on 10x10 Grid with θi ∈
U [−1, 1] and θij ∈ U [−4, 4] (40 trials).

TRW and log-determinant objectives over the exact
marginal polytope (see “TRW + Marg” and “Logdet
+ Marg”). For both entropy approximations, opti-
mizing over the ξ−1(MET2

n ) relaxation gives nearly as
good accuracy as with the exact marginal polytope,
and even better in some situations (this is a surprising
result). Thus, for these entropy approximations, our
algorithm may give as good accuracy as can be hoped
for. However, these results are highly dependent on
what entropy approximation is used. For example, for
some MRFs, the solution to the log-determinant objec-
tive already lies within the marginal polytope (possibly
because of the implicit positive semi-definite constraint
given by the log barrier) although the pseudomarginals
are not very accurate.

Next, we looked at the number of iterations (in terms
of the loop in Table 1) the algorithm takes before all



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A

ve
ra

ge
 l 1 e

rr
or

 o
f p

su
ed

om
ar

gi
na

ls

Iteration

Figure 5: Convergence on 20 node Complete Graph
with θi ∈ U [−1, 1] and θij ∈ U [−4, 4] (10 trials).
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Figure 6: Convergence on 20 node Complete Graph
with θi ∈ U [−1, 1] and θij ∈ U [−4, 4] (10 trials).

cycle inequalities are satisfied. In each iteration we
add to R at most8 N violated cycle inequalities, com-
ing from the N shortest paths found at each node of
the graph. These experiments are using the TRW en-
tropy approximation. In Figure 3 we show boxplots of
the l1 error for 10x10 grid MRFs over 40 trials, where
θi ∼ U [−1, 1] and θij ∼ U [−4, 4]. The red line gives
the median, and the blue boxes show the upper and
lower quartiles. Iteration 1 corresponds to TRW with
only the local consistency constraints. All of the cycle
inequalities were satisfied within 10 iterations. After
only 5 iterations (corresponding to solving the TRW
objective 5 times, each time using a tighter relaxation
of the marginal polytope) the median l1 error in the
singleton marginals dropped from over .35 to under .2.

8In practice, many of the cycles in G′ are not simple
cycles in G, so many fewer cycle inequalities are added.

In Figure 4 we look at whether the pseudomarginals
are on the correct side of .5 – this gives us some idea
of how much improvement our algorithm would give
if were we to do classification based on the marginals
found by approximate inference. We found the exact
marginals using the Junction Tree algorithm. We ob-
served the same convergence results on a 30x30 grid,
although we could not access the accuracy due to the
difficulty of exact marginals calculation. From these
results, we expect that our algorithm will be both fast
and accurate on larger structured models.

While these results are promising, real-world MRFs
may have different structure, so we next looked at the
other extreme. In Figures 5 and 6 we give analogous
results for 20 node complete MRFs. In this difficult
setting the algorithm took many more iterations be-
fore all cycle inequalities were satisfied, although the
total number of cycle inequalities added was still sig-
nificantly smaller than the number of triangle inequal-
ities. While the improvement in the average l1 error
is roughly monotonic as the number of iterations in-
crease, the change in the prediction accuracy is cer-
tainly not. Regardless, the eventual improvement in
prediction accuracy is striking, with the median going
from .5 (as bad as a coin flip) to .1.

5 CONCLUSION

We have demonstrated the value of cutting plane al-
gorithms and cycle inequalities for obtaining tighter
outer bounds on the marginal polytope. By better
approximating the marginal polytope we were able to
improve the accuracy of predicted marginal probabil-
ities. The methods discussed in this paper have not
yet been optimized for computational efficiency, hence
we have not reported any running time comparisons.
Our work raises several clear open questions that we
hope to address in the follow-up work.

1. How to exploit graph structure in PSD condi-
tions? E.g., iteratively adding linear inequalities
that are violated by a solution which is not PSD.

2. How can we project the odd-wheel and bicycle
odd-wheel inequalities to yield an efficient algo-
rithm for sparse graphs?

3. Can we handle non-pairwise MRFs in ways other
than mapping the MRF into a larger state space
with pairwise interactions?

4. Can we bound the number of inequalities added
for certain classes of MRFs?

5. Is it feasible to find the most violated constraint,
i.e. the one which will decrease the objective func-
tion the most?
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A GENERALIZATION

The cut polytope has a natural multi-cut formula-
tion called the A-partitions problem. Suppose that
every variable has at most m states. Given a MRF
G = (V,E) on n variables, construct the suspension
graph ∇G = (V ′, E′), where V ′ = V ∪ {1, . . . ,m}9,
the additional m nodes corresponding to the m pos-
sible states. For each v ∈ V having k possible states,
we add edges (v, i) ∀i = 1, . . . , k to E′ (which also
contains all of the original edges E).

While earlier we considered cuts in the graph, now we
must consider partitions π = (V1, V2, . . . , Vm) of the
variables in V , where v ∈ Vi signifies that variable v
has state i. Let E(π) ⊂ E′ be the set of edges with
endpoints in different sets of the partition (i.e. differ-
ent assignments). Analogous to our definition of cut
vectors (see Definition (1)) we denote δ(π) the vector
of RE′

defined for (i, j) ∈ E′ by,

δ(π)ij = 1 if (i, j) ∈ E(π), and 0 otherwise. (14)

The multi-cut polytope is the convex hull of the δ(π)
vectors for all partitions π of the variables.

Chopra and Owen [5] define a relaxation of the multi-
cut polytope analogous to the local consistency poly-
tope. Although their formulation has exponentially
many constraints (in m, the number of states), they
show how to separate it in polynomial time, so we
could easily integrate this into our cutting-plane al-
gorithm. If G is a Potts model, then the minimal
marginal polytope (i.e. having variables only for the
minimal sufficient statistics) is in 1-1 correspondence
with the multi-cut polytope.

This formulation gives an interesting trade-off when
comparing the usual local consistency relaxation to
the multi-cut analogue. In the former, the number

9As in the binary case, n+m−1 nodes are possible, us-
ing a minimal representation. However, the mapping from
the multi-cut polytope to the marginal polytope becomes
more complex.



of variables are O(m|V | + m2|E|), while in the lat-
ter, the number of variables are O(m|V | + |E|) but
(potentially many) constraints need to be added by
the cutting-plane algorithm. It would be interesting
to see whether using the multi-cut relaxation signifi-
cantly improves the running time of the LP relaxations
of the Potts models in Yanover et al. [14], where the
large number of states was a hindrance.

Chopra and Owen [5] also give a per cycle class of odd
cycle inequalities (exponential in m and |C|, the cycle
length), and show how to separate these in polynomial
time (per cycle). It is not clear whether it is possible
to separate all of the cycle inequalities in polynomial
time for the multi-cut polytope. Regardless, we could
always choose a small basis of cycles for which to run
this separation oracle (e.g., the squares of a grid).

When given a MRF which is not a Potts model, the
marginal polytope is in general not 1-1 with the multi-
cut polytope; the linear mapping from the marginal
polytope to the cut polytope is not injective. However,
we can still optimize over the intersection of the local
consistency polytope and the above relaxations of the
multi-cut polytope. The linear mapping which is used
by the algorithm is xij =

∑
a6=b µij;ab.

B REMARKS ON COMPLEXITY

A natural question that is raised in this work is
whether is is possible to efficiently test whether a point
is in the marginal polytope.

Theorem 1. The following decision problem is NP-
complete: given a vector ~µ ∈ RVn∪En

+ , decide if µ ∈M.

Proof. Using the linear bijection ξ, this problem is
equivalent to the decision problem for CUT2

n (the same
as `1-embeddability). The latter is shown to be NP-
complete in [7].


