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COMPUTER VISION SYSTEMS

RECOVERI NG | NTRI NSI C SCENE CHARACTERI STI CS FROM | MAGES

H G Barrow and J.M Tenenbaum
SRl I nternational,
Menl o Park, CA 94025.

ABSTRACT Current scene analysis systens often use
pictorial features, such as regions of wuniform
We suggest that an appropriate role of intensity, or step charges in intensity, as an
early visual processing is to describe a scene initial level of description and then junp
in terms of intrinsic (vertical) directly to descriptions at the level of
characteristics -- such as range, orientation, conpl ete objects. The limtations of this
refl ectance, and incident illunmination -- of approach are well known [4]: first, region-
the surface elenent visible at each point in growi ng and edge-findi ng prograns are
the image. Support for this idea conmes from unreliable in extracting the features that
three sources: the obvious utility of intrinsic correspond to object surfaces because they have
characteristics for hi gher -1 evel scene no basis for eval uati ng whi ch intensity
anal ysis; the apparent ability of hunans to differences correspond to scene events sig-
determ ne these characteristics, regardless of nificant at the level of objects (e.g., surface
viewing conditions or fanmliarity wth the boundaries) and which do not (e.g., shadows).
scene; and a theoretical argunent that such a Second, matching pictorial features to a |arge
description is obtainable, by a noncognitive nunmber of object nodels is difficult and
and nonpurposive process, at least, for sinple potentially conbinatorially explosive because
scene domai ns. The central probl em in the feature descriptions are inpoverished and
recovering intrinsic scene characteristics 1is lack invariance to viewing conditions. Finally,
that the information is confounded in the such systens cannot cope with objects for which
ori gi nal light-intensity i mage: a single they have no explicit nodel.
intensity value encodes all the characteristics Some basi c defici encies in current
of the ~corresponding scene point. Recovery approaches to machine vision are suggested when
depends on exploiting constraints, derived from one exami nes the known behavior and conpetence
assunpti ons about the nature of the scene and of the human visual system The literature
the physics of the inmaging process. abounds with exanples of the ability of people

to estimate characteristics intrinsic to the
scene, such as color, orientation, distance,

I 1 NTRODUCTI ON size, shape, or illumnation, throughout a w de
range of viewing conditions. Many experinments
Despite corsiderable progress in recent have been performed to determine the scope of
years, our understanding of the principles so-called “shape constancy,” “size constancy,”
under|ying visual perception remains printive. and “color constancy” [13 and 14]. What is
Attenmpts to construct conputer nmpdels for the particularly remarkable is that consi st ent
interpretation of arbitrary scenes have judgenents can be nmde despite the fact that
resulted in such poor performance, limted these characteristics interact strongly in
range of abilities, and inflexibility that, determining intensities in the inage. For
were it not for the human existence proof, we exanple, reflectance can be estimated over an
m ght have been tenpted long ago to conclude extraordinarily w de range of i nci dent
that high-performance, general-purpose vision illumnation: a black piece of paper in bright
is inpossible. On the other hand, attenpts to sunlight may reflect nore light than a white
unravel the nystery of human vision, have piece in shadow, but they are still perceived
resulted in a I|limted understanding of the as black and white respectively. Color also
el enentary neurophysiology, and a wealth of appears to remmin constant throughout wide
phenonenol ogi cal observations of the total variation in the spectral conposition  of
system but not, as yet, in a cohesive nodel of incident illumination. Variations in incident
how the system functions. The tinme is right for illum nation are i ndependent |y per cei ved:
those in both fields to take a broader view shadows are wusually easily distinguished from
those in conmputer vision might do well to |ook changes in reflectance. Surface shape, too, is
harder at the phenonenol ogy of human vision for easily discerned regardless of illunination or
cl ues t hat m ght i ndicate fundanent al surface markings: Yonas has experinmentally
i nadequaci es of current apr oaches; t hese determned that hunman accuracy in estimting
concerned with human vision mght gain insights | ocal surface orientation is about ei ght
by thinking nore about what information is degrees [37]. It is a worthwhile exercise at
sought, and how it might be obtained, from a this point to pause and see how easily you can
conputational point of view This position has infer intrinsic characteristics, like color or
been strongly advocated for sonme time by Horn surface orientation, in the world around you.

[18-20] and Marr [26-29] at MT.
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The ability of humans to estimte
intrinsic characteristics does not seem to
require famliarity with the scene, or with
obj ects contained therein. One can form

descriptions of the surfaces in scenes unlike
any previously seen, even when the presentation

is as wunnatural as a photograph. People can
| ook at photom crographs, abstract art, or
satellite i magery, and make consi st ent
j udgenent s about relative di st ance,
orientation, transparency, reflectance, and so
forth. See, for exanple, Figure 1, from a

thesis by Macleod [25].

Looki ng beyond t he phenonenol ogi cal
aspects, one might ask what is the value of
bei ng abl e to estimate such intrinsic
characteristics. Clearly, some information is
valuable in its own right: for exanple, know ng
the three-dinensional structure of the scene is
fundanental to many activities, particularly to
nmovi ng around and nmanipulating objects in the

world. Since intrinsic characteristics give a
nor e i nvari ant and nor e di stingui shing
description of surfaces t han raw I'ight

intensities, they greatly sinplify many basic

per cept ual oper ati ons. Scenes can be
partitioned into regions that correspond to
snmooth surfaces of wuniform reflectance, and

vi ewpoi nt - i ndependent descri ptions of t he
surfaces may then be formed [29]. Objects may
be described and recognized in ternms of
collections of these elementary surfaces, wth
attributes that are characteristic of their
conposition or function, and relationships that
convey structure, and not nerely appearance. A
chair, for exanpl e, can be descri bed
generically as a horizantal surface, at an
appropriate height for sitting, and a vertical
surface situated to provide back support.
Previ ously unknown objects can be described in
terns of invariant surface characteristics, and
subsequently recognized from other viewpoints.
A concrete exanple of the wuseful ness of
intrinsic scene information in conputer vision
can be obtained from experinments by Nitzan,
Brain and Duda [30] with a l|aser rangefinder
that directly neasures distance and apparent
reflectance. Figure 2a shows a test scene taken

with a normal canera. Note the variation in
intensity of the wall and chart due to
variations in i nci dent illum nation, even
though the |Ilight sources are extended and
di ffuse. The distance and reflectance for this
scene is obtained by the rangefinder are shown

in Figure 2b. The distance information is shown
in a pictorial representation in which closer

points appear brighter. Note that, except for a
slight amunt of crosstalk on the top of the
cart, the distance inmge is insensitive to

refl ectance variations. The |aser
also entirely free from shadows.
Using the distance information, it s
relatively straightforward to extract regions
corresponding to flat or snoboth surfaces, as in
Fig. 2c, or edges corresponding to occlusion
boundaries, as in Figure 2d, for exanple. Using
reflectance infornmtion, conventional region-
or edge-finding progranms show considerable im
provenent in extracting uniformy painted sur-
faces. Even sinple threshol ding extracts accep-
table surface approximations, as in Figure 2e.

i mges are

Since we have three-dimensional informa-
tion, matching is now facilitated. For exanple,
given the intensity data of a planar surface

that is not parallel to the inmage plane, we can
elimnate the projective distortion in these
data to obtain a nornal view of this surface,
Figure 2f. Recognition of the characters is
thereby sinplified. Mre generally, it is now
possible to describe objects generically, as in
the chair exanple above. Garvey [10] actually
used generic descriptions at this level to
|l ocate objects in rangefinder images of office
scenes.

The lesson to be learned from this
exanmpl e is t hat the use of intrinsic
characteristics, rather than intensity val ues,

al leviates many of the difficulties that plague
current machine vision systens, and to which
the human visual system is apparently largely

i mmune.

The  apparent ability of peopl e to
estimate intrinsic characteristics in unfaml|-
iar scenes and the substantial advantages that
such characteristics would provide strongly
suggest that a visual system whether for an
animal or a machine, should be organized around

an initial | evel of domai n-i ndependent
processi ng, the purpose of which is the
recovery of intrinsic scene characteristics

from image intensities. The next step in
pursuing this idea is to examne in detail the

conputational nature of the recovery process to
determine whether such a design is really
f easi bl e.

In this paper, we wll first establish

the true nature of the
denonstrate that

recovery problem and
recovery is indeed possible,

up to a point, in a sinple world. W will then
argue that the approach can be extended, in a
straightforward way, to nore realistic scene
domains. Finally, we will discuss this paradigm

and its inplications in the context or current
under st andi ng of machine and human vision. For

important related work see [29].
Il THE NATURE OF THE PROBLEM
The first thing we nmust do is specify
precisely the objectives of the recovery

process in terms of input and desired output.
The i nput is one or nor e i mges
representing i ght intensity val ues, for
different viewpoints and spectral bands. The
output we desire is a famly of inmages for each
viewpoint. In each famly there is one image
for each intrinsic characteristic, al | in
registration wth the corresponding i nput
i mages. W call these inmges “Intrinsic
Inages.” We want each intrinsic imge to
contain, in addition to the value of the
characteristic at each poi nt, explicit
i ndications of boundaries due to discon-
tinuities in value or gradient. The intrinsic

imges in which we are prinarily interested are
of surface reflectance, distance or surface
orientation, and incident illumnnation. O her
characteristics, such as transparency,
specularity, Jlumnosity, and so forth, night
al so be useful as intrinsic imges, either in
their own right or as internediate results.
Figure 3 gives an exanple of one possible
set of intrinsic imges corresponding to a
singl e, nonochronme image of a sinple scene. The
intrinsic images are here represented as I|ine
drawi ngs, but in fact would contain nunerical
values at every point. The solid Ilines show

H. G. Barrow and J. M. Tenenbaum



(c) FLAX (X 1000) WALLFLOWER (X 1800)

Figure 1 Phot omi crographs of pollen grains (Mcleod [20])
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Characterigtics from images

Figure 3 A set of intrinsic images derived from
a single nmonochrone intensity imge
The images are depicted as l'ine
drawi ngs, but, in fact, would contain
values at every point. The solid |ines
in the intrinsic imges represent dis-
continuities in the scene characteris-
tic; t he dashed l'i nes represent
discontinuities in its derivative.

(c) REFLECTANCE

(e) | LLUM NATI ON



di scontinuities in the represented char -
acteristic, and the dashed i nes show
di scontinuities in its gradient. In the input
imge, intensities correspond to the reflected
flux received from the visible points in the
scene. The distance inmage gives the range al ong

the line of sight fromthe center of
to each visible point in the scene. The
orientation image gives a vector representing
the direction of the surface normal at each
point. It is essentially the gradient of the
di stance image. The short lines in this image
are intended to convey to the reader the
surface orientation at a few sanple points.
(The distance and orientation inages correspond
to Marr's notion of a 2.5D sketch [29].) It is
convenient to represent both distance and
orientation explicitly, despite the redundancy,

proj ection

since sone visual cues provi de evi dence
concer ni ng di st ance and ot her evi dence
concerning orientation. Moreover, each form of
information may be required by some higher-

|l evel process in interpretation or action. The
reflectance image gives the albedo (the ratio-
of t ot al reflected to t ot al i nci dent
illum nation) at each point. Al bedo conpletely
describes the reflectance characteristics for
| anbertian (perfectly diffusing) surfaces, in a
particular spectral band. Many surfaces are
approxi mately |anmbertian over a range of
view ng conditions. For other types of surface,
reflectance depends on relative directions of

incident rays, surface normal and reflected
rays. The illumnation image gives the total
light flux incident at each point. In general,
to conpletely describe the incident light it is
necessary to give the incident flux as a
function of direction. For point |ight sources,
one image per source is sufficient, if we
i gnore secondary illum nation by I'ight

scattered from nearby surfaces.
:O:: FLUX olsusu‘r'(

o~
Zre

IMAGE INTENSITY

REFLECTANCE
R
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Figure 4 An ideally diffusing surface
When an image is formed, by a canera or
by an eye, the light intensity at a point in

the inage is determined mainly by three factors

at the corresponding point in the scene: the

i nci dent illum nation, the | ocal surface
refl ectance, and the |ocal surface orientation.
In the sinple case of an ideally diffusing
surface illumnated by a point source, as in
Figure 4, for exanpl e, the image 1ight
intensity, L, is given by

L=1*R™* cos i (1)
where | is intensity of incident illum nation,
R is reflectivity of the surface, and i is the
angl e of incidence of the illumnation [20].

The central probl em in recovering
intrinsic scene characteristics is t hat
i nformation is confounded in the i ght -
intensity image: a single intensity value
encodes all the intrinsic attributes of the

corresponding scene point. Wile the encoding
is determnistic and founded upon the physics
of imaging, it 1is not wunique: the neasured
light intensity at a single point could result
from any of an infinitude of conbinations of
illum nation, reflectance, and orientation.

We know that information in the intrinsic
i mges conmpletely determines the input image.
The crucial question is whether the information
in the input image is sufficient to recover the
intrinsic imges.

Il THE NATURE OF THE SOLUTI ON
The only hope of decoding the confounded

information is, apparently, to make assunptions
about the world and to exploit the constraints

they inmply. In imges of three-dinensional
scenes, t he intensity val ues are not
i ndependent but are constrained by various
physi cal phenonmena. Surfaces are continuous in
space, and often have approximately uniform
refl ectance. Thus, distance and orientation are
conti nuous, and refl ectance is const ant
everywhere in the image, except at edges
corresponding to surface boundaries. Incident
illum nation, also, wusually varies smoothly.
Step changes in intensity wusually occur at
shadow boundari es, or surface boundari es.
Intrinsic surface characteristies are
conti nuous t hr ough shadows. I'n man- made
envi ronnment s, strai ght edges frequency
correspond to boundaries of planar surfaces,
and ellipses to circles viewed obliquely. Many
cl ues of this sort are well known to
psychol ogi sts and artists. There are also

hi gher-1evel constraints based on know edge of

specific objects, or classes of object, but we
shall not concern ourselves wth them here,
since our aimis to determne how well inmages
can be interpreted wi t hout obj ect-1evel
know edge.

We contend that the constraints provided
by such phenonena, in conjunction wth the
physics of imaging, should allow recovery of

the intrinsic imges from the
an exanple, |ook carefully at

input imge. As
a nearby painted

wal | . Qbserve that its intensity is not
uniform but varies snoothly. The variation
could be due, in principle, to variations in
reflectance, illumnation, orientation, or any

combi nati on of them Assunptions of
imediately rule out the situation of
intensity wvariation arising from
random variations in illumnation,

and orientation since surfaces are

continuity
a snooth
cancel ling
refl ectance,
assuned to

H. G. Barrow and J. M. Tenenbaum



be uniform in reflectance, the intensity
variation nust thus be due to a smooth
variation in illumnation or surface shape. The
straight edge of the wall suggests, however,
that the wall is planar, and that the variation
is in illumnation only. To appreciate the

value of this constraint, view a small central
portion of the wall through a tube. Wth no
evidence from the wedge, it is difficult to
di stingui sh whether the observed shading is due
to an illumination gradient on a planar
surface, or to a snoboth surface curving away
fromthe |ight source.

The tube experiment shows that while
isolated fragments of an inage have inherent
ambi gui ty, i nteractions anmong fragments

resulting from assuned constraints can lead to
a unique interpretation of the whole imge. Of
cour se, it is possible to construct (or
occasionally to encounter) scenes in which the

obvious assunptions are incorrect -- for
exanpl e, an Anes roon (see [13] for an
illustration). In such cases, the image will be
m sinterpreted, resulting in an illusion. The
Amres  illusion is particularly interesting
because it shows t he | ower - | evel

interpretation, of distance and orientation,
dom nating the higher-level know edge regarding
relative sizes of famliar objects, and even
domi nating size constancy. Fortunately, in
natural scenes, as commonly encountered, the
evidence is usually overwhelningly in favor of
the correct interpretation.

W have now given the flavor of the
solution, but with many of the details |acking.

Qur current research is ained at neaking the
under | yi ng i deas sufficiently precise to
i mpl enent a conputational nodel. Wiile we are

far fromready to attack the full conplexity of
the real world, we can give a fairly precise
description of such a nodel for recovering
intrinsic characteristics in a limted world.
Moreover, we can argue that this nodel may be
extended increnmentally to handle nore realistic
scenes.

IV SOLUTION FOR A SI MPLE WORLD

A. Met hodol ogy

To approach the problem systematically,
we select an idealized dommin in which a
sinmplified physics holds exactly, and in which
explicit contraints on the nature of surfaces
and illum nants. From these assunptions, it is
possible to enunerate various types of scene
fragnents and determi ne the appearance of their

corresponding image fragments. A catalog of
fragnent appear ances and alternative
interpretations can thus be conpiled (in the

style of Huffrman [21] and Waltz [34]).

We proceed by constructing specific
scenes that satisfy the donmin assunptions,
synt hesi zi ng corresponding imges of them and

t hen attenpting to recover intrinsic
characteristics from the imges, using the
cat al og and t he domai n know edge. ( By

di splaying synthetic inmges, we could check
that people can interpret them adequately. |If
they cannot, we can discover oversinplifica-
tions by conparing the synthetic images to real
imges of simlar scenes.)

Characteristics from Images

B. Sel ection of a Domain

Specifications for an experinental domain
nmust include explicit assunptions regarding the
scene, the illumination, the viewpoint, the
sensor, and the inmage-encoding process. The

initial domain should be sufficiently sinple to
al | ow exhaustive enuneration of its
constraints, and conpl ete cat al ogi ng of
appearances. It nust, however, be sufficiently

conplex so that the recovery process is non-

trivial and generalizable. A domain satisfying

these requirements is defined as follows:

* Objects are relatively smooth, having
surfaces over which distance and
orientation are continuous. That s,
there are no sharp edges or creases.

* Surfaces are lanbertian reflectors,
with constant albedo over them That
is, there are no surface markings and
no visible texture.

* |llumnation is from a distant
source, of known magni t ude and
direction, pl us uniformy di ffuse
background light of known magnitude (an
appr oxi mati on to sun, sky, and
scattered light). Local secondary
illum nation (l'ight reflected from
nearby objects) is assumed to be
negligible. (See Figure 5.) ;

* The imge is forned by central
projection onto a planar surface. Only
a single view is available (no stereo
or nmotion parallax). The scene s
vi ened from a gener al position
(incremental changes in viewioint do
not change the topol ogy of the inmge)

* The sensor neasures reflected flux
density. Spati al and intensity
resolution are sufficiently high that
quartization effects may be ignored.
Sensor noise is also negligible.

poi nt

Such a domain mght be viewed as an
approximation of a world of colored Play-Doh
obj ects in whi ch surfaces are snoot h,
reflectance is uniform for each object, there
is outdoor illumnation, and the scene s
i maged by a tv caner a. The gr ossest

approxi mations, perhaps, are the assunptions
about illum nation, but they are substantially
more realistic than the wusual single-point-

source nodel, which renders all shadowed
regions perfectly black.

For this domain, our objective is to
recover intrinsic i mges of di st ance,
orientation, reflectance, and illum nation.

C. Describing the I mage

El ementary physical considerations show
that a portion of a surface that is continuous
in visibility, di st ance, orientation, and
i nci dent illum nation, and has uni form

refl ectance, maps to a connected region of
continuous intensity in the imge. |mages thus
consi st of regi ons of snoot hly varying

intensity, bounded by step discontinuities. In
our dommin, reflectance is constant over each
surf ace, and there are t wo states of
illum nation, corresponding to sun and shadow.
I mage regions therefore correspond to areas of
surface with a particul ar state of
illum nation, and the boundaries corresponding
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Figure 5 Sun and sky illum nation nodel

to occl udi ng (extremal) boundari es of
surfaces, or to the edges of shadows. There
are also junctions where boundaries neet.
Fi gure 6b shows the regions and edges for the
sinple scene of Figure 3.

To be quantitative, we assune inmage
intensity is calibrated to give reflected flux
density at the corresponding scene point.
Reflected flux density is the product of
integrated incident illum nation, I, and
refl ectance (al bedo), R, at a surface elenent.
Thus,

L=1*R (2)

The reflected light is distributed uniformy
over a hem sphere for a |anbertian surface.
Hence, image intensity is independent of
viewing direction. It is also independent of
viewi ng distance, because although the flux
density received from a unit area of surface
decreases as the inverse square of distance,
the surface area corresponding to a unit area
in the image increases as the square of
di st ance.

In shadowed areas of our domain, where
surface elements are illumnated by wuniform
di f fuse illum nation of t ot al i nci dent
flux density 10, the image intensity is given
by

L=10* R (3)
When a surface element is illumnated by

a point source, such that the flux density
is 11, froma direction specified by the unit

10

vector, S, the incident flux density at the
surface is 11 * NS where N is the wunit
normal to the surface, and is the vector dot
product. Thus,

L=11* NS*R (4)

In directly illumnated areas of the scene,
image intensity, L, is given by the sum of the
di ffuse and point-source conponents:

L=(l0+11+NS) *R (5)

From the preceding sections, we are not in a
position to describe the appearance of inmage
fragments in our domain, and then to derive a
cat al og.

1. Regions
For a region corresponding to a
directly illumnated portion of a surface,
since R 10, and 11 are constant, any

variation in image intensity is due solely to
variation in surface orientation. For a region
corresponding to a shadowed area of surface,
intensity is sinply proportional to
refl ectance, and hence is constant over the
surface.

W now catalog regions by their
appear ance. Regi ons can be classified
initially accordi ng to whet her their
intensities are smoothly varying, or constant.
In the former case, the region nust correspond
to a nonshadowed, curved surface with constant

refl ectance and conti nuous depth and
orientation. In the latter case, it rmust
correspond to a shadowed surface. (An

illum nated planar surface also has constant
intensity, but such surfaces are excluded from
our dommin.) The shadowing may be due either
to a shadow cast upon it, or to its facing
away from the point source. The shape of a
shadowed regi on is i ndet er mi nabl e from
photonetric evidence. The surface may contain
bunps or dents and may even contain
di scontinuities in orientation and depth
across a self-occlusion, with no correspondi ng
intensity variations in the image.

2. Edges

In the same fashion as for regions,
we can describe and catal og region boundaries
(edges). An edge should not be considered
merely as a step change in image intensity,
but rather as an indication of one of several
distinct scene events. In our sinple world,
edges correspond to either the extremal boun-
dary of a surface (the solid lines in Figure
3b), or to the boundary of a cast shadow (the
solid lines in Figure 3e). The "term nator"
line on a surface, where there is a snpoth
transition from full illunmination to self-
shadowi ng (the dashed lines in Figure 3e),
does not produce a step change in intensity

The boundary of a shadow cast on a

surface indicates only a difference in
i nci dent illum nation: t he intrinsic
characteristics of the surface are continuous
across it. As we observed earlier, t he

shadowed region is constant in intensity, and
the illumnated region has an intensity
gradient that is a function of the surface
orientation. The shadowed regi on is
necessarily darker than the illum nated one.

H. G. Barrow and J. M. Tenenbaum



(a) ORI G NAL SCENE (b) I NPUT | NTENSI TY | MAGE

(c) LA: CONSTANT, LB: CONSTANT (d) LA: CONSTANT, LB: VARYING

(e) LA CONSTANT, LB: TANGENT (f) LA VARYING LB: TANGENT

Figure 6 Initial classification of edges in an exanple scene.

Characteristics from Images

11



An extremal boundary is a local ex- whet her refl ectances derived at
tremum of the surface from the observer's point boundary points are consistent.
of view, where the surface turns away from him test the tangency test, because it
Here one surface occludes another, and all upon the surface being tangential
intrinsic characteristics may be discontinuous. of sight at the boundary. This test
In our world, it is assumed that depth and by differentiating the Ilogarithm of
orientation are always discontinuous. Reflec- (5):
tance is constant on each side of the edge, and

will only be continuous across it if the two
surfaces concerned have

i denti cal

or when a single surface occludes itself.

A very
from the fact

i mpor t ant
t hat an

indicates where a snpoth

from the viewer:

the line of sight,

boundary in the inmage. Hence the absolute dN and the constants 10, |1, and
orientation of the occluding surface can be tangency condition is net when dR' R
determined along an extremal boundary. The The tangency condition is a powerful
boundary must first be identified as extremal, that can be exploited in further ways,
however. will discuss later.

The regions on either side of an Strictly speaking, wher e
extrenal boundary are i ndependent |y referred to derivatives here, we
illum nated. \When both are in shadow, they both said "the knit of the derivative as the edge
have constant intensity, and the ratio of approached from the side of the
intensities is equal to the ratio of the tested." Clearly, the tests are not
reflectances: it is not possible to determne at gaps, and the tangency test
from local intensity information which region applicable where the edge
corresponds to the occluding surface. direction.

When a regi on is illum nated, W can now catalog edges
intensity varies continuously along its side of appearances, as we did for regions.

the boundary. We noted
extrenal boundary
orientation of the occluding surface at
along it. The orientation,
illum nation flux densities,
image intensity, L,
to determne reflectance at
true
assunption of wuniform

boundary. For a

the orientation
and to the tangent

tells

t hat

condition results

extrenal boundary
surface turns
is normal
to the

the imge of

us precisely

together with

away

t he

t be
10 and 11, and the

refl ectance,
The vector
orientation
det er m ned
direction.

dL/ L

dR'R + (11*dN.s)/ (10 + 11*N.s)

We call

of

dN is the derivative
along the edge, and
from the derivative

The derivatives dL and dR are taken

to al ong the edge.

Equation (6)

to give dRIR explicitly

an classified according

can be used in Equation (5) testing

any point on

extremal boundary,
refl ectance neans

t he
our

regions on either
poi nts edge. This

si de

is done by testing

on each side for
satisfaction
relative
Table 1 catal ogs

of

const ancy,
t angency

t he

may be
in ternms of

is discontinuous

to the appearance of
in the vicinity of
intensity val ues
as before,

test,

intensities across

the possible appearances and
interpretations of an edge between two
t hat A and B.

estimates of reflectance at all points along it I'n this tabl e, "Const ant "
must agr ee. Thi s provi des a basi s for constant intensity along the edge,
recognizing an occluding surface by testing nmeans that the tangency condition
Table 1 The Nature of Edges
Fagion Intrinaic Edges
Intensities Edge Type Reglon Types Intrinsic Values
LA LB b K B I
Conatant | Conatant Oeeluding A B ahadowed EDGE EDGE EDCGE
senae unknown RA RB | IA IB
Conatant | Yarylng 1 Shadow A shadowed EDGE
B illu=finated NB.5 RA RB | IA IB
2 A occludea B A ahadowed EDGE EDGE EDGE EDGE
B illusinated DA B2 | HA HA IA
Yarving | Yarylng Inconalatent
vith domaln
Conatant | Tangency B occludea A A shadowed EDGE EDGE EDGE EDGE
B illuminated DA D2 | NB RA R IAn IB
Yarying | Tangency | B occludes A A B {lluzinated | EDGE EDGE EDGE EDGE
DA D2 | KB BB 18 Ia
Tangeney | Tangency Kot aeen froa
gencral position
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"Varying" nmeans that neither of these tests
succeeds. The entry " EDGE" denot es a
discontinuity in the corresponding intrinsic

attribute, with the sane |ocation and direction
as the corresponding inmage intensity edge. The
magni tude and sense of the discontinuity are
unknown, unless otherwise shown. Were the
val ue of an intrinsic attribute can be
determined from the image (see Section |V.D),
it is indicated by a term of the form RA, RB,
DA, etc. (These terns denote values for
refl ectance, R; orientation, vect or N;
distance, D; and incident flux density, |; for
the regions A and B, in the obvious way.) Where
only a constraint on values is known, it is
indicated by an inequality. There is a special
situation, concerning case 1 of the second type
of edge, in which a value can be determined for
NB.S, but not for NB itself.

Note that, fromthe types of intensity
vari ations, edges can be i nterpreted
unanbi guously, except for two cases: nanely,
the sense of the occluding edge between two
shadowed regions, and the interpretation of an

edge between illuminated and shadowed regions
when the tangency test fails. Figure 6
illustrates t he classification of edges

according to tbe catalog for our exanple scene.
3. Junctions

Since the objects in our domain are
there are no distinguished points on
surfaces. Junctions in the image, therefore,
are viewpoint dependent. There are just two
classes of junction, both resulting from an
extremal boundary, and both appearing as a T-
shape in the inmage (see Figure 7).

The first type of junction arises when
one object partially occludes a nore distant
boundary, which may be either a shadow edge or
an extremal edge. The crossbar of the junction
is thus an extremal edge of an object that is
either illumnated or shadowed. The boundary
forming the stem lies on the occluded object
and its edge type is unconstrained.

snoot h,

The second type of junction arises
when a shadow cast on a surface continues
around behind an extremal boundary. |In this
case, the crosshar is again an extremal edge,

half in shadow, while the stemis a shadow edge
lying on the occluding object.

Note that in both cases the crossbar
of the T corresponds to a continuous extrenal
boundary. Hence the two edges forming the
crossbar are continuous, occluding, and have
the same sense.

The T junctions provide constraints
that can sonetinmes resolve the anbiguities in
the edge table above. Consider the cases as
follows: if all the regions surrounding the T
are shadowed, the edge table tells us that all
the edges are occluding, but their senses are
ambi guous. The region above the crossbar,
however, nmust be occluding the other two,

otherwise the continuity of the crossbar could
be due to an accident of viewpoint. If one or
more  of the regions is illuninated, t he

occlusion sense of the crossbar is imediately
determined from the tangency test. Thus we can
al ways determine the nature of the two edges
formng the crosshar of the T, even wnen they
may have been anbiguous according to the edge
tabl e.

Characterigtics from Images

If the region above the crosbar is the
occluder, we have the first type of T junction,
and can say no nobre about the stem than the
edge tests give us. Oherwise, we have the
second type (a shadow edge <cast over an
extremal boundary), and any anbiguity of the
stem is now resol ved.

Figure 7 Two types of T-junction

D. Recovery Using the Catal og

The ideal goal is to recover al |
intrinsic scene characteristics, exactly,
everywhere in an image that is consistent with
our domain. In this section, we outline the
principles of recovery using the catalog and

address the issue of how nearly our goal can be
attained. The following section will describe a
detailed conputational npdel of the recovery
process.

The recovery process has four main steps:

(1) Find the step
intensity inmage.

edges in the input

(2) Interpret the intrinsic nature of the
regions and edge elenents, according
to the catal og. Interpretation is
based on the results of constancy and
tangency tests.

(3) Assign initial values for intrinsic
characteristics al ong t he edges,
based on the interpretations.

(4) Propagate these “"boundary" val ues
into the interiors of regions, usi ng
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continuity assunptions. This
anal ogous to the wuse of

step is
rel axation

methods in physics for determning
di stributions of tenmperature or
pot enti al over a region based on

boundary val ues.

For pedagogi cal purposes, in this section
only, we assune that it is possible to extract
a perfect Iline drawing from the intensity
imge. The recovery process described Ilater
does not depend on this assunption, because: it
perfects the line drawing as an integral part
of its interpretation. Let us now consider the
ultimate limtations of the recovery paradigm
in our sinple donain.

Shadowed and directly illum nated areas
of the inmage are distinguished imediately,
usi ng t he const ancy test. Ref | ect ance
everywhere in shadowed areas is then given by
Equation (3).

The orientation of a region corresponding
to an illuninated surface can be determ ned
along extremal boundaries identified by the
tangency test. Reflectance of this region can
then be determined at the boundary by Equation

(5), and thus throughout the region based on
the assunption that reflectance is constant
over a surface.

So far, recovery has been exact; the
intrinsic values and edges that can be exactly
inferred from intensity edges are shown in
Table 1. Surface orientation within illum nated
regi ons bounded, at least in part, by extrenal
edges can be reasonably estimted, as follows:
Equation (5) can be solved, knowing L, R 10,
and 11, for NS, the cosine of the angle of

i nci dence of t he direct conponent of
illumnation, at each point. This does not
uni quely deternmine the orientation, which has
two degrees of freedom but it does allow

reasonable estimates to be obtained using the
assunption of snoothness of surfaces and the
known orientation at extremal boundaries to
constrain the other degree of freedom Two
exanpl es of how this reconstruction can be done
are given by the work of Horn [19] and Wodham
[35] on "shape fron shading."
Orientation can be integrated

relative distance within the regions,

to obtain
and the

tangency test gives distance ordering across
t he boundary.

Since a shadowed region of surface
appears uniform in the intensity inmge, its
shape cannot be determned from shading
information. A plausible guess can be nade,

however, by interpolating in from points of
known orientation, usi ng t he snoot hness
assunption. This can be done only if at |east
part of the boundary of the shadowed region can
be interpreted as extrenel boundary (e.g.,
using T-junctions), or as a shadow edge with
the shape on the illum nated side known.

Not  surprisingly, little can be said
about regions, shadowed or illumnated, with no
visible portions of boundary identifiable as
extremal (e.g. a region seen through a hole, or
shadowed, with no T-junctions). It is still
reasonable to attenpt to interpret such
i nherently anbi guous situations, but it is then
necessary to introduce further, and perhaps
|l ess general, assunptions. For exanpl e: an
object is predom nantly convex, so the sense of
an occlusion can be guessed locally from the
shape of the boundary; the brightest point
on an illumnated surface is probably oriented
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with its normal pointing at the light source,
providing a boundary condition for determ ning
the surface reflectance and its shape from

shading. O course, such assunptions must be
subordinate to harder evidence, when it is
avail abl e.

We conclude that, in this linted domain,
unanbi guous recovery of intrinsic character-
istics at every point in an imge is not
generally possible, primarily because of the

lack of information in some regions of the
intensity image. Thus, in sonme cases, we nust
be content with plausible estimates derived
from assunptions about likely scene
characteristics. Wen these assunptions are
incorrect, the estimates will be wong, in the
sense that they will not correspond exactly to
the scene; they wll, however, provide an
interpretation that 1is consistent wth the

evidence available in the intensity inage, and
nost of the tine this interpretation wll be
| argely correct.

Though perfect recovery is wunattainable,
it is remarkable how nuch can be done
consi dering the weakness (and hence generality)
of the assunptions, and the linmited nunber of
cues available in this domain. W used no shape
prototypes, nor object npdels, and made no use
of any primary depth cues, such as stereopsis,

motion parallax, or texture gradient. Any of
these sour ces, i f avai | abl e, could be
i ncor por at ed to i mprove performance by
providing informati on where previously it could

only be guessed (for exanmple, texture gradient
could elimnate shape anmbiguity in shadows).

\% A COVPUTATI ONAL MODEL

We now propose a detailed conputational
nodel of the recovery process. The nodel

operates directly on the data in a set of
intrinsic imges and uses parallel | ocal
operations that codify values in the images to
make them consistent with the input inmmge and
constraints representing t he physi cal

assunpti ons about imaging and the world.

A Est abl i shing Constraints

Recovery begins wth the detection of
edges in the intensity image. |f quantization
and noise are assuned negligible in the domain,
we can easily di stingui sh al | step
di scontinuities, and hence generate a binary
i mge or intensity edges, each with an
associated direction. This image wll resenble
a perfect line drawing, but despite the ideal
conditions, there can still be gaps where
intensities on two sides or a boundary happen
to be identical. Usually this will occur only
at a single isolated point -- for exanple, at a
point where the varying intensities on the two
sides of an occlusion boundary sinultaneously
pass through the same value. Conplete sections

of a boundary may also occasionally be
invisible -- for exanple, when a shadowed body
occludes itself. CQur recovery process is
intended to cope with these inperfections, as
will be seen later.

G ven the edge inmmge, the next step is to
interpret the intrinsic nature of the edge
el enent s accordi ng to t he edge tabl e.
Interpretation is based on the results of two
tests, constancy and tangency applied to the
intensities of the regions inmmediately adjacent
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to an edge elenent. The constancy test s
applied by sinply checking whether the gradient

of intensity is zero. The tangency test is
applied in its differential form by checking
whet her t he derivative of estimat ed
refl ectance, taken along the edge, is zero.

The resulting edge interpretations are

used to initialize values and edges in the
intrinsic images in accordance with the edge
table. The table specifies, for each type of
intensity edge, the intrinsic imges in which

correspondi ng edge elenments should be inserted.
Values are assigned to intrinsic inage points
adj acent to edges, as indicated in the table.
For exanpl e, if an intensity edge is
interpreted as an occlusion, we can generate an
edge in the distance and orientation inmmges,
and initialize orientation and reflectance

imges at points on the occluding side of the
boundary.

When t he edge interpretation is
ambi guous, we nmke conservative initializa-
tions, and wait for subsequent processing to

resolve the issue. In the case of an extremal

boundary separating two shadowed regions, this
means assigning a discontinuity in distance,
orientation and reflectance, but not assum ng
anything else about orientation or relative

distance. In the case of anbiguity between a
shadow edge and a shadowed occluding surface,
we assume discontinuities in all characteris-
tics, and that the illunmination and reflectance
of the shadowed region are known. It is better
to assume the possible existence of an edge,
when unsure, because it nmerely decouples the
two regions locally; they may still be related
through a chain of constraints along sone other
route.

For points at which intrinsic values have
not been uniquely specified, initial values are
assigned that are reasonable on statistical and
psychol ogi cal grounds. In the orientation
image, the initial orientation is assigned as
NO, the orientation pointing directly at the
viewer. In the illumnation inage, areas of
shadow, indicated by the constancy test, are
assigned value 10. The remaining directly
illumnated points are assigned value 11*NO.S
In shadowed areas, reflectance values are
assigned as L/10, and in illumnated areas,
they are assigned L/(10 + [11*N0.S). Distance
values are nore arbitrary, and we assign a
uni form di stance, DO everywhere. The choice of
default values is not critical, they sinmply
serve as estimates to be inproved by the
constraint satisfaction processes.

Following initialization, the next step
is to establish consistency of intrinsic values
and edges in the inmges. Consistency within an

i ndi vi dual i mge is gover ned by simpl e
continuity and limt constraints. In the
refl ectance inmage, the constraint is that
reflectance is constant --  that is, its
gr adi ent nmust be defi ned and be zero
ever ywhere, except at a reflectance edge.

Refl ectance is additionally constrained to take
values between 0 and 1. Orientation values are

al so constrained to be continuous, except at
occlusion edges. The vectors nust be unit
vectors, with a positive component in the

direction of the viewoint. [Illumnation is
positive and continuous, except across shadow
boundaries. In shadowed regions, it nust be
ccnstant, and equal to 10. Distance val ues nust
be continuous everywhere -- that s, their

Characterigtics from Images

gradient nust be defined and
across occlusion edges.

finite, except
Where the sense of the

occl usi on is known, t he sense of t he
discontinuity is constrained appropriately.
Di stance val ues nust always be positive.

Al | t hese constraints i nvol ve | ocal

nei ghbor hoods, and can thus be inplenmented via
asynchronous parallel processes. The continuity

constraints, in particul ar, ni ght be
i mplemented by processes that sinply ensure
that the value of a characteristic at a point
is the average of neighboring values. Such
processes are essentially solving Laplace's
equation by relaxation.

The value at a point in an intrinsic

image is related not only to neighboring val ues
in the same image, but also to values at the
corresponding point in the other inages. The
primary constraint of this sort is that inmage
intensity is everywhere t he pr oduct of
illum nation and reflectance, as in Equation
(2). Incident illumination is itself a sum of
terns, one for each sour ce. Thi s my
conveniently be represented by introducing
secondary intrinsic images for the individual
sour ces. The i mage representing di ffuse
illumnation is constant, with value 10, while
that for the point source is I1*N. S, where N. S

is positive and the surface receives direct
illum nation, and zero el sewhere. These
constraints tie t oget her val ues at
corresponding points in the input intensity,
refl ectance, primary and secondary
illum nation, and orientation i mages. The

orientation and distance inmages are constrained
together by the operation of differentiation.

B. Achi evi ng Consi stency
Consistency is attained when the intra-
and inter-image constraints are sinultaneously

sati sfi ed. That occurs when val ues and
gradi ents ever ywhere are consi st ent with
continuity assunptions and constraints

appropriate to the type of imge, and the
presence or absence of edges. The intrainmge
constraints ensure that intrinsic character-
istics vary snoothly, in the appropriate ways.
Such constraints are inplicit in the domain
description, and are not usually nade so
explicit in machine vision systens. The inter-
i mage constraints ensure that the characteris-

tics are also consistent with the physics of
imaging and the input intensity inmge. It is
these constraints that pernmit an estimte of

surface shape from the shading wthin
of smoothly varying intensity [19].
Consistency is achieved by allowing the

regi ons

| ocal constraint processes, operating in
parallel, to adjust intrinsic values. The
explicitly determined values listed in the
initialization table, however, are treated as
boundary conditions and are not allowed to
change. As a result, information propagates
into the interior of regions from the known
boundari es.

The initial assignment of intrinsic edges

is, as we have already noted, inperfect: edges
found in the intensity image may contain gaps,
i ntroduci ng corresponding gaps in the intrinsic
edges; certain intrinsic edges are not visible
in the intensity imge -- for exanple, self-
occlusion in shadow, some intrinsic cases were
assuned in the interests of conservatism but
they my be incorrect. From the recovered
intrinsic val ues, it my be clear where futher
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edges should be inserted in (or deleted from
the corresponding intrinsic inage. For exanple,
when the gradient in an inmge beconmes very
hi gh, insertion of an edge el enent is

indi cated, and, conversely, when the difference

in values across an edge becones very snall,
deletion is indicated. Insertion and deletion
must operate within existing constraints. In

particul ar, edge elenents cannot be mani pul at ed
within a single imge in isolation, because a
legal interpretation nust always be maintained.
For example, in our world, occlusion inplies
edges in distance and orientation sinultaneous-

ly. Wthin an intrinsic image, continuity of
surfaces inplies «continuity of boundari es.
Hence, the decision to insert must t ake

nei ghboring edge elenents into consideration.
Constraints and boundary conditions are

dependent upon the presence or absence of
edges. For example, if a new extremal edge is
inserted, continuity of distance is no |onger

required at that point, and the orientation on
one si de is absol utely det er mi ned.
Consequently, when edge elenents are inserted
or deleted, the constraint satisfaction problem
is al tered. The constraint and edge
nodi fication processes run conti nuously,
interacting to perfect t he original
interpretation and recover t he intrinsic

characteristics. Figures 8 and 9 summarize the
overal |l organization of inages and constraints.

So far we have not nentioned the role of
junctions in the recovery process. At this
point, it is unclear whether junctions need to
be treated explicitly since t he edge
constraints near a confluence of edges wll
restrict relative values and interpretations.
Junctions could also be used in an explicit
fashion. Wen a T-configuration is detected,
either during initialization or subsequently,
the conponent edges could be interpreted via a
junction catalog, which would provide nore
specific interpretations than the edge table.
Detection of junctions could be performed in
parallel by local processes, consistent wth
the general organization of the system The
conbinatorics of junction detection are nuch
worse than those of edge detection, and have
the consequence that reliability of detection
is also worse. For these reasons, it is to be
hoped that explicit reliance wupon junctions
will not be necessary.

The general structure of the system is

clear, but a nunber of details remain to be
worked out. These include: how to correctly
represent and integrate inter- and intra-image
constraints; how to insert and delete edge
poi nts; how to correctly exploit junction
constraints; how to ensure rapid convergence
and stability. Although we do not yet have a

conputer inplenentation of the conplete nodel,

we have been encouraged by experiments wth
sonme of the key conponents.

We have inplenmented a sinple scheme that
uses a snoothness constraint to estimte
surface orientation in region interiors from
boundary values. The constraint is applied by
| ocal parallel processes that replace each
orientation vector by the average of its
nei ghbors. The surface reconstructed is a

quadratic function of the immge coordinates. It
is smooth, but not uniformy curved, with its
boundary lying in a plane. |t appears possible
to derive more conplex continuity constraints
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that result in nore uniformy curved surfaces,
i nterpol ating, for exanpl e, spheri cal and
cylindrical surfaces from their silhouettes.

The above snpothing process was augnented
with anot her process t hat si nul t aneousl y
adjusts the conponent of orientation in the
direction of steepest intensity gradient to be
consistent with observed intensity. The result
is a cooperative "shape from shadi ng"
al gorithm sonmewhat different from Wodhanm s
[35]. The conbined algorithm has the potential
for reconstructing plausible surface shape in
both shadowed and directly illum nated regions.

Vi EXTENDI NG THE THECORY

Qur initial domai n was deliberately
oversinplified, partly for pedagogic purposes
and partly to permit a reasonably exhaustive
anal ysis. The approach of thoroughly describing
each type of scene event and its appearance in
the inmage, and then inverting to forma catal og
of interpretations for each type of inmge

event, is nmore generally applicable. Results so
far appear to indicate that while anbiguities
increase with increasing domain conplexity,
avai |l abl e constraints al so i ncrease
proportionately. Information needed to effect
recovery of scene characteristics seenms to be
available; it is mainly a matter of thinking

and | ooki ng hard enough for it.

In this section, we will briefly describe
sone of the ways in which the restrictive
assunptions of our initial domain can be
rel axed, and t he recovery process
correspondi ngly augmented, to bring us closer

to the real world.

The assunption of coutinuous, noise-free
encodi ng is i mport ant for avoi di ng
preoccupation with details of inplenmentation,
but it is essential for a realistic theory to

avoid reliance upon it. Wth these assunptions,
probl ens of edge detection are mninized, but,
as we noted earlier, perfect line drawings are
not produced. Line drawings conventionally
correspond to surface outlines, which my not
be visible everywhere in the innge. The

recovery process we descri bed, therefore,
i ncor por at ed machi nery for inserting and
deleting edges to achieve surface integrity.

Rel axi ng the assunption of ideal encoding will
result in failure to detect sone weak intensity
edges and possibly the introduction of spurious
edge points in areas of hi gh intensity
gradient. |Insofar as these degradations are
noderate, the edge-refinement process should
ensure that the solution is not significantly
af fect ed.

The assunption of constant reflectance on
a surface can be relaxed by introducing a new
edge type -- the reflectance edge -- where
orientation, distance, and illunmination are
still continuous, but reflectance undergoes a
step discontinuity. Ref |l ectance edges bound
mar ki ngs on a surface, such as painted letters
or stripes. The features distinguishing the
appearance of an illum nated reflectance edge
are that the ratio of edge intensities across
the edge is constant along it and equal to the
ratio of the reflectances and the magnitude of
intensity gradient across the edge is also
equal to the ratio of the reflectances, and
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Figure 8
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A parallel conputational nodel for recovering intrinsic images

The basic nodel consists of a stack of registered arrays, representing the original
intensity inmage (top) and the primary intrinsic arrays. Processing is initialized by
detecting intensity edges in the original inmage, interpreting them according to the
catal og, and then creating the appropriate edges in the intrinsic inmages (as inplied by
t he downward sweeping arrows).

Parallel |ocal operations (shown as circles) nodify the values in each intrinsic inmage
to make them consistent wth the intraimage continuity and Ilinmt constraints.
Si mul t aneously, a second set of processes (shown as vertical lines) operates to make
the values consistent with interinage photonetric constraints. A third set of processes
(shown as Xs) operates to insert and delete edge elenents, which locally inhibit
continuity constraints. The constraint and edge nodification processes operate
continuously and interact to recover accurate intrinsic scene characteristics and to
perfect the initial edge interpretation.

Characterigtics From Images 17
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nodel

The i nput intensity i nage and
primary intrinsic inmges each have
an associ ated gradient image and an
edge i mage. Addi ti onal i mges
represent internmediate results of
conput ation, such as N. S. (Al

imges are shown as hexagons.) The
constraints, shown here as circles,

are of three varieties: physi cal
limts (e.g., 0 =< R =< 1), |local
continuity, and interi mge
consistency of values and edges.
Continuity constraints are inhibited
across edges. For exanple, values of
illumnation gr adi ent are
constrained to be continuous, except
at illum nation edges.

its direction is the sane on both sides. These
characteristics uniquely identify illumnated
refl ectance edges, and provide constraints

relating intrinsic characteristics on the two
si des.

In shadow, it is not possible to
di stinguish a pure reflectance edge
extremal edge between surfaces of
refl ectance, for which the ratio of
is also equal to the ratio of

The exi stence of
introduces a new type or
where a shadow edge is cast across a
refl ectance edge. The detection of an X-
junction in the inmage unanbiguously identifies
a shadow edge, since the reflectance edge may
be easily identified by the ratio test.

locally

from an
di fferent

intensities

refl ectances.

refl ectance edges

X-shaped junction,

An interesting case of surface markings
is that of reflectance texture. Texture has
certain regular or statistical properties that

can be exploited to estinate relative distance

and surface orientation. If we can assune
statistically wuniform density of particular
textural features, the apparent density in the
imge relates distance and inclination of the
surface normal to the viewing direction. A
second cue is provided by orientation of
textural features (for exanple, refl ectance
edge elenments). As the surface is viewed nore
obl i quel vy, the orientation distribution of
imge features tends to cluster about the
orientation of the extremal boundary, or of the
hori zon. These cues are inportant, since they
provi de independent information about surface
shape, perhaps less precisely and of |ower
resol ution than photonetric information, but in
ar eas wher e photonetric information is
unavail abl e (e.g., shadowed regi ons) or
ambi guous (e.g., an illumnated region seen
through a hole).

The assunption of snoothness of surfaces
can be relaxed by introducing a further edge
type, the intersection edge, which represents a

discontinuity in surface orientation, such as

occurs at a crease or between the faces of a
pol yhedron. There are two distinct ways an
intersection edge can appear in an image,
corresponding to whether one or both of the
intersecting surfaces are visible. W shall
call t hese subcases "occl udi ng" and
"connecting," respectively.

At a connecting intersection edge, only

di stance is necessarily continuous, since faces

can be differently painted, and illuninated by
different sources. The strong assunption of
continuity of orientation is replaced by the
weaker one that the local direction of the
surface edge in three dimensions is normal to
the orientations of both surfaces forming it.
The effect of this constraint is that if one
surface orientation is known, the surface edge
direction can be inferred from the image, and
the other surface orientation is then hinged
about that edge, leaving it one degree of
freedom Even when neither orientation is known

absol utely, the existence of a connecting edge
serves to inhibit application of continuity
constraints, and thereby pernit nore accurate
reconstruction of surface shape.

At an occl udi ng i ntersection
nothing is known to be continuous,

constraint is on relative distance.

edge,
and the only
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In the image, an illumnated intersecting
edge can be distinguished from an extremal edge
since the intensity on both sides is varying,
but the tangency test fails, and it can be
di stinguished from a reflectance edge since the

ratio of intensities across the edge is not
const ant . The  constraint bet ween surface
orientations formng the edge mmkes it appear

likely that a test can also be devised for
di stingui shing between connecting and occl uding
intersection edges.

In shadowed regions, intersection edges
are only visible when they <coincide wth
refl ectance edges, from which t hey are

therefore locally indistinguishable. Creases in
a surface are thus invisible in shadows.
When one surface is illumnated and the

ot her shadowed, an intersection edge cannot
be local l'y di sti ngui shed from the case
of a shadowed object occluding an illuni nated
one.

Ext renal and intersection boundari es

together give a great deal of information about
surface shape, even in the absence of other
evi dence, such as shading, or famliarity with
the object. Consider, for example, the ability
of an artist to convey abstract shape with Iine
drawi ngs. The local inclination of an extrenal

or intersection boundary to the line of sight
i's, however, unknown; a given silhouette can be
produced in many ways [27]. In the absence of
other constraints, the distance continuity
constraint wll ensure snooth variation of
distance at points along the boundary. An

addi tional constraint that could be invoked is
to assume that the torsion (and possibly also
the curvature) of the boundary space curve is
mnimal. This will tend to produce planar space
curves for boundaries, interpreting a straight
line in the inage as a straight line in space,

or an ellipse in the image as a circle in
space. The assunption of planarity is often
very reasonable: it is the condition used by

Marr to interpret silhouettes as
cylinders [27].

The assunption of

generalized

known illum nation can
be relaxed in various ways. Suppose we have the
same "sun and sky" nodel of |ight sources, but
do not have prior know edge of 10, |1 and S. In
general, we cannot determine the flux densities

absol utely, since they trade off agai nst
refl ectance. W  may, however, assi gn an
arbitrary reflectance to one surface (for

exanmpl e, assume the brightest region is white,
R = 1.0 ), and then det erm ne ot her
reflectances and the flux densities relative to
it. The initial assignnent my need to be
changed if it forces the reflectance of any
region to exceed the limts, 0.0 < R< 1.0.

The paraneters of illum nation, flux
densities 10 and 11, and unit vector S, can be
det er m ned by assum ng refl ectance and
exploiting a variation of the tangency test. |If
we have an illunminated extremal boundary,
Equation (5) gives a linear equation in the
parameters for each point on the edge. The
equations for any four points can be solved

simul taneously to yield all the paraneters. The
remai ning points on the boundary can be used
with the nowknown illumnation to verify the
assunption of an extrenal boundary. An
i ndependent check on the ratio of 10 to I1 can
be nmade at any shadow edge where surface
orientation is known. This nethod of solving
for illum nation paraneters can be extended to
multiple point sources by nerely increasing the
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number of points on the boundary wused to
provi de equations. Care is required wth
multi ple sources because it is necessary to
know which points are illumnated by which
sources. The nethod works for a centrally
projected inmage, but not for an orthogonally
projected one, since, in the latter case, all

the known surface nornals are copl anar.
Even nodelling illumnation as a set of

poi nt sources does not capture all t he
subtleties of real -world I'i ghting, whi ch
i nclude extended sources, possibly not distant,
and secondary illum nation. Extended sources

cause shadows to have fuzzy edges, and close
sources cause significant gradients in flux
density and direction. Secondary illum nation
causes |local perturbations of illumnation that
can even dominate primary illumnation, under
sone circunstances (e.g., light scattered into
shadow regions). All these effects make exact
nodel ling of illumnation difficult, and hence

cast suspicion on a recovery nethod that
requires such nodels.

In the absence of precise illumnation
nodel s that specify magnitude and direction

di stributions of flux density
accurate point-wi se estimtion of

ever ywhere,
refl ectance

and surface orientation from photonmetric
equations alone is not possible. It should
still be possible, however, to exploit basic
photonetric constraints, such as | ocal
continuity of illumnation, along with other

i mgi ng constraints and domain assunptions, to
ef fect recovery within our general paradigm As
an exanple, we mght still be able to find and
classify edges in t he intensity i mage:
refl ectance edges still have constant intensity
ratios (less than 30:1) across them shadow
edges can be fuzzy with high intensity ratios,
occlusion and intersection edges are generally
sharp w thout constant ratios. The occlusion
and i ntersection edges, t oget her with

reflectance texture gradient and continuity
assunptions, should still provide a reasonable
initial shape estimate. The resulting know edge
of surface continuity, t he identified
refl ectance edges, and the assunption of
refl ectance const ancy enabl e recovery of

relative reflectance, and hence relative total
incident flux density. The ability to determ ne
continuity of illumnation and to discrimnate
refl ectance edges from other types thus allows
us to generalize Horn's lightness determ nation
process [18] to scenes with relief, occlusion,
and shadows.

Having now nmde initial
intrinsic characteristics, it nmay be possible
to refine them using local illumnation nodels
and photonetric know edge. It mmy be possible,

estimates of

using assunptions of local nonotonicity of
illum nation, to decide within regions whether
the surface is planar, curved in some
direction, or whether it inflects.

Even with all the extensions that we have
so far discussed, our scene domain is still
much | ess conplex than the real world, in which
one finds specularity, transparency, |luster,
vi si bl e i ght sour ces, t hr ee- di mensi onal
texture, and sundry ot her conplications.

Al though, at first sight, these phenonmena make
recovery seem nuch harder, they also represent
additional intrinsic characteristics for nore
conpletely describing the scene, and poten-
tially rich sources of information for form ng
the description. There are also nmany well-
known sources of information about the scene,
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that make use of nmultiple imges, including
stereo, notion parallax, and color. W believe
that the franmework we have put forward can be
ext ended to accommodat e t hese addi ti onal
sources.

At this point, it is not clear whether
adding conplexity to our domain wll lead to
fewer anbiguities, or nmore. So far, however, we

have seen no reason to rule out the feasibility
of recovering intrinsic scene descriptions in
real worl d situations.

VI DI SCUSSI ON
The concept of intrinsic images clari-
fies a nunber of issues in vision and
general i zes and uni fies many previously
di sjoint conputational t echni ques. In this
section, we wll discuss sone inplications of
our wor Kk, in t he contexts of system

organi zation, imge analysis,
and human vi sion.

scene analysis,

A System Organi zati on

The proper organization of a visual
system has been the subject of considerable
debate. Issues raised include the controversy
over whether processing should be data-driven

or goal-driven, serial or parallel, the |evel
at which the transition fromiconic to synmbolic

representation shoul d occur, and  whet her
know edge shoul d be primarily domai n-
i ndependent or donmi n-specific [4]. These
issues have a natural resolution in the
context of a system organized around the
recovery of intrinsic inmges, as in Figure

10.

The recovery process we have outlined is
primarily data-driven and dependent only on
general dommin assunptions. Subsequent goal -
oriented or donmmin-specific processes (ranging
from segnmentation to object recognition) may

then operate on information in the intrinsic
i mages.

Intrinsic inages appear to be a natural
interface bet ween iconic and symbol i c
representations. The recovery process seens

inherently iconic, and suited to inplenentation
as an array of parallel processes attenpting to
satisfy | ocal constraints. The resul ting
information is iconic, invariant, and at an
appropriate level for extracting synbolic scene
descriptions. Conversely, synbolic information
from higher levels (e.g., the size or color of
known objects) can be converted to iconic form
(e.g., estimtes of distance or reflectivity)
and used to refine or influence the recovery
process. Synbolic information clearly plays an
important role in the perception of the three-
di mensi onal worl d.

Ml til evel, paral | el constraint sati s-
faction is an appealing way to organize a
vi sual system because it facilitates
incremental addition of know edge and avoids
many arbitrary pr obl ens of control and
sequencing. Parallel inplenmentations have been
used previously, but only at a single |evel,
for recovering lightness [18], depth [28], and
shape [35]. Each  of these processes is
concerned with recovering one of our intrinsic
i mages, under speci al i zed assunpti ons
equi val ent to assuming values for the other im
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ages. In this paper, we have suggested how they
m ght be coherently integrated.
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Figure 10 Organi zation of a visual system

| ssues of stability and speed of
conver gence al ways ari se in iterative
appr oaches to constraint satisraction.
Heuristic "relaxation" schenes (e.g., [32]), in
which "probabilities" are adjusted, often use
ad hoc updating rules for which convergence is
difficult to obtain and prove. By contrast, the
system we have described uses iterative
rel axation methods to solve a set of equations

and inequalities. The mathematical principles

of iterative equation sol ving are wel |
understood [2] and should apply to our system
at least, for a fixed set of edges. Insofar as
| ocal edge nodifications have only [ocal
consequences, operations such as gap filling
should affect convergence to only a mnor
extent.

Speed of convergence is sonetines raised
as an objection to the wuse of cooperative
processes in practical visual systens; it is
argued that such processes would be too slow in
converging to explain the apparent ability
of humans to interpret an image in a fraction
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of a second. This objection can be countered in

several ways: first, full convergence may not
be necessary to achieve acceptable accuracy;
second, i nformation propagati on may be

predomi nantly local, influenced prinmarily by
nearby edges; third, there are ways of speeding
up |l ong-range propagation -- for exanple, using
hi erarchies of resolution [15].

B. Il mage Anal ysis

Image analysis is wusually considered to
be t he generation of a t wo- di mensi onal
description of the imge, such as a |line
drawi ng, which may subsequently be interpreted.
We believe it is inportant to take a nore
liberal view, and include some consideration of
the three-dinensional neaning of image features
in the earliest descriptions.

A topic often debated is segmentation --
the process of partitioning an imge into
semantically interpretable regions. Fi schl er
[9] and others have raised a nunber of critical
guestions: is segnmentation nmeaningful in a
domai n-i ndependent sense, is it possible, and
how should it be done?

Partitioning of an arbitrary intensity
image into regions denoting objects is an
illusory goal, unless the notion of what

constitutes an object is precisely defined.
Si nce obj ects are often col l ections of
pi eces whose association nust be |earned,
general object segnentation seems inpossible in

principle. It seenms nore reasonable, on the
other hand, to partition an inage into regions

corresponding to snooth surfaces of uni -
form reflectance. This is often the inplicit
goal of programs that attenpt to partition an
imge into regions of uniform intensity.
Unf ortunately, intensity does not corre-
spond directly to surface characteristics.
There is no way of determi ning whether
mer gi ng two regi ons is meani ngf ul , and

consequently there is no reliable criterion for
termnating the nerging process. Segnentation
based on intrinsic i mges avoi ds t hese
difficulties.

Anot her elusive goal, the extraction of a

perfect line drawing from an intensity inmage,
is also inpossible in principle, for sinmlar
reasons: t he physi cal signi ficance of
boundaries does not correlate well wth the
magni t ude of intensity changes. Sur f ace
boundaries can be hard, and, in sonme places,
impossible, to detect; shadows and texture
contribute edge points in abundance, which, in
this context, are noise. To attain a line
drawi ng depicting surface boundaries, we nust
take into account the physical significance of
intensity discontinuities. It is quite clear
from depth and orientation intrinsic images

where edges are necessary for consistency and
surface integrity. A perfect line drawing could
be regarded as one of the products of the
process of recovering intrinsic characteris-
tics.

From this point of view, all attenpts to
develop nore sophisticated techniques for
extracting line drawings from intensity images
appear inherently linmted. Recently, relaxation
enhancenent t echni ques for refining the
imperfect results of an edge detector have
attracted considerable interest [32 and 15].
These techniques nanipulate edge confidences
according to the confidences of nearby points,
iterating until equilibrium is achieved. This
approach is really attenpting to introduce and
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exploit the concept of edge continuity, and
does lead to nodest inprovenents. It does not,
however, exploit the continuity of surfaces,
nor ideas of edge type, and consequently
produces curious results on occasion. Moreover,

as we noted earlier, convergence for ad hoc
updating rules is difficult to prove.
The major problem with all the inmage

anal ysis techniques we have nentioned is that
they are based on characteristics of the image
wi thout regard to how the inage was fornmed.
Horn at MT for sone time has wurged the

i nportance of understanding the physical basis
of imge intersity variations [20]. Hi s
techniques for determining surface |ightness

[18] and shape from shading [19] have had an

obvious influence on our own thinking. To
achieve a precise understanding of t hese
phenonena, Horn considered each in isolation,
in an appropriately sinplified domamin: a plane
surface beari ng regi ons of di fferent
reflectance lit by snoothly varying illum na-
tion for lightress, and a sinple snoothly
curved surface with wuniform reflectance and
illum nation for shading. These dommins are,
however, inconpatible, and the techniques are

not directly applicable in dommins where
variations in reflectance, illumination, and
shape may be discontinuous and confounded. W
have attenpted to make explicit the constraints
and assunptions underlyi ng such recovery
techni ques, so that they nmay be integrated and
used in nore general scenes.

The work nost closely related to our own
is that of Marr [29], who has described a |ay-
ered organization for a general vision system
The first layer extracts a synbolic description
of the edges and shading in an intensity inage,
know as the "Primal Sketch." These features are
intended to be used by a variety of pro-cesses
at the next layer (e.g., stereo correla-tion,
texture gradi ent) to derive t he t hree-
di mensional surface structure of the inmge. The
resulting level of description is analogous to
our orientation and distance inmges, and is
called the "2.5D sketch."™ Qur general phil-
osophy is simlar to Marr's, but differs in
enphasi s, being somewhat conplenentary. W are
all interested in understarding the organiza-
tion of visual systems, in terns of |evels of
representation and information flow. Marr, how
ever, has concentrated primarily on understand-
ing the nature of individual cues, such as
stereopsis and texture, while we have concen-
trated primarily on understanding the integra-
tion of nultiple cues. W strongly believe that
interaction of different kinds of constraints
plays a vital role in unscranmbling information
about intrinsic scene characteristics.

A particular point of departure is Marr's
reliance on two-dinmensional inmage description
and grouping techniques to perfect the prinal
sketch before undertaking any higher-level pro-
cessing. By contrast, we attenpt to inmediately
assign three-dinensional interpretations to
intensity edges to initialize processing at the
level of intrinsic images, and we maintain the
relationship between intensities and inter-
pretations as tightly as possible. In our view,
perfecting the intrinsic inmages should be the
objective of early visual processing; edges at

the Ilevel of the prinal sketch are the
consequence of achieving a consistent three-
di mensi onal interpretation. W shall discuss

consequences of these differing organizations
with reference to human vision shortly.
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C. Scene Anal ysis

Scene anal ysi s is concer ned with
interpreting images in three dinmensions, in
terms of surfaces, volunmes, objects, and their
interrel ati onshi ps. The earliest wor k, on
pol yhedral scenes, involved extracting |Iline
drawings and then interpreting them using
geonetric obj ect prot otypes [31, 8] . A
conpl enentary approach analyzed scenes of

sinmple curved objects by partitioning the image
into regions of honpbgeneous intensity and then
interpreting them using relational npdels of
obj ect appearances [5, 3]. Both these early
approaches were limted by the unreliability of
extracting image descriptions, as discussed in
the preceding section, and by the lack of
generality of the object prototypes used. It
was soon discovered that to extract i mge
descri ptions reliably required exploiting
know edge of the scene and image formation
process. Accordingly, attenpts were nmde to
integrate segnentation and interpretation. The
gener al approach was to assign sets of
alternative interpretations to regions of
uniform intensity (or col or), and t hen
alternately nmerge regions wth conpatible
interpretations and refine the interpretation
sets. The process termnates with a small
nunber of regions with disjoint (and hopefully
uni que) interpretations. Yakinovsky and Fel dman
[36] used Bayesian statistics for assigning
interpretations and guiding a search for the

set of regions and interpretations wth the
hi ghest joint likelihood. Tenenbaum and Barrow
(IGS [33]) used an inference procedure, simlar
to Waltz's filtering [34], for elimnating
i nconsi st ent interpretations. These systens
perforned creditably upon conplex inmmages and
have been applied in a variety of scene
domains. They are not, however, suitable as

nodel s of general -purpose vision because they
are applicable only when all objects are known
and can be distinguished on the basis of |ocal
evidence or region attributes. Unknown objects
not only cannot be recognized; they cannot even
be descri bed.

What seens needed in a general-purpose
vi sion system are nore concise and nore general

descriptions of the scene, at a lower |evel
than objects [4 and 38]. For exanple, once the
scene has been described at the Ievel of

intrinsic surface characteristics, surfaces and
volumes can be found and objects can then
readily be identified. There is still the need
to guide formation of lower |evel descriptions
by the context of higher |evel ones, but now
the gaps between levels are nuch smaller and
easier to bridge.

Huf fman [21], Clowes [6], and Waltz [34]
denonstrated the possibility of interpreting
line drawi ngs of polyhedral scenes without the

need for specific object prototypes. Their
|l evel of description involved a small set of
linear scene features (convex edge, concave
edge, shadow edge, crack) and a set of corner

features, where such edges neet. These scene
features were studied systematically to derive
a catalog of corresponding inmge features and
their alternative interpretations.
Interpretation of the line drawing involved a
conbi natorial search for a conpatible set of
junction | abel s. Wl t z, in particul ar,
identified eleven types of linear feature, and
three cases of illumination for the surfaces
on each side. The resulting catal og of junction
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explosion in

interpretations contained many
entries. To avoid conbinatorial
determining the correct interpretations, Waltz
used a pseudo-parallel local filtering paradigm
t hat el i m nat ed junction interpretations
inconmpatible with any possible interpretation
of a neighboring junction.

VWile we also create and use a catal og,
the whol e enphasis of our work is different. W
have attenpted to catalog the appearances of
edges in grey-scale immges, for a nuch wder
cl ass of objects, and have described them in a
way that results in a nmuch nore parsinonious
catalog. Instead of interpreting an ideal Iline
dr awi ng, we, in a sense, are attenpting
simul taneously to derive the drawing and to
interpret it, using the interpretation to guide
the derivation. In contrast to the junctions in
line drawi ngs, many gray-scale imge features
can be wuniquely interpreted using intensity
information and physical corstraints. W are
thus able to avoid conbinatorial search and
"solve" directly for consistent interpretations
of remaining features. CQur solution has a
definite iconic flavor, whereas Wiltz's has
largely a synbolic one.

Mackworth's approach to interpreting |ine
drawi ngs [24] is sonewhat closer to our point
of view He attenpts to interpret edges, rather
t han junctions, with only t wo basi c
interpretations (Connect and Occluding); he
nodel s surfaces by representing their plane

orientations explicitly; and he tries to solve

constraints to find orientations that are
consistent with the edge interpretations. The
use of explicit surface orientation enables
Mackworth to reject «certain interpretations

with inpossible geonetry, which are accepted by
Wal t z. Since he does not, however, make
explicit use of distance information, there are
still sone geometrically i mpossi bl e
interpretations that Mackworth will accept .
Moreover, since he does not use photonetry, his
solutions are necessarily anbiguous: Horn has
denonstrat ed [20] t hat when photonetric
information is conbined wth geonetry, t he
orientations of surfaces formng a trihedral
corner my be uni quel y det er mi ned. One
fundanental point to be noted is that intrinsic
characteristics provide a concise description
of the scene that enabl es rejection of
physically inpossible interpretations.

I nternedi ate | evel s of representation
have played an increasingly inmportant role in
recent scene analysis research. Agin and
Binford [1] proposed a specific representation
of three-dinensional surfaces, as generalized
cylinders, and descri bed a system for
extracting such representations using a |aser
rangefi nder. Marr and N shihara [29] have
descri bed t echni ques for inferring a

general i zed cylinder
drawi ngs, and for

representation from I|ine
mat ching geonetrically to
object prototypes in recognition. Cylindrical
volune representations are being used in the
VI SIONS system under devel opnent by Riseman et
al. [16]. This system also includes explicit
representati on of surfaces, which are inferred
from a two-dinensional inmage description using
hi gher-1evel cues, such as linear perspective
and the shape of known objects. Synbolic repre-

sentations at the |evel of surfaces and vol unmes
should be easier to derive from intrinsic
imges than from intensity i mages, l'ine

drawi ngs, or even from noi sy rangefinder data.
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D. Humen Vi sion

In this paper, we have been concerned
with the conputational nature of vision tasks,
largely i ndependent of i mpl enent ati on in
bi ol ogi cal or artificial systens. Thi s

orientation addresses questions of conpetence:
what information is needed to acconplish a
task, is it recoverable from the sensed i mge,
that additional constraints, in the form of
assunptions about the world, are needed to
effect the recovery?

Psychol ogi sts have been asking sinmlar
questions fron their own viewpoint for nany
years. For exanple, there has been a 1ong-
standing debate, dating back at least to
Hel mhol t z, concerning how, and under what
circunstances, it is possible to independently
estimate illumnation and reflectance. Recent
participants include Land, wth his Retinex
theory of color perception [23], and Gl christ,
who has identified a nunber of ways in which
intensity edges may be classified (e.g., the
30:1 ratio, intersecting refl ectance and
illumnation edges) [12].

From such work, a nunber of theories have
been proposed to explain human abilities to
estimate various scene characteristics. No one,
however, has yet proposed a conprehensive nodel
integrating all known abilities. Wile we have
no intention of putting forward our npdel as a
conpl ete explanation of human vision, we think
that the recovery of intrinsic characteristics
is a plausible role for early stages of visual
processing in humans.
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Figuree 11 A subjective contour

This hypothesis would appear to explain,

at least at a superficial level, many well-
known psychol ogi cal phenonena. The constancy
phenonena are the obvious exanples, but there
are ot hers. Consi der, for exanpl e, t he

phenonenon of subjective contours, such as
appear in Figure 11. Marr suggests [26] that
such contours result from grouping place tokens
corresponding to line endings in the prinal
sket ch, and further suggests a "l east -
comm tnent" clustering algorithmto control the
conbi natorics of grouping. W suggest, as an
alternative explanation, that the abrupt line
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endi ngs are local ly interpreted three
di nensional ly as evidence of occlusion, causing
discontinuity edges to be established in the
di stance image. The subjective contours then
resul t fron maki ng t he di stance i mge
consistent with these boundary conditions and
assunptions of continuity of surfaces and
surface boundaries: they are primarily contours
of distance, rather than intensity. The net
result is the interpretation of the inage as a
disk occluding a set of radiating lines on a
nore distant surface.
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Figure 12 Subj ective depth (Coren [7])
There is considerable evidence to support
the hypothesis that subjective contours are
closely correlated with judgenments of apparent
depth. Coren [7] reports a very interesting
denpbnstration. In Figure 12, the two circles
subtend the same visual angle; however, the
apparent elevation of the subjective triangle
causes the circle within it to be perceived as

smal ler, consistent with the hypothesis that it
is nearer. Surfaces perceived when Vview ng
Jul esz stereograns [22] have edges that are

purely subjective. There are no distinguishing
cues in the originating intensity inmages: the
edges result solely from the discontinuity in
disparity observed in a stereo presentation.
Hochberg [17] has investigated the subjective
contours produced by shadow cues to depth, seen
in figures |like Figure 13. Mst observers
report that Figure 13a is perceived as a single
entity in relief, while Figure 13b is not. The
figures are essentially -equivalent as two-
di mensi onal configurations of i nes. The
difference between the figures is that in b,
the lines are not consistent with the shadows
of a single solid entity cast by a directional
Iight source.

We can generalize our ar gunment t hat
subj ective contours arise as a consequence of

t hr ee- di mensi onal organi zati on to ot her
phenonmena of perceptual organization, such as
the Gestalt Ilaws. For exanple, the law of

continuity follows directly
of continuity of surfaces and

from assunptions
boundaries, and
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the law of closure follows from integrity of
surfaces.
Fi gure 13 Subj ective figures (Hochberg [17])

A system that is attenpting to form a
consistent interpretation of an inage as a
t hree-di nensi onal scene will, in principle, do
better than one that is attenpting to describe
it as a t wo- di mensi onal pattern. The
organi zation of a chaotic collection of imge
features nmay becone clear when they are
considered as projections of three-dinmensional
features, and the corresponding constraints are
brought into play.

Gregory has enphasized the inportance of
t hr ee- di nensi onal interpretations and has

suggested that many illusions result from
attenpting to form inappropriate t hr ee-
di nensi onal interpretations of two-dinmensional
patterns [13 and 14]. He also suggests that
certain ot her i1l usions, such as t hose
involving the Ames room result from applying

incorrect assunptions about the nature of the
scene. The distress associated with view ng
ambi guous  figures, such as the well-known

“inpossible triangle” and “devil's pitchfork,”
arises because of the inpossibility of making
| ocal evidence consistent wth assunptions of
surface continuity and integrity.

Recent experiments by G lchrist [11]
denonstrate that judgements of the primary in-
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trinsic characteristics are tightly integrated
in the human visual system |n one experinent,
the apparent position of a surface is

mani pul ated using interposition cues, so that
it is perceived as being either in an area of
strong illum nation or in one of di m
illumnation. Since the absolute reflected fl ux
from the surface remains constant, the observer
perceives a dramatic change in appar ent
reflectance, virtually from black to white. In
a second experinent, the apparent orientation
of a surface is changed by means of perspective
cues. The apparent reflectance again changes
dramatical ly, dependi ng upon whet her t he
surface is perceived as facing towards or away
from the |ight source.

W do not present our nodel of the
recovery of intrinsic scene characteristics as
a conprehensive explanation of these psycho-
| ogi cal phenomena. We feel, however, that it
may provide a useful viewpoint for considering
at | east sone of them

VI CONCLUSI ON

The key ideas we have attenpted to convey
in this paper are:

* A robust
or gani zed

vi sual system should be
around a noncogni tive,

nonpur posive |evel of processing that
attenpts to recover an intrinsic
description of the scene.

* The output ot this process is a set of
registered "intrinsic imges" that give

such characteristics as
refl ectance, orientation, distance, and
i nci dent illum nation, for every
visible point in the scene.

* The information provided by intrinsic
i mges greatly facilitates many higher-
| evel perceptual operations, ranging
from segnment ati on to obj ect
recognition, that have so far proved
difficult to inplement reliably.

*  The recovery of intrinsic scene
characteristics is a plausible role for
the early stages of human  vi sual
processi ng.

* Investigation of

val ues for

| ow| evel processing
shoul d f ocus on what type of
information is sought, and how it m ght
be obtained from the image. For
exanple, the design of edge detectors
shoul d be based on the physical neaning
of the type of edge sought, rather than
on some abstract nodel of an intensity
di scontinuity.

We have outlined a possible nodel of the
recovery process, denmonstrated its feasibility
for a sinple domain, and argued that it can be
extended in a straightforward way towards real -
world scenes. Key ideas in the recovery process

are:
* I nformati on about t he intrinsic
characteristics is confounded in the
intensities of t he i nput i mge.
Therefore, recovery depends on

exploiting assunptions and constraints

from the physical nature of imaging and
the worl d.

* Interactions and anbiguities prohibit
i ndependent recovery of the intrinsic
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characteristics; the recovery process
nmust determ ne their val ues
si mul t aneously in achi eving

consi steney with the constraints.

* |nterpretation of boundaries plays a
key role in recovery; they provide
informati on about which characteristics
are continuous and which discontinuous
at each point in the imge, and they
provide explicit boundary conditions
for the solution.

* The nature of the solution, involving a
large nunber  of interacting | ocal
constraints, suggests inplenmentation of
the recovery process by an array of
|l ocal parallel processes that achieve
consi stency by a sequence of successive
approxi mati ons.

Qur nodel for recovering intrinsic
characteristics is at a formative st age.
Important details still to be finalized include
the appropriate intrinsic inages, constraints,
constraint representations, and the paths of
information flow relating them Nevertheless,
the ideas we have put forth in this paper have
already clarified many issues for wus and
suggested nmany exciting new prospects. They
also raise many questions to be answered by
future research, the npst inportant of which
are "Can it work in the real world?" and "Do
people see that way?" To the extent that our
nodel corresponds to the human visual system
val uabl e i nsights may be gained t hr ough
col I aboration between conputer and vision.
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