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Abstract

We propose a novel and robust model to represent and
learn generic 3D object categories. We aim to solve the
problem of true 3D object categorization for handling arbi-
trary rotations and scale changes. Our approach is to cap-
ture a compact model of an object category by linking to-
gether diagnostic parts of the objects from different viewing
points. We emphasize on the fact that our “parts” are large
and discriminative regions of the objects that are composed
of many local invariant features. Instead of recovering a
full 3D geometry, we connect these parts through their mu-
tual homographic transformation. The resulting model is a
compact summarization of both the appearance and geom-
etry information of the object class. We propose a frame-
work in which learning is done via minimal supervision
compared to previous works. Our results on categorization
show superior performances to state-of-the-art algorithms
such as [23]. Furthermore, we have compiled a new 3D ob-
ject dataset that consists of 10 different object categories.
We have tested our algorithm on this dataset and have ob-
tained highly promising results.

1. Introduction
Object categorization has been a central topic of com-

puter vision research in recent years (see literature review
in Sec. 1.1). Very little work has been done to address the
formidable problem of true 3D object categorization. In this
work, we would like to learn a model for each class of the
3D objects so that given a new instance of the class in clut-
tered scenes, our algorithm can give the correct class label
of the object as well as recognizing the pose (i.e. viewing
angle) this particular instance comes from w.r.t. the model
of the object class.

Our work is inspired by the handful of earlier works for
3D object recognition and categorization (see Sec. 1.1). We
believe both geometry and appearance information of ob-
jects are critical for a true 3D object recognition. But we
hypothesize that one does not need to go all the way to re-

constructing a 3D object in order to recognize it. Rather,
we believe that the usage of weak geometrical information,
such as relative homographic transformations between ob-
ject components, suffices to provide a robust representation
of the 3D object. The main contributions of our paper are:

• We propose a novel 3D model of an object class by encod-
ing both the appearance and 3D geometric shape informa-
tion (see Fig.1). This model produces a compact yet power-
ful representation of an object class, differing from most of
the previous works which store various image exemplars or
model exemplars of different viewing angles. Given a novel
testing image containing an object class, our algorithm not
only classifies the object, but also infers the pose and scale,
and localizes the object in the image.

• Toward the goal of learning a true 3D model of an object
class, our algorithm demands less supervision in the learning
process compared to previous works (i.e., [23]). Our algo-
rithm is designed to handle either segmented or unsegmented
objects in training. Most importantly, we do not need to la-
bel any views or scales, sort them in any particular order, or
further group images of the same object instances.

• We offer an extensive experimental validation. We first show
superior categorization and localization performances of our
algorithm in a known dataset (Fig.5). In addition, we have
compiled a new and very challenging 3D object dataset of
10 object categories (Fig.7) as a future benchmark for this
task. Our algorithm demonstrates highly promising results
on this dataset (Fig.6, Fig.8).

1.1. Literature review
Most of the recent advances in object categorization have

focused on modeling the appearance and shape variabil-
ity of objects under limited viewing point changes (e.g.
[25, 27, 5, 7, 10, 17, 1] ). This is reflected by the fact that
most of the object category datasets contain images with
such limitations (e.g. Caltech 101, UIUC car, etc.).

A much smaller number of works have investigated the
problem of real 3D object category modeling. One ap-
proach is to treat a handful of typical poses as separate
classes. The algorithm therefore learns a different model (or
a mixture of models) for each of these classes [21, 26, 24].
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It is, however, theoretically unsatisfying that different 3D
poses of the same object category model are completely in-
dependent in such methods. More importantly, these sepa-
rate models are more likely to fire on false alarm cases and
are computationally costly to train.

The closest work to our paper is Thomas et al. [23]. In
their paper, the authors also incorporate shape and appear-
ance information into a 3D object model. While the two
approaches agree in the general spirit, our model provides a
more compact and abstract representation of the 3D object.
Furthermore, our algorithm is capable of learning a 3D class
model under very weakly supervised condition, only requir-
ing a class label (say ’cellphone’) for each training image
containing a cellphone. Compared to [23], we achieve bet-
ter performance without sorting the images according to the
instances, and aligning the poses of the objects. It is also
worth mentioning very recent works by [15, 12] which have
presented interesting new ideas toward the goal of repre-
senting object categories from multiple views.

Within the context of 3D single object modeling
and recognition, authors have proposed different frame-
works [20, 18, 8] to enforce geometrical and appearance
constraints. [3] pioneered unsupervised recognition and re-
construction of object instances from an unlabeled set of
images. These contributions, however, can be hardly gener-
alized to the “categorical case”. The geometrical relation-
ship used to build the models are no longer suitable to han-
dle shape and appearance variability within a given cate-
gory. Our work differs from them fundamentally by over-
coming these limitations by enforcing “milder” geometrical
constraints across different object views. The theory behind
aspect graphs (AG) [14, 2, 4] has also offered a powerful
and compact representation for 3D objects. However, our
model and AG are fundamentally different representations
in that: i) AG are built on ’topologically-stable’ views and
no explicit mapping between these views is provided; our
model instead is an ensemble of canonical parts linked to-
gether by an explicit homographic relationship; ii) AG only
capture the 3D geometry, whereas our method jointly cap-
tures appearance and 3D relations; iii) it is unclear how
to extend AG to handle generic 3D object categorization,
whereas our model is specifically designed to do so.

2. A 3D Object Category Model
We highlight in this section the central ideas of our 3D

model for an object category and compare them with rele-
vant modeling schemes proposed in the literature. Fig.1 of-
fers a schematic view of the core components of our model
through a hypothetical 3D object category.

Appearance information is captured in the diagnostic
parts of the objects in one class, denoted as Pi in Fig.1(b,c).
Each “part” is a region of an object that tends to appear con-
sistently throughout different instances of the same category
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Figure 1. Schematic illustration of the 3D object category model. (a) We
illustrate our model by using a hypothetical 3D object category. Three
instances of the hypothetical object are shown here as sample training im-
ages. The colored regions of each instance are “parts” of the objects that
will be put together to form the final model. These “parts” are made of
patches usually provided by feature detectors. When parts across different
instances share the same color code, it indicates that the model has learnt
the correspondences among these parts based on the appearance and geo-
metric consistency. (b) The final model of the 3D object category can be
viewed as a connected graph of the object parts (colored parts, Pi), part
relations (H), and the encoded variabilities of the appearances and geo-
metric structure (visualized by the dashed ellipses surrounding each part).
(c) A more intuitive visualization of the model puts together the parts in a
3D graph based of the learned geometric relations (H). This figure is best
viewed under color.

(shown in colored regions in Fig.1(a)). It is a collection of
a number of smaller image patches (feature points) usually
provided by the feature detectors, constrained by some geo-
metric consistency. Readers familiar with the current object
recognition literature are reminded that our “part” is not a
single detected local patch such as Harris corner or DoG
detection, but rather a larger structure that contains many
detected local patches. Given Pi, our model also encodes
the appearance variations observed in training in the form
of distributions of descriptors (Fig.1(b)).

In our model, we call the diagnostic parts canonical
parts; that is, they are representative of parts viewed in their
most frontal position (Sec.3.3 & 3.4). Canonical parts Pi

and Pj are then linked together if and only if Pj (or Pi) is
visible when Pi (or Pj) is viewed in its most frontal posi-
tion (canonical view). This linkage is characterized by the

affine transformation Hij =

[
Aij tij

0 1

]
, where Aij is a

2 × 2 affine transformation matrix, tij is a 2 × 1 transla-
tion vector, and 0 is a 1 × 2 0-vector. Thus, Hij denotes
the transformation to observe Pj when Pi is viewed in its
canonical position. An example is shown in Fig.4. Notice
that if two canonical parts Pi and Pj are viewed frontally
from the same pose, Aij is simply I and the transformation
to observe Pj when Pi is viewed in its canonical position is
just given by the translation vector tij. This is the main con-
straint that previous literature has exploited in the context of
the 2D representation of the object structure, e.g. [27]. We
can interpret our linkage structure as its generalization to



the multi-view case.
The above linkage structure between canonical parts is

the key idea behind our model. Fig.1(b) shows these re-
lationships through a connected graph. From Fig.1(b), one
can infer the object class by “popping” it out into a 3D space
(shown in Fig.1(c)). Similarly to the appearance informa-
tion, it is also important to encode the intra-class variabil-
ity of these geometric relationships. Notice that our link-
age structure simultaneously captures connections between
parts within the same view as well as across multiple views.

The advantage of our proposed linkage structure of
canonical parts is that it provides a representation of the ob-
ject geometry with a high level of abstraction. In fact, un-
der the assumption that the total number of diagnostic part
types is fixed, it can be shown that our linkage structure pro-
duces an asymptotically unique and stable representation of
the object as we increase the number of views that are used
to build that model. This is not true, for instance, for the
model proposed by [23], where its complexity increases as
function the number of views. This property is satisfied by
the model proposed by [20] because it essentially achieves
a full 3D reconstruction of the object. As such, however,
the model of [20] fails to provide the necessary flexibility
to handle the intra-class variability within each object cat-
egory. Our proposed linkage structure is able to overcome
this limitation.

Section 3 shows how we build such an object category
model. Section 4 details how a novel instance of an object
category is recognized, localized and its pose inferred. Ex-
tensive experimental results are shown in Section 5.

3. Building the model
We detail here our algorithm for building a 3D object

class model from a set of training images. We assume that
each training image contains one instance of the target ob-
ject class. We do not, however, have information about
the instance membership or pose of the object. The task
of learning is to start with this set of raw images, extract
features to form parts, obtain a set of canonical parts and
finally form the 3D object class model by connecting these
canonical parts in a 3D space.

3.1. Extract features
Local image patches are the basic building blocks of

an object image. Our algorithm, however, works indepen-
dently of any particular choice of feature detectors or de-
scriptors [18, 19]). In practice, we choose the Saliency de-
tector [13] and the SIFT descriptor [18] to characterize local
features. An image i contains hundreds of detected patches,
each represented as fi = (ai,xi), where ai is the appear-
ance of the patch, described by a 128-dimension SIFT vec-
tor, and xi is the location of the patch on the 2D image.
Fig.2 shows two examples.

Figure 2. Detected features (patches) using the scaled invariant saliency
detector [13]. All interest points are indicated by blue dots. The boxed
regions in each image denote the learnt parts for this pair. When two parts
across images share the same color (e.g. red boxes), they are connected by
the algorithm. This figure should be viewed in color.

3.2. Form parts

We represent our 3D object category model in a hier-
archical way. Local image features are first grouped into
larger regions (called “parts”). A selected subset of these
parts (according to appearance and geometric consistency)
are then linked together as a full 3D model. This choice
stems from the observation that larger regions of objects
often carry more discriminative information in appearance
and are more stable in their geometric relationships with
other parts of the object [16].

The goal of this step is to group local image features
into “parts” that are consistent in appearance and geome-
try across images. A global geometrical constraint is ob-
tained by imposing that feature match candidates (belong-
ing to different views) are related by the fundamental matrix
F . A local geometrical constraint is enforced by imposing
that features belonging to a neighborhood are related by ho-
mographic transformationHF induced by F [11]. We use a
scheme based on RANSAC [9] to enforce such constraints
while the optimal F and HF are estimated. Below is a brief
sketch of our algorithm.

1: Obtain a set of M candidate features based on appearance similarity
measured by d(ai − aj) across 2 training images.

2: Run RANSAC algorithm on M to obtain a new (and smaller) set of
matches MF ∈ M based on xiFxj = 0, where F denotes the
fundamental matrix.

3: Further refine the matches using RANSAC to obtain a set of MH

matches such that xi −HF xj = 0, where MH ∈ MF ∈ M .

Step 2 and Step 3 can be iterated until the residual error
computed on the inliers stops decreasing. Step 3 returns
a pair of local neighborhood regions across the 2 training
images in which all features fi ∈ M

(i,j)
H satisfy a vicinity

constraint. We call them a matched “part”. We follow this
procedure for every pair of training images. Fig. 2 shows
example parts indicated by boxes on these two cellphone
images. Note that there is no presumed shape or size of
these parts. For the rest of this model building algorithm,
we represent the appearance of each of these parts as a nor-
malized histogram of the occurrences of the codewords, or
clustered local patches.
Implementation Details. On average our parts contain
50−200 features, sufficient to effectively represent the local
structure of the object from a particular view. We obtain on



average 700−1000 matched parts within a training set of 48
images. In our current implementation, we use a mask to re-
move spurious matches coming from the background. This
is not a requirement for our algorithm to work. If there is
enough variability in the background, [3] shows that spuri-
ous matches can be effectively removed by enforcing global
constraints across all the views. Notice that, even if matched
parts can be obtained from pairs of images belonging to dif-
ferent instances of a given category, the algorithm in 3.2
mostly produces matched parts from images belonging to
the same object instance. This is due to the inherent lack
of flexibility of RANSAC to handle intra-class variability.
In fact, this guarantees robustness and stability in the part
matching process. Actual matching of corresponding parts
belonging to different object instances is achieved in the op-
timization process detailed in Sec. 3.4.

3.3. Find canonical parts candidates

Our goal is to represent the final object category with
“canonical parts” and their mutual geometric relations. To
do so, we need to first propose a set of canonical part candi-
dates based on view-point criteria. What we have from our
training images is a large set of “parts” that are paired across
different images, each part consisting of a number of local
features. Many of these parts linked across different images
correspond to one actual part of the object. Fig. 3 is an il-
lustration of the connected parts estimated from Step 3.2.
The most possible front view of an actual object part de-
fines a canonical part candidate. This will be by definition
the canonical pose attached to the canonical part candidate.
A canonical part candidate can be computed from the set of
linked parts as follows.

Between every connected pair of parts, we associate
them with a factor of foreshortening cost Kij . Kij is a func-
tion of Aij in the homographic relationship Hij between
these two parts. Hij is provided by the algorithm in sec-

tion 3.2. Kij =
(
λij

1 λij
2 − 1

)
, where λij

1,2 are the two sin-

gular values of Aij . Kij is greater than 0 when Pi is a less
slanted version than Pj under affine transformation. Using
the sign of Kij , we assign the direction between two parts.
The full set of parts and their directed connections weighted
by Kij form a weighted directed graph (Fig. 3). It is easy
to show that the path associated to the highest value of the

total factor of foreshortening cost
(∑

(i,j)∈path Kij

)
gives

rise to a canonical part candidate. This can be identified as
the part P attached to the terminal node of such maximum
cost path. The intuition here is that the maximum cost path
is the one that leads to the part with the smallest foreshort-
ening, thus the canonical one. The maximum cost path can
be found with a simple greedy algorithm.
Implementation Details. The graph structure is on average
composed of 10 − 15 parts but can go as low as 2, if a part
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Figure 3. Illustration of linked parts for proposing one canonical part of
the cellphone model using directed graph. The boxes indicate parts associ-
ated with this canonical part. The blue dots indicate detected local features
within the parts. The yellow box is the proposed canonical part obtained
by summarizing all factors of foreshortening (indicated by the numerical
value adjacent to each arrow) given all the connected paths.
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Figure 4. Illustration of the canonical parts and their geometric relations
for three views of the same object (a,b,c). Each yellow box indicates the
canonical part of interest that is viewed given its canonical pose (i.e. most
frontal view by definition). Examples of canonical parts extracted from
these three views are shown in (d). The dashed cyan boxes indicate parts
that do not share the same canonical pose with the yellow canonical part.
The cyan parts have a canonical counter part in a different pose. For in-
stance, there exists a linkage structure between canonical parts P c

1
and P c

2
.

The H12 denotes the transformation to observe P c
2

when P c
1

is viewed in
its canonical position (thus, generating cyan P2). In (c), two canonical
parts P c

3
and P c

4
share the same canonical pose. In this case, the transfor-

mation H34 is just a translation because P c
3

and P c
4

are canonical at the
same time.

is shared by only two views. For that reason, the greedy
algorithm finds the optimal solution very quickly. Special
care needs to be taken if the graph contains loops. This
may occur when the orientation of a part is estimated with
low accuracy from the previous step. Typically the number
of canonical part candidates is 1/3 of the initial set of part
candidates.

3.4. Create the model
Sec. 3.3 has proposed a number of canonical part candi-

dates from the training images. So far, we have only utilized
local appearance or pair-wise geometry information to find
correspondences between parts and find the canonical part
candidates. Now we are ready to take all these candidates to
obtain a canonical part at the categorical level. This allows
to propose a 3D object category model by finding a globally
consistent and optimal combination of canonical parts.

We call a canonical part of a given category P c
i . Given

two different canonical part P c
i and P c

j , there are two ways
that they are placed with respect to each other onto the 3D
object model. In the first case, when P c

i is viewed frontally,



P c
j is also viewed frontally (Fig. 4(c)). In this case the

homographic linkage between these two canonical parts is

Hij =

[
I tij

0 1

]
, where tij is the translation vector be-

tween P c
i and P c

j . In the second case, P c
i and P c

j are not
viewed frontally simultaneously. They are, therefore, re-

lated by a full homography Hij =

[
Aij tij

0 1

]
. Hij de-

notes the transformation to observe Pj when Pi is viewed in
its most front view position. Parts P c

1 and P c
2 in Fig. 4(a,b)

have this type of linkage. Hij captures both the 2D rela-
tionship (e.g., position) between canonical parts as well as a
soft 3D relationship which is provided by the affinity trans-
formation Aij between parts. Canonical parts that are not
connected correspond to sides of the object that can never
be seen at the same time.

Given the pool of candidate canonical parts from all the
instances of a given category, we wish to calculate the set of
canonical parts at the categorical level. This can be done by
matching corresponding candidate canonical parts across all
the instances. This correspondence problem can be solved
by means of an optimization process that jointly minimizes
the appearance difference between matching candidates and
their corresponding linkage structure Aij . The 1st row of
Fig. 8 (3rd and 4th columns) shows an illustration of the
learnt cellphone model.
Implementation Details. The optimization is carried out
by exploiting similarity of appearance and the estimated
linkage structure between canonical part candidates belong-
ing to different object instances. Here, the appearance simi-
larity is computed as a chi-square distance between the his-
tograms representing the canonical region appearances. A
matching scheme such as in [1] is also possible. Similar-
ity of linkage structure is computed by comparing Aij for
every pairs of canonical part candidates Pi, Pj . Notice that
this optimization step greatly benefits of the fact that parts-
to-be-matched are canonical. This means that all the parts
are already normalized in term of their viewing angle and
scale. Furthermore, the number of canonical part candi-
dates is a small subset of the initial number of parts. All this
greatly simplifies the matching process which could have
been hardly feasible otherwise.

3.5. Interpolating views in the 3D model
In this section we study how the linkage structure is mod-

ified when the object is not viewed from a canonical view.
Consider canonical views Vi and Vj of a given object class.
Our goal is to express the relationship between canonical
parts Pi and Pj for an intermediate arbitrary view Vs as
function of an interpolation parameter s. We can write down
the following equations for the viewing constraints:

P s
i = Hs

(
(1 − s)HiP

c
i + sHjAjiP

c
i

)
P s

j = Hs

(
sHjP

c
j + (1 − s)HiAijP

c
j

)
(1)

where P s
i and P s

j are the canonical parts Pi and Pj (re-
spectively) viewed from Vs; here Pi and Pj are expressed
in term of the local feature locations composing the part;
Hi and Hj are the rectification homographies from view i
and j to their corresponding rectified views (Hi and Hj are
known given P c

i and P c
j ); H−1

s transforms view Vs into its
corresponding rectified view. It is interesting to compare
these constraints with those introduced in [22].

Similarly, we can write an additional equation for the
spatial translation constraint (related to t):

t
s
ij = Hs

(
(1 − s)tij + stji

)
(2)

where tij and tji are the translation vectors in the rectified
views. Thus, Eq. 1 and Eq. 2 allow us to estimate P s

i and P s
j

from canonical regions Pi and Pj such that the interpolation
between views Vi and Vj is geometrically consistent. If we
approximate Hi � Hj � I , then Eq. 1 and Eq. 2 would
lead to a simpler linear interpolation scheme. Finally, if the
object is viewed from a canonical view (say, Vi), then s = 0,
P s

i = HsP
c
i , P s

j = HsAijP
c
j , and t

s
ij = Hstij .

4. Recognizing a new image
Given a new image, our task is to detect whether a par-

ticular type of object exists, localize where the instance is,
and estimate the pose orientation. Similarly to the training
procedure, we go through the following main steps: extract
image features, propose candidate canonical parts, and then
finally match an object model to the image via a global op-
timization procedure using the candidate canonical parts.

4.1. Extract features and get part candidates
We follow the same procedure to find local interest

points by using the Saliency detector [13]. Each detected
patch is then characterized by a 128-dimension SIFT vector
[18]. Given an object model, say the “cellphone” model,
we first find a list of canonical part candidates by the fol-
lowing procedure. For each canonical part of the model, we
greedily search through the test image by a scanning win-
dow across pixel locations, scales and orientations. Canon-
ical parts and test parts are matched by comparing the dis-
tributions of features belonging to the relevant regions. The
most probably N firings (typically 5) are retained as the N
candidates for a canonical part P c

i .

4.2. Match a model to the image
Let’s denote P c

h and P c
k as two canonical parts from the

object model, and P t
i and P t

j as two candidate parts from
the test image, corresponding to the learnt canonical parts
respectively. The goal in recognition is to find a set of
optimal matches of {P t

i , P t
j , ...} with respect to the object

model, defined by the canonical parts {P c
h, P c

k , ...} and their
geometric relations {Hc

hk, ...}.
In the optimization procedure, just like in the training,

two canonical parts are related to each other by a full



Hkh transformation. In other words, when one is viewed
frontally, the other is foreshortened, and the amount of fore-
shortening depends on Hkh. The optimization equations
can be derived from Eq. 1 and Eq. 2 since the object in the
test image can be at an arbitrary pose:

P t
i −H (1 − s)P c

h
+ sAhkP c

h
= 0

P t
j −H (1 − s)P c

k
+ sAkhP c

k
= 0

t
t
ij −H (1 − s)tc

hk
+ stc

kh
= 0

(3)

where H accomodates for changes in scale and rotation be-
tween canonical parts and candidate parts, and s is the in-
terpolation parameter. Notice that these general equations
contain the special case when the test object is observed
from a canonical view (say Vh), then s = 1, P t

i = HP c
h ,

P t
j = HAhkP c

k and t
t
ij = Ht

c
kh. An interesting case

arises when the object is viewed canonically and P t
h, P t

k are
canonical simultaneously; then: P t

i = HP c
h, P t

j = HP c
j

and t
t
ij = Ht

c
kh. These are the typical 2D matching con-

straints used in 2D part based recognition.
The above optimization equations form an over-

constraint system with three unknowns (s andH). When the
optimization process converges, a residual error for all pos-
sible matches can be computed from Eq. 3. Thus, for each
testing image, we obtain a minimal residual score given by
each object model. The object class label is then determined
by the model that corresponds to the lowest residual score.

The pose of the object in the testing image can be esti-
mated by projecting back to the combination of canonical
parts that give rise to the lowest residual score on the se-
lected object class model. Each canonical part is attached
to a canonical view, and the dominant canonical view gives
the estimate of the actual object pose. We can use the para-
meter s to refine the pose estimate between pairs of canoni-
cal views. Finally, scale and rotation parameters in H allow
estimating the change in scale and rotation of the test object
with the respect to the winning object model.

5. Experiments

5.1. Exp. I: Comparison with Thomas et al. [23]

We first conduct experiments on a known 3D object class
dataset (the motorbikes) used by Thomas et al. [23], pro-
vided by PASCAL Visual Object Classes (VOC) Challenge
[6]. For fair comparison, we use the same testing images
in both these classes as in [23]. Specifically, 179 images
from the ‘motorbikes-test2’ testing set are used. The mod-
els are learnt by using the provided image set of motor-
bike instances (each instance has 12-16 poses). We evalu-
ate the categorization and localization performance by using
precision-recall curves, under the same conditions as stated
by [23]. Fig.5 illustrates that our algorithm significantly
outperforms [23].
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Figure 5. Localization experiment compared with [23]. The precision-
recall curves are generated under the PASCAL VOC protocol. Examples
of detections are shown on the right. This figure is best viewed in color.

5.2. Exp. II: A New 3D Object Class Dataset

Due to the lack of established works in 3D object cate-
gories, it is difficult to obtain a standard dataset to compare
our results with. Here we offer a new 3D object category
dataset of 10 very different everyday objects: car, stapler,
iron, shoe, monitor, computer mouse, head, bicycle, toaster
and cellphone (Fig.7).
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Figure 6. (Top Left) Confusion table results for 8 categories of objects.
(Top Right) Comparison with the bag of words model. The dashed line
indicates a random chance performance. (Bottom Left) & (Bottom Right)
Pose estimation results. Notice that the most confusion takes place be-
tween symmetric poses such as frontal-vs-back, left-vs-right, etc...

Given our dataset, we test our model on a 8-category
classification task (excluding heads and monitors). To learn
each category, we randomly select 7 object instances (∼ 280
images) to build the model, and 4 novel object instances (∼
70 images) for testing. The fartherest scale is not consid-
ered in the current results. Fig.8 is a detailed summary and
explanation of our results.

Fig.6 is a summary of the classification results given 8
object categories. We achieve an average performance of
75.65% on 8 classes. An important observation to make
is that our model is far more superior than a simple bag
of words model, where only the appearance information is
captured. Fig.6 (top-right) compares the average classifica-
tion result of our model with a bag of words model similarly



to [5]. Fig.6 (bottom) are pose estimation results. This is an
extremely challenging task. The algorithm not only needs
to make a correct overall class decision, but also chooses
the correct pose (angle and height) of the object.

6. Discussions
We have proposed a novel model to represent 3D object

classes. To tackle this formidable task, we emphasize on
learning both the diagnostic appearances of the objects as
well as the 3D geometric relationships among these parts.
We would like to make the following concluding remarks
of this paper.

• While we have proposed a model for object categorization,
the general framework is useful for any degrees of variability
in appearances and/or geometry. It would be interesting to
see how our model might offer a unified approach to learn
and detect both individual objects and object categories.

• We consider our model representation the most important
contribution of this work. There is still much room to im-
prove the learning scheme. We are planning to cast this into
a probabilistic framework for training and recognition.

• A number of issues remain unexplored. We would like to ex-
plore how feature detectors and descriptors might influence
the robustness of the model. Furthermore, much is left to be
done in recognition, where one is inevitably searching in a
large space of possibilities.
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Figure 7. Sample images from our 3D object category dataset. Our dataset
consists of 10 different everyday object categories under 8 viewing angles,
3 heights and 3 scales for a total number of ∼ 7000 images.
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Figure 8. Summary of the learnt 3D object category models, sample test images and binary detection results (ROC). This figure should be viewed in colors.
Column 1 presents two correctly identified sample testing images. The red bounding box on each image indicates the best combination of canonical parts
(i.e., that of the smallest error function), whereas the thin green boxes inside the red box correspond to the canonical parts detected on the object. Using
the pose estimation scheme, we are able to predict which pose this particular instance of the model comes from. Column 2 shows the binary detection
result in ROC curves. Column 3 visualizes the learnt model of each object category. We show here a single object instance from the training images. Each
dashed box indicates a particular view of the object instance. A subset of the learnt canonical parts is presented for each view. Across from different views,
the canonical parts relationships are denoted by the arrows. Note that for clarity, we only visualize a small number of canonical parts as well as their H.
Column 4 illustrates the appearance variability of a given canonical part. For each object model, 3 or 4 canonical parts are shown, indicated by the boxes.
For each canonical part (i.e. within each box), we show a number of examples that belong to the same part. Note that these parts not only share a similar
appearance, but also similar locations with respect to the object. This figure is best viewed in color and with magnification.
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