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Why shading, paint, and texture matters in
object recognition

* We want to recognize objects independently from
— surface colorings
— lighting
— surface texture

* One approach: learn appearance-based models of objects,
spanning the space of all possible

« Alternate approach: develop bottom-up processing to
separate shading from paint from texture. Hence, we study
those 1ssues today.
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* From a single image:
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* From a sequence of images:
— separate stable from varying component

* From a stereo pair
— separate shading, paint, occlusion.
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Abstract

Image intensity variations can result from several different object
surface effects, including shading from 3-dimensional relief of the
object, or paint on the surface itsell. An essential problem in vision,
which people solve naturally, 1s to attribute the proper physical
cause, e.g. surface reliel or paint, to an observed image. We ad-

dressed this nroblem with an annroach combining nsvehonhvsical
8.50x 11.00 in




survey instructions

UntitledS

Pretend that each of the following pictures 1s a photograph of work
made by either a painter or a sculptor.

The painter could use paint, markers, air brushes, computer, elc.,
lo make any kind of mark on a flat canvas. The paint had no
3-dimensionalily, everything was perfectly flal.

The sculptor could make 3-dunensional objects, but could make no
markings on them. She could mold, sculpt, and scrape her sculp-
tures, but could not draw or paint., All the objects were made oul
of a uniform plaster material and were made vistble by lighting and
shading effects.

The subjects used a 5-point rating scale to indicate whether each 1mage was made
by the painter (P) or sculptor (5): 5, 87,7, P7, P.

x 11.00 in




SUrvey responses

intensity: score frequency for each image

10 20 30 40 20 60
iIimage humber (sorted by shapeness)

Figure 2: Histogram of survey responses. Intensity shows the number of responses
5 8 A I \ I

of cach score (vertical scale) for each image (horizontal, sorted 1n increasing order
of shapeness).







Evaluate the prior probability
of the all-shape and all-reflectance explanations
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Figure 3: 28 of the 60 test images, arranged in decreasing order of subjects’
shapeness ratings. Left: Subjects’ rankings. Right: Algorithm’s rankings.




algorithm performance vs people
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Rank order correlation with mean image rating
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Figure 4: Correlation of individual subjects’ image ratings compared with the
mean rating (bars) compared with correlation of algorithm’s rating with the mean
rating (dashed line).




Separating shading from paint

* From a single image:
— 1dentify all-shading versus all-paint

— locally separate shading from paint
* From a sequence of images:
— separate stable from varying component

* From a stereo pair
— separate shading, paint, occlusion.



Learning to separate shading from paint

Marshall F. Tappen!
William T. Freeman!
Edward H. Adelson!:?
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>MIT Dept. Brain and Cognitive Sciences



Forming an Image

Surface



Forming an Image
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N
ZKW): [lluminate the surface to get:

Surface Shading Image

The “shading image™ 1s the interaction of the shape
of the surface and the 1llumination



Painting the Surface

L

Scene







Scene Image

We can also include a reflectance pattern or a “paint™
image. Now shading and reflectance effects combine to
create the observed image.



Goal: decompose the image into shading and reflectance
components.

Image Shading Image Reflectance Image



Goal: decompose the image into shading and reflectance
components.

Image Shading Image Reflectance Image

 These types of images are known as intrinsic images (Barrow and
Tenenbaum).

* Note: while the images multiply, we work in a gamma-corrected
domain and assume the images add.



Why compute these intrinsic images



Why compute these intrinsic images

« Ability to reason about shading and reflectance
independently i1s necessary for most image understanding
tasks.

— Material recognition
— Image segmentation

e Want to understand how humans might do the task.

e For image editing, want access and modify the intrinsic
1mages separately.




Treat the separation as a labeling problem



Treat the separation as a labeling problem

* We want to identify what parts of the image
were caused by shape changes and what
parts were caused by paint changes.



Treat the separation as a labeling problem

* We want to identify what parts of the image
were caused by shape changes and what
parts were caused by paint changes.

* But how represent that? Can’t label pixels
of the image as “‘shading” or “paint”.



Treat the separation as a labeling problem

* We want to identify what parts of the image
were caused by shape changes and what
parts were caused by paint changes.

* But how represent that? Can’t label pixels
of the image as “‘shading” or “paint”.

* Solution: we’ll label gradients 1n the 1image
as being caused by shading or paint.



Treat the separation as a labeling problem

* We want to identify what parts of the image
were caused by shape changes and what
parts were caused by paint changes.

* But how represent that? Can’t label pixels
of the image as “‘shading” or “paint”.

* Solution: we’ll label gradients 1n the 1image
as being caused by shading or paint.

* Assume that image gradients have only one
cause.



Recovering Intrinsic Images

Classify each derivative

Original x derivative image (White is reflectance)



Recovering Intrinsic Images

e (lassify each x and y image derivative as being
caused by either shading or a reflectance change

Classify each derivative

Original x derivative image (White is reflectance)



Recovering Intrinsic Images

e (lassify each x and y image derivative as being
caused by either shading or a reflectance change

* Recover the intrinsic 1mages by finding the least-
squares reconstruction from each set of labeled
derivatives. (Fast Matlab code for that available
from Yair Weiss’s web page.)

P )

s

Classify each derivative
(White 1s reflectance)

Original x derivative image



Classic algorithm: Retinex

-

(a) An example of a Mon- (b) The reflectance pattern (¢) The illumination pattern
drian image. of the image. of the image.

e Assume world 1s made up of Mondrian reflectance
patterns and smooth 1llumination

* (Can classity derivatives by the magnitude of the
derivative



Outline of our algorithm



Outline of our algorithm

* Gather local evidence for shading or
reflectance
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— Assume a probabilistic model and use “belief
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Outline of our algorithm

* Gather local evidence for shading or
reflectance

— Color (chromaticity changes)
— Form (local image patterns)

* Integrate the local evidence across space.

— Assume a probabilistic model and use “belief
propagation’.

* Results shown on example 1images



Probabilistic graphical model

Derivative Labels mmm) O O
(hidden random

variables that we

want to estimate)



Probabilistic graphical model

e [.ocal evidence

Derivative Labels =)




Probabilistic graphical model

e [.ocal evidence

Local Color Evidence

!

Derivative Labels =)



Probabilistic graphical model

e [.ocal evidence

Local Color Evidence

!

<¢mmmm Some statistical
relationship that
we’ll specify

Derivative Labels =)



Probabilistic graphical model

e [.ocal evidence

Local Form Evidence =) @1 ocal Color Evidence

Derivative Labels =)



Probabilistic graphical model

Propagate the local evidence in Markov Random Field.
This strategy can be used to solve other low-level vision problems.

Local Evidence

11

Hidden state to be mm)
estimated

\ Influence of Neighbor



Classifying Color Changes

Chromaticity Changes
Angle between
the two vectors,
0, 1s greater
than 0

Red

Green



Classifying Color Changes

Chromaticity Changes Intensity Changes

Angle between
the two vectors,

Angle between
two vectors, 6,

6, 1s greater equals 0
than O
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Green Green




® O’ Color Classification Algorithm
O

1. Normalize the two color vectors ¢,

) \-/C2

2. f(cyocy)>T

* Derivative 1s a reflectance change

and c,

* Otherwise, label derivative as shading



Result using only color information

1 ' ‘
Lo

(a) Original Image (b) Shading Image (¢) Reflectance Image

Figure 1: Example. Computed using Color Detector. To facilitate printing, the intrinsic
images have been computed from a gray-scale version of the image. The color information
1s used solely for classifying derivatives in the gray-scale copy of the image.







Shading Reflectance




Reflectance

Shading

* Some changes are ambiguous
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® Results Using Only Color
O

Shading Reflectance

* Some changes are ambiguous
 Intensity changes could be caused by shading or
reflectance
— So we label it as “ambiguous”
— Need more information



Q P @ Utilizing local intensity patterns
O QO O
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Q p @ Utilizing local intensity patterns
O QO O

* The painted eye and
the ripples of the
fabric have very
different appearances

e Can learn classifiers
which take advantage
of these differences




Shading/paint training set

Examples from Reflectance Change Training Set




From Weak to Strong Classifiers:
Boosting

Individually these weak classifiers aren’t very good.
Can be combined 1nto a single strong classifier.
Call the classification from a weak classifier 7 (x).

Each &,(x) votes for the classification of x (-1 or 1).

Those votes are weighted and combined to produce a
final classification.

H(x) = sign Eocihl.(x)}



e y @ Using Local Intensity Patterns
O QO O
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e Create a set of weak classifiers that use a
small 1mage patch to classify each
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e y @ Using Local Intensity Patterns
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e Create a set of weak classifiers that use a
small 1mage patch to classify each
derivative

 The classification of a derivative:

1o
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e y @ Using Local Intensity Patterns
O QO O

e Create a set of weak classifiers that use a
small 1mage patch to classify each
derivative

 The classification of a derivative:

abs[n *n >T
N I



f(x)=0 (Eatht (x)}




f(x)=0 (Eatht (x)}




AdaBoost

(Freund & Shapire 95)

Initial uniform weight
on training examples

weak classifier 1

Incorrect classifications
re-weighted more heavily

/

— — =
——
——
— -
—

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




A d aB 00 St Initial uniform weight O O

on training examples @)
(Freund & Shapire 95) O
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Incorrect classifications LO
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A d aB 00 St Initial uniform weight ® O

on training examples @)
(Freund & Shapire 95) O
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weak classifier 1

Incorrect classifications
re-weighted more heavily

)
O
weak classifier 2 I
\\O . O
1

weak classifier 3 —> O
\
O O
\
Final classifier is weighted O \ O
\

combination of weak classifiers

\
\
Viola and Jones, Robust object detection using a boosted cascade of simple features, CYJPR \ O
1




Beautiful AdaBoost Properties

e Training Error approaches 0 exponentially
* Bounds on Testing Error Exist
— Analysis is based on the Margin of the Training Set

* Weights are related the margin of the example
— Examples with negative margin have large weight
— Examples with positive margin have small weights

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Ada-Boost Tutorial

* Given a Weak learning algorithm

— Learner takes a training set and returns the best
classifier from a weak concept space
 required to have error < 50%

 Starting with a Training Set (1nitial weights 1/n)
— Weak learning algorithm returns a classifier

— Reweight the examples
« Weight on correct examples 1s decreased
« Weight on errors is decreased

* Final classifier 1s a weighted majority of Weak
Classifiers

— Weak classifiers with low error get larger weight

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



) @ 0 Learning the Classifiers

o8 5

O

« The weak classifiers, 4,(x), and the weights a are chosen

using the AdaBoost algorithm (see for
introduction).

e Train on synthetic images.
« Assume the light direction 1s from the right.

 Filters for the candidate weak classifiers—cascade two out of
these 4 categories:
— Multiple orientations of 15t derivative of Gaussian filters
— Multiple orientations of 2" derivative of Gaussian filters
— Several widths of Gaussian filters
— 1mpulse


http://www.boosting.org/
http://www.boosting.org/

Classifiers Chosen

q Q q (assuming 1llumination from above)
O O
O

Weak Classifiers

* These are the filters chosen for classifying
vertical derivatives when the 1llumination
comes from the top of the image.

» Each filter corresponds to one 4,(x)



Characterizing the learned
classifiers
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Weak Classifiers

e Learned rules for all (but classifier 9) are: if rectified filter
response 1s above a threshold, vote for reflectance.
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Characterizing the learned
classifiers

Weak Classifiers

Learned rules for all (but classifier 9) are: 1f rectified filter
response 1s above a threshold, vote for reflectance.

Yes, contrast and scale are all folded into that. We perform an
overall contrast normalization on all images.

Classifier 1 (the best performing single filter to apply) is an
empirical justification for Retinex algorithm: treat small derivative
values as shading.

The other classifiers look for image structure oriented
perpendicular to lighting direction as evidence for reflectance
change.



Results Using Only
Form Information

Input Image



Results Using Only
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Results Using Only
Form Information

Input Image Shading Image Reflectance Image



Using Both Color and
Form Information

- Reflectance



Using Both Color and
Form Information

T

Inpt 1mage

- Reflectance

Results only using
chromaticity. ®

£
O




Some Areas of the Image Are Ambiguous
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Some Areas of the Image Are Ambiguous




Some Areas of the Image Are Ambiguous

Is the change here better explained as

Reflectance



Propagating Information

* Can disambiguate areas by propagating
information from reliable areas of the image
into ambiguous areas of the 1image

r

~”




Propagating Information

* Can disambiguate areas by propagating
information from reliable areas of the image
into ambiguous areas of the 1image




Markov Random Fields

* Allows rich probabilistic models for
1mages.

e But built 1n a local, modular way. Learn
local relationships, get global effects out.




ol B LR N TN
P(X,y) __Z - i




Inference in MRF’s

* Inference in MREF’s. (given observations, how
infer the hidden states?)

— (G1bbs sampling, simulated annealing
— Iterated condtional modes (ICM)

— Variational methods

— Belief propagation

— QGraph cuts

NEE www.al.mit.edu/people/wtt/learningvision el
tutorial on learning and vision.



http://www.ai.mit.edu/people/wtf/learningvision
http://www.ai.mit.edu/people/wtf/learningvision

Derivation of belief propagation




The posterior factorizes

X e = MEan sum sum P(x,,X,, X5, Vi, Yy, V3)

X1 X9 X3

= mean sum sum D(x,, y,)

D(x,,y,) P(x;,x,)
D(x;,y;) W(x,,x3)

O O O

D(x,,y,) D(x,,¥,) D(x;, 5)

: W(x,x,) : W(x,,x;) :




Propagation rules

X e = MEaN sum sum P(x,,X,, X5, Vi, Yy, V3)

X1 X9 X3

Xmse = mean sum sum D(x,, y,)

D(x,,y,) P(x;,x,)

D(x;,y;) W(x,,x3)
Yumsp = MEAl D(x,, 1))

1 O O O

Sl)];m (I)(xz ) yz) 1P(x1 ) xz) (5, 7,) (x,12) (x,,1)
2

sgm D(x,,v,) P(x,,x;) @W()@ q,(xpx})@
3




Propagation rules
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Belief propagation: the nosey neighbor

“Given everything I've heard, and | know how

you think about things, here’s what you
should think.”

(Given the probabilities of my being in
different states, and how my states relate to
your states, here’s what | think the
probabilities of your states should be)




Belief propagation messages

A message: can be thought of as a set of weights on each of your
possible states

To send a message: Multiply together all the incoming messages, except from
the node you’re sending to,

then multiply by the compatibility matrix and marginalize over the sender’s
states.

M7 )= Jytox) T M)

kKEN (j)\i




Beliefs

To find a node’s beliefs: Multiply together all the messages coming in to
that node.

b(x;)= M]’f(xj)

kKEN(J)




Optimal solution in a chain or tree:

* “Do the right thing” Bayesian algorithm.

* For Gaussian random variables over time:
Kalman filter.

* For hidden Markov models: forward/backward
algorithm (and MAP variant is Viterbi).







Xise = mean O(x;, y,)

X1

sum D(x,,y,) P(x,,x,)

sgm (I)(x39 J/3) ‘P(x29x3) ‘P(Xll X3)




No factorization with loops!

X yse = Mean O(x;, )

X1

SUm D(x,, y,) W(x,x,)

Sl)l;m (I)(x39 yg) ‘P(x29x3) ‘P(Xb X3)




Justification for running belief propagation in

* Experimental results:

— Error—correcting codes Kschischang and Frey, 1998;
McEliece et al., 1998

Freeman and Pasztor, 1999;

— Vision applications Frey, 2000

* Theoretical results:

— For Gaussian processes, means are correct.

Weiss and Freeman, 1999

— Large neighborhood local maximum for MAP.

. Weiss and Freeman, 2000 ]
— Equivalent to Bethe approx. in statistical physics.

Yedidia, Freeman, and Weiss, 2000




Propagating Information

» Extend probability model to consider relationship
between neighboring derivatives

& l—ﬁ]

™~ 1-p B

* 3 controls how necessary it is for two nodes to have
the same label

/_ w(xiaxj) = |:

» Use Generalized Belief Propagation to infer labels.
(Yedidia et al. 2000)



Propagating Information

» Extend probability model to consider relationship
between neighboring derivatives

Classification
) derlvatlve

(B 1-B
/4—11)(»,)[_[3 ﬁ]

* 3 controls how necessary it is for two nodes to have
the same label

» Use Generalized Belief Propagation to infer labels.
(Yedidia et al. 2000)



Setting Compatibilities

All compatibilities have form
P 1-P
I-p P

Assume derivatives along image

contours should have the same
label

Set B close to 1 when the

derivatives are along a contour s T

Set B to 0.5 1f no contour 1s 0 Lo
present ' '

B 1s computed from a linear
function of the image gradient’s
magnitude and orientation

w<x,.,x,->=[




Setting Compatibilities

All compatibilities have form
P 1-P
I-p P

Assume derivatives along image

contours should have the same
label

Set B close to 1 when the
derivatives are along a contour

Set B to 0.5 1f no contour 1s
present

B 1s computed from a linear
function of the image gradient’s
magnitude and orientation

w<x,.,x,->=[




Improvements Using Propagation
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Input Image Reflectance Image Reflectance Image
Without Propagation With Propagation




More results...



J. J. Gibson,
1968

The Senses Considered

as Perceptual Systems

James J. Gibson | Cornell University




TCHOCLANCeSs O Uurraces may combine to causce borders n

¢ ambient array. That is, they may cooperate, providing a double

° assurance of a border; or ecither may cause a border independently of
the other (see Figure 10.13). For example, one kind of wallpaper may
° ° 1 , structure light only by being embossed, having no differences of color

or IHEth-(l pattern Another kind may structure light only by differences

n pigment or ink, having no appreciable roughness of texture. But a

l 968 ommon sort of wallpaper has both embossing and printing in coinci

dence. The same thing h ippens in nature with surfaces of rock and vege-

tation. One or the other kind of optical structuring, if not both, is prac-

tically guaranteed in nature. For this reason the information for the
existence of a surface as against empty air is usually trustworthy.

Conc i\.;‘!v:j. these two principles could work in exact opposition to on¢

another. It is theoretically possible to construct a which would be

yvory

invisible at a fixed monocular \Llf'nn.-l‘.“lillt It could be done with

smooth unpatterned surfaces by a precise counterbalancing of inclin

noo ation
and reflectance so that all borders in the arrav

junctions ¢ i he room -le\.ll‘,l‘,’ ared. The

Company

The Senses Considered

Figure 10.13 Embossing without printing and printing with-

as Perceptual Systems [l mboming. Lottecs can bo wads by altering ol the lncli

tonotanp per surtace or by itering My ¢ Hectanod Photo

by Benjamin

James J. Gibson | Cornell University
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Gibson 1mage
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shading

reflectance a)mpdny




Clothing catalog image

Original
(from LL Bean catalog)



Clothing catalog image

Original Shading
(from LL Bean catalog)



Clothing catalog image

Original Shading Reflectance
(from LL Bean catalog)




Sign at train crossing
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Separated 1images
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original shading reflectance

Note: color cue omitted for
this processing




(a) Original Image



(b) Shape Image (c) Reflectance Image




Finally, returning to our explanatory example...

Ideal shading image  Ideal paint image



Finally, returning to our explanatory example...

input Ideal shading image  Ideal paint image

Algorithm output.
Note: occluding edges
labeled as reflectance.




Separating shading from paint

* From a single image:
— 1dentify all-shading versus all-paint
— locally separate shading from paint

* From a sequence of images:

— separate stable from varying component

* From a stereo pair
— separate shading, paint, occlusion.



Yair Weiss’s ICCV 2001 paper

Untitled13

In: Proc ICCV (2001)

Deriving intrinsic images from image sequences

Yair Weiss
Computer Science Division
UC Berkeley
Berkeley, CA 94720-1776
yweiss@cs.berkeley.edu

Abstract based template matching and shape-from-shading would be
significantly less brittle if they could work on the intrinsic
Intrinsic images are a useful midlevel description of scenes image representation rather than on the input image.

proposed by Barrow and Tenenbaum [1]. An image is de- Recovering two intrinsic images from a single input im-
8.50x 11.00 in




Assume multiple 1mages where
reflectance 1s constant but lighting varies

Untitled1

an

ire 2: Images from a “webcam™ at www.berkeley.edu/webcams/sproul.ntml. Most of the changes are changes
nination. Can we use such image sequences to derive intrinsic images?
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synthetic example

Untitled3

RN

first frame last frame ML illumination ML reflectance min filter mean filter

Figure 5: A synthetic sequence in which a square cast shadow translates diagonally. Note that the pixels surrounding the
diamond are always in shadow, yet their estimated reflectance is the same as that of pixels that were always in light. In the
min and mean filters, this is not the case and the estimated reflectances are quite wrong.




Result from Yair’s multi-image algorithm
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Figure 7: Results on one face from the Yale Face Database B [5]. There were 64 images taken with variable lighting. Note
that the recovered reflectance image is almost free of specularities and is free of cast shadows. The ML illumination images
are shown with a logarithmic nonlinearity to increase dynamic range.




Result from Yair’s multi-image algorithm
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Separating shading from paint

* From a single image:
— 1dentify all-shading versus all-paint
— locally separate shading from paint
* From a sequence of 1images:
— separate stable from varying component

* From a stereo pair
— separate shading, paint, occlusion.
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Intrinsic 1mages from stereo

 Input: stereo pair (from Flickr or other)

e QOutput: shading image, reflectance image,
material/lighting parameters for different
regions, occluding contours.

* This may help make stereo better (fewer
unexplained phenomena). And could
provide a great training set for the
monocular image intrinsic image problem.



