
Low-level vision:  shading, paint, 
and texture

Bill Freeman
October 27, 2008



Why shading, paint, and texture matters in 
object recognition

• We want to recognize objects independently from
– surface colorings
– lighting
– surface texture

• One approach:  learn appearance-based models of objects, 
spanning the space of all possible

• Alternate approach:  develop bottom-up processing to 
separate shading from paint from texture.  Hence, we study 
those issues today. 
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end

Shading Paint



end



survey instructions



survey responses



end



Evaluate the prior probability 
of the all-shape and all-reflectance explanations



end



algorithm performance vs people
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Forming an Image

Surface



Forming an Image

Surface

Illuminate the surface to get:

Shading Image
The “shading image” is the interaction of the shape
of the surface and the illumination
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Scene



Painting the Surface

Scene Image



Painting the Surface

Scene
We can also include a reflectance pattern or a “paint” 
image.  Now shading and reflectance effects combine to 
create the observed image.

Image



Goal:  decompose the image into shading and reflectance 
components.

=

Shading ImageImage Reflectance Image



Goal:  decompose the image into shading and reflectance 
components.

• These types of images are known as intrinsic images (Barrow and 
Tenenbaum).

•  Note:  while the images multiply, we work in a gamma-corrected 
domain and assume the images add. 

=

Shading ImageImage Reflectance Image



Why compute these intrinsic images



Why compute these intrinsic images

•  Ability to reason about shading and reflectance 
independently is necessary for most image understanding 
tasks.
– Material recognition
– Image segmentation

• Want to understand how humans might do the task.
• For image editing, want access and modify the intrinsic 

images separately.
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Treat the separation as a labeling problem

• We want to identify what parts of the image 
were caused by shape changes and what 
parts were caused by paint changes.

• But how represent that?  Can’t label pixels 
of the image as “shading” or “paint”.

• Solution:  we’ll label gradients in the image 
as being caused by shading or paint.

• Assume that image gradients have only one 
cause.
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Recovering Intrinsic Images
• Classify each x and y image derivative as being 

caused by either shading or a reflectance change
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Recovering Intrinsic Images
• Classify each x and y image derivative as being 

caused by either shading or a reflectance change
• Recover the intrinsic images by finding the least-

squares reconstruction from each set of labeled 
derivatives.  (Fast Matlab code for that available 
from Yair Weiss’s web page.)

Original x derivative image Classify each derivative
(White is reflectance)



Classic algorithm: Retinex

• Assume world is made up of Mondrian reflectance 
patterns and smooth illumination

• Can classify derivatives by the magnitude of the 
derivative
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Outline of our algorithm 

• Gather local evidence for shading or 
reflectance
– Color (chromaticity changes)
– Form (local image patterns)

• Integrate the local evidence across space.
– Assume a probabilistic model and use “belief 

propagation”.

• Results shown on example images



Probabilistic graphical model

Unknown
Derivative Labels
(hidden random 
variables that we 
want to estimate)



Derivative Labels

• Local evidence

Probabilistic graphical model
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Local Color Evidence

• Local evidence

Probabilistic graphical model



Derivative Labels

Local Color Evidence

• Local evidence

Probabilistic graphical model

Some statistical 
relationship that 
we’ll specify



Derivative Labels

Local Color EvidenceLocal Form Evidence

Probabilistic graphical model
• Local evidence



Hidden state to be 
estimated

Local Evidence

Influence of Neighbor

 Propagate the local evidence in Markov Random Field. 
This strategy can be used to solve other low-level vision problems.

Probabilistic graphical model
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R
ed

Green

Blue

Intensity Changes
Angle between 
the two vectors, 
θ,  is greater 
than 0

Angle between 
two vectors, θ, 
equals 0



1. Normalize the two color vectors c1 
and c2

2. If (c1 c2) > T
• Derivative is a reflectance change
• Otherwise, label derivative as shading

Color Classification Algorithm

c1 c2



Result using only color information
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Input



Results Using Only Color

Shading ReflectanceInput



Results Using Only Color

• Some changes are ambiguous
Shading ReflectanceInput



Results Using Only Color

• Some changes are ambiguous
• Intensity changes could be caused by shading or 

reflectance
– So we label it as “ambiguous”
– Need more information

Shading ReflectanceInput



Utilizing local intensity patterns



Utilizing local intensity patterns



Utilizing local intensity patterns

• The painted eye and 
the ripples of the 
fabric have very 
different appearances

• Can learn classifiers 
which take advantage 
of these differences



Shading/paint training set

Examples from Shading Training Set

Examples from Reflectance Change Training Set



From Weak to Strong Classifiers:  
Boosting

• Individually these weak classifiers aren’t very good.
• Can be combined into a single strong classifier.
• Call the classification from a weak classifier hi(x).

• Each hi(x) votes for the classification of x (-1 or 1).
• Those votes are weighted and combined to produce a 

final classification.
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Using Local Intensity Patterns

• Create a set of weak classifiers that use a 
small image patch to classify each 
derivative

• The classification of a derivative:

I
p



F

> Tabs



AdaBoost Initial uniform weight 
on training examples

(Freund & Shapire ’95)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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AdaBoost Initial uniform weight 
on training examples

weak classifier 1

weak classifier 2

Incorrect classifications
 re-weighted more heavily

weak classifier 3

Final classifier is weighted 
combination of weak classifiers

(Freund & Shapire ’95)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Beautiful AdaBoost Properties
• Training Error approaches 0 exponentially
• Bounds on Testing Error Exist

– Analysis is based on the Margin of the Training Set
• Weights are related the margin of the example

– Examples with negative margin have large weight
– Examples with positive margin have small weights

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Ada-Boost Tutorial

• Given a Weak learning algorithm
– Learner takes a training set and returns the best 

classifier from a weak concept space 
• required to have error < 50%

• Starting with a Training Set (initial weights 1/n)
– Weak learning algorithm returns a classifier
– Reweight the examples

• Weight on correct examples is decreased
• Weight on errors is decreased

• Final classifier is a weighted majority of Weak 
Classifiers
– Weak classifiers with low error get larger weight

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Learning the Classifiers

• The weak classifiers, hi(x), and the weights α are chosen 
using the AdaBoost algorithm (see www.boosting.org for 
introduction).

• Train on synthetic images.
• Assume the light direction is from the right.

• Filters for the candidate weak classifiers—cascade two out of 
these 4 categories:
– Multiple orientations of 1st derivative of Gaussian filters
– Multiple orientations of 2nd derivative of Gaussian filters
– Several widths of Gaussian filters
– impulse

http://www.boosting.org/
http://www.boosting.org/


Classifiers Chosen 
(assuming illumination from above)

• These are the filters chosen for classifying 
vertical derivatives when the illumination 
comes from the top of the image.

• Each filter corresponds to one hi(x)
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Characterizing the learned 
classifiers

• Learned rules for all (but classifier 9) are:  if rectified filter 
response is above a threshold, vote for reflectance.

• Yes, contrast and scale are all folded into that.  We perform an 
overall contrast normalization on all images.

• Classifier 1 (the best performing single filter to apply) is an 
empirical justification for Retinex algorithm: treat small derivative 
values as shading.

• The other classifiers look for image structure oriented 
perpendicular to lighting direction as evidence for reflectance 
change.
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Results Using Only 
Form Information

Input Image Shading Image Reflectance Image



Using Both Color and 
Form Information

Shading ReflectanceInput image



Using Both Color and 
Form Information

Results only using 
chromaticity.

Shading ReflectanceInput image



Some Areas of the Image Are Ambiguous 
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Some Areas of the Image Are Ambiguous 

Input

Shading

Is the change here better explained as



Some Areas of the Image Are Ambiguous 

Input

Shading Reflectance

Is the change here better explained as

or ?



Propagating Information
• Can disambiguate areas by propagating 

information from reliable areas of the image 
into ambiguous areas of the image



Propagating Information
• Can disambiguate areas by propagating 

information from reliable areas of the image 
into ambiguous areas of the image



Markov Random Fields

• Allows rich probabilistic models for 
images.

• But built in a local, modular way.  Learn 
local relationships, get global effects out.



Network joint probability

scene
image

Scene-scene
compatibility

function
neighboring
scene nodes

local 
observations

Image-scene
compatibility

function
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Inference in MRF’s

• Inference in MRF’s. (given observations, how 
infer the hidden states?)
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

See www.ai.mit.edu/people/wtf/learningvision for a 
tutorial on learning and vision.

http://www.ai.mit.edu/people/wtf/learningvision
http://www.ai.mit.edu/people/wtf/learningvision
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Belief propaga)on:  the nosey neighbor 

“Given everything I’ve heard, and I know how 
you think about things, here’s what you 
should think.”

(Given the probabili)es of my being in 
different states, and how my states relate to 
your states, here’s what I think the 
probabili)es of your states should be)



Belief propaga)on messages

jii =
j

To send a message:  Mul)ply together all the incoming messages, except from 
the node you’re sending to,
then mul)ply by the compa)bility matrix and marginalize over the sender’s 
states. 

A message:  can be thought of as a set of weights on each of your 
possible states



Beliefs

j

To find a node’s beliefs:  Mul)ply together all the messages coming in to 
that node.



Op)mal solu)on in a chain or tree:

• “Do the right thing” Bayesian algorithm.

• For Gaussian random variables over )me:  
Kalman filter.

• For hidden Markov models: forward/backward 
algorithm (and MAP variant is Viterbi).
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No factoriza)on with loops!
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Jus)fica)on for running belief propaga)on in 

• Experimental results:

– Error‐correc)ng codes

– Vision applica)ons

• Theore)cal results:

– For Gaussian processes, means are correct.

– Large neighborhood local maximum for MAP.

– Equivalent to Bethe approx. in sta)s)cal physics.
Weiss and Freeman, 2000

Yedidia, Freeman, and Weiss, 2000

Freeman and Pasztor, 1999;
Frey, 2000

Kschischang and Frey, 1998;
McEliece et al., 1998

Weiss and Freeman, 1999



• Extend probability model to consider relationship 
between neighboring derivatives

•β controls how necessary it is for two nodes to have 
the same label

• Use Generalized Belief Propagation to infer labels. 
(Yedidia et al. 2000)

Propagating Information



• Extend probability model to consider relationship 
between neighboring derivatives

•β controls how necessary it is for two nodes to have 
the same label

• Use Generalized Belief Propagation to infer labels. 
(Yedidia et al. 2000)

Propagating Information

Classification 
of a derivative



Setting Compatibilities
• All compatibilities have form

• Assume derivatives along image 
contours should have the same 
label

• Set β close to 1 when the 
derivatives are along a contour

• Set β to 0.5 if no contour is 
present

• β is computed from a linear 
function of the image gradient’s 
magnitude and orientation
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Improvements Using Propagation

Input Image Reflectance Image
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Improvements Using Propagation

Input Image Reflectance Image
With Propagation

Reflectance Image
Without Propagation



More results…
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Gibson image

shading

reflectance

original



Clothing catalog image

Original
(from LL Bean catalog)
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Clothing catalog image

Original
(from LL Bean catalog)

Shading Reflectance



Sign at train crossing



Separated images

original



Separated images

shadingoriginal



Separated images

shading reflectanceoriginal



Separated images

shading reflectance
Note:  color cue omitted for 

this processing

original







Finally, returning to our explanatory example…

input Ideal shading image Ideal paint image



Finally, returning to our explanatory example…

Algorithm output.
Note:  occluding edges 
labeled as reflectance.

input Ideal shading image Ideal paint image



Separating shading from paint

• From a single image:
– identify all-shading versus all-paint
– locally separate shading from paint

• From a sequence of images:
– separate stable from varying component

• From a stereo pair
– separate shading, paint, occlusion.



Yair Weiss’s ICCV 2001 paper



Assume multiple images where 
reflectance is constant but lighting varies



end



synthetic example



Result from Yair’s multi-image algorithm
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Separating shading from paint

• From a single image:
– identify all-shading versus all-paint
– locally separate shading from paint

• From a sequence of images:
– separate stable from varying component

• From a stereo pair
– separate shading, paint, occlusion.



end



Intrinsic images from stereo

• Input:  stereo pair (from Flickr or other)
• Output:  shading image, reflectance image, 

material/lighting parameters for different 
regions, occluding contours.

• This may help make stereo better (fewer 
unexplained phenomena).  And could 
provide a great training set for the 
monocular image intrinsic image problem.


