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80 million tiny images: a large dataset for
non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

Abstract— With the advent of the Internet, billions of images
are now freely available online and constitute a dense sampling
of the visual world. Using a variety of non-parametric methods,
we explore this world with the aid of a large dataset of 79,302,017
images collected from the Web. Motivated by psychophysical
results showing the remarkable tolerance of the human visual
system to degradations in image resolution, the images in the
dataset are stored as 32� 32 color images. Each image is
loosely labeled with one of the 75,062 non-abstract nouns in
English, as listed in the Wordnet lexical database. Hence the
image database gives a comprehensive coverage of all object
categories and scenes. The semantic information from Wordnet
can be used in conjunction with nearest-neighbor methods to
perform object classi�cation over a range of semantic levels
minimizing the effects of labeling noise. For certain classes that
are particularly prevalent in the dataset, such as people, we are
able to demonstrate a recognition performance comparable to
class-speci�c Viola-Jones style detectors.

Index Terms— Object recognition, tiny images, large datasets,
Internet images, nearest-neighbor methods.

I. I NTRODUCTION

With overwhelming amounts of data, many problems can be
solved without the need for sophisticated algorithms. One exam-
ple in the textual domain is Google's “Did you mean?” tool which
corrects errors in search queries, not through a complex parsing
of the query but by memorizing billions of query-answer pairs
and suggesting the one closest to the users query. In this paper,
we explore a visual analog to this tool by using a large dataset
of 79 million images and nearest-neighbor matching schemes.

When very many images are available, simple image indexing
techniques can be used to retrieve images with similar object
arrangements to the query image. If we have a big enough
database then we can �nd, with high probability, images visually
close to a query image, containing similar scenes with similar
objects arranged in similar spatial con�gurations. If the images
in the retrieval set are partially labeled, then we can propagate
the labels to the query image, so performing classi�cation.

Nearest-neighbor methods have been used in a variety of com-
puter vision problems, primarily for interest point matching [5],
[19], [28]. They have also been used for global image matching
(e.g. estimation of human pose [36]), character recognition [4],
and object recognition [5], [34]. A number of recent papers have
used large datasets of images in conjunction with purely non-
parametric methods for computer vision and graphics applications
[22], [39].

Finding images within large collections is the focus of the
content based image retrieval (CBIR) community. Their emphasis
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on really large datasets means that the chosen image represen-
tation is often relatively simple, e.g. color [17], wavelets [42]
or crude segmentations [9]. This enables very fast retrieval of
images similar to the query, for example the Cortina system
[33] demonstrates real-time retrieval from a 10 million image
collection, using a combination of texture and edge histogram
features. See Datta et al. for a survey of such methods [12].

The key question that we address in this paper is: How big
does the image dataset need to be to robustly perform recognition
using simple nearest-neighbor schemes? In fact, it is unclear that
the size of the dataset required is at all practical since there are an
effectively in�nite number of possible images the visual system
can be confronted with. What gives us hope is that the visual
world is very regular in that real world pictures occupy onlya
relatively small portion of the space of possible images.

Studying the space occupied by natural images is hard due to
the high dimensionality of the images. One way of simplifying
this task is by lowering the resolution of the images. When we
look at the images in Fig. 6, we can recognize the scene and its
constituent objects. Interestingly though, these pictures have only
32 � 32 color pixels (the entire image is just a vector of3072
dimensions with8 bits per dimension), yet at this resolution, the
images already seem to contain most of the relevant information
needed to support reliable recognition.

An important bene�t of working with tiny images is that it
becomes practical to store and manipulate datasets orders of
magnitude bigger than those typically used in computer vision.
Correspondingly, we introduce, and make available to researchers,
a dataset of79 million unique 32 � 32 color images gathered
from the Internet. Each image is loosely labeled with one of
75,062 English nouns, so the dataset covers a very large number of
visual object classes. This is in contrast to existing datasets which
provide a sparse selection of object classes. In this paper we will
study the impact on having very large datasets in combination
with simple techniques for recognizing several common object
and scene classes at different levels of categorization.

The paper is divided in three parts. In Section 2 we establish
the minimal resolution required for scene and object recognition.
In Sections 3 and 4 we introduce our dataset of79 million images
and explore some of its properties. In Section 5 we attempt
scene and object recognition using a variety of nearest-neighbor
methods. We measure performance at a number of semantic
levels, obtaining impressive results for certain object classes.

II. L OW DIMENSIONAL IMAGE REPRESENTATIONS

A number of approaches exist for computing thegist of a
image, a global low-dimensional representation that captures the
scene and its constituent objects [18], [32], [24]. We show that
very low-resolution 32� 32 color images can be used in this
role, containing enough information for scene recognition, object
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Fig. 1. a) Human performance on scene recognition as a function of resolution. The green and black curves show the performance on color and gray-scale
images respectively. For color32 � 32 images the performance only drops by7% relative to full resolution, despite having 1/64th of the pixels. b) Car
detection task on the PASCAL 2006 test dataset. The colored dots show the performance of four human subjects classifyingtiny versions of the test data.
The ROC curves of the best vision algorithms (running on fullresolution images) are shown for comparison. All lie below the performance of humans on
the tiny images, which rely on none of the high-resolution cues exploited by the computer vision algorithms. c) Humans can correctly recognize and segment
objects at very low resolutions, even when the objects in isolation can not be recognized (d).

detection and segmentation (even when the objects occupy just a
few pixels in the image).

A. Scene recognition

Studies on face perception [1], [21] have shown that only16�
16 pixels are needed for robust face recognition. This remarkable
performance is also found in a scene recognition task [31].

We evaluate the scene recognition performance of humans as
the image resolution is decreased. We used a dataset of15 scenes
that was taken from [14], [24], [32]. Each image was shown at
one of 5 possible resolutions (82, 162, 322, 642 and2562 pixels)
and the participant task was to assign the low-resolution picture
to one of the 15 different scene categories (bedroom, suburban,
industrial, kitchen, living room, coast, forest, highway,inside
city, mountain, open country, street, tall buildings, of�ce, and
store)1. Fig. 1(a) shows human performance on this task when
presented with grayscale and color images2 of varying resolution.
For grayscale images, humans need around64� 64 pixels. When
the images are in color, humans need only32 � 32 pixels to
achieve more than 80% recognition rate. Below this resolution the
performance rapidly decreases. Therefore, humans need around
3000 dimensions of either color or grayscale data to perform
this task. In the next section we show that32 � 32 color images
also preserve a great amount of local information and that many
objects can still be recognized even when they occupy just a few
pixels.

1Experimental details: 6 participants classi�ed 585 color images as be-
longing to one of the 15 scene categories from [14], [24], [32]. Images
were presented at 5 possible resolutions (82 , 162 , 322 , 642 and 2562 ). Each
image was shown at 5 possible sizes using bicubic interpolation to reduce
pixelation effects which impair recognition. Interpolation was applied to the
low-resolution image with 8 bits per pixel and color channel. Images were
not repeated across conditions. 6 additional participantsperformed the same
experiment but with gray scale images.

2100% recognition rate can not be achieved in this dataset as thereis no
perfect separation between the 15 categories.

B. Object recognition

Recently, the PASCAL object recognition challenge evaluated
a large number of algorithms in a detection task for several object
categories [13]. Fig. 1(b) shows the performances (ROC curves) of
the best performing algorithms in the car classi�cation task (i.e.
is there a car present in the image?). These algorithms require
access to relatively high resolution images. We studied theability
of human participants to perform the same detection task butusing
very low-resolution images. Human participants were shown
color images from the test set scaled to have32 pixels on the
smallest axis, preserving their aspect ratio. Fig. 1(b) shows some
examples of tiny PASCAL images. Each participant classi�ed
between200 and400 images selected randomly. Fig. 1(b) shows
the performances of four human observers that participatedin
the experiment. Although around 10% of cars are missed, the
performance is still very good, signi�cantly outperforming the
computer vision algorithms using full resolution images. This
shows that even though the images are very small, they contain
suf�cient information for accurate recognition.

Fig. 1(c) shows some representative322 images segmented by
human subjects. Despite the low resolution, suf�cient informa-
tion remains for reliable segmentation (more than 80% of the
segmented objects are correctly recognized), although anyfurther
decrease in resolution dramatically affects segmentationperfor-
mance. Fig. 1(d) shows crops of some of the smallest objects
correctly recognized when shown within the scene. Note thatin
isolation, the objects cannot be identi�ed since the resolution is
so low, hence the recognition of these objects within the scene is
almost entirely based on context.

Clearly, not all visual tasks can be solved using such low
resolution images. But the experiments in this section suggest that
32� 32 color images are the minimum viable size for recognition
tasks – the focus of the paper.

III. A LARGE DATASET OF32 � 32 IMAGES

As discussed in the previous sections,32� 32 color images con-
tain the information needed to perform a number of challenging
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Fig. 2. Statistics of our database of tiny images. a) A histogram of images per keyword collected. Around 10% of keywords have very few images. b)
Performance of the search various engines (evaluated on hand-labeled ground truth). c) Accuracy of the labels attachedat each image as a function of the
depth in the Wordnet tree (deeper corresponds to more speci�c words). d) Accuracy of labeling for different nodes of a portion of the Wordnet tree.

recognition tasks. One important advantage of very low resolution
images is that it becomes practical to work with millions of
images. In this section we will describe a dataset of108 tiny
images.

Current experiments in object recognition typically use102-104

images spread over a few different classes; the largest available
dataset being one with 256 classes[20]. Other �elds, such as
speech, routinely use106 data points for training, since they have
found that large training sets are vital for achieving low errors
rates in testing [2]. As the visual world is far more complex than
the aural one, it would seem natural to use very large set of
training images. Motivated by this, and the ability of humans to
recognize objects and scenes in32� 32 images, we have collected
a database of nearly108 such images.

A. Collection procedure

We use Wordnet [15] likely to have any kind of visual consis-
tency. We do this by extracting all non-abstract nouns from the
database, 75,062 of them in total. In contrast to existing object
recognition datasets which use a sparse selection of classes, by
collecting images for all nouns, we have a dense coverage of all
visual forms.

We selected 7 independent image search engines: Altavista,
Ask, Flickr, Cydral, Google, Picsearch and Webshots (others have
outputs correlated with these). We automatically downloadall
the images provided by each engine for all 75,846 non-abstract
nouns. Running over8 months, this method gathered 97,245,098
images in total. Once intra-word duplicates and uniform images
(images with zero variance) are removed, this number is reduced
to 79,302,017 images from 75,062 words (around 1% of the
keywords had no images). Storing this number of images at full
resolution is impractical on the standard hardware used in our
experiments so we down-sampled the images to32 � 32 as they

were gathered3. The dataset �ts onto a single hard disk, occupying
760Gb in total. The dataset may be downloaded fromhttp:
\\people.csail.mit.edu\torralba\tinyimages .

Fig. 2(a) shows a histogram of the number of images per class.
Around 10% of the query words are obscure so no images can be
found on the Internet, but for the majority of words a reasonable
number of images are found. We place an upper limit of3000
images/word to keep the total collection time to a reasonable level.
Although the gathered dataset is very large, it is not necessarily
representative of all natural images. Images on the Internet have
their own biases (e.g. objects tend to be centered and fairlylarge
in the image). However, web images de�ne an interesting visual
world for developing computer vision applications [16], [37].

B. Characterization of labeling noise

Despite a number of recent efforts for image annotation [35],
[43], collecting images from the web provides a powerful mech-
anism to build large image databases orders of magnitude larger
than is possible with manual methods. However, the images
gathered by the engines are loosely labeled in that the visual
content is often unrelated to the query word (for example, see
Fig. 10). In this section we characterize the noise present in the
labels. Among other factors, the accuracy of the labels depend on
the engine used, and the speci�city of the term used for querying.

In Fig. 2(b) we quantify the labeling noise using 3526 hand-
labeled images selected by randomly sampling images out of the
�rst 250 images returned by each online search engine for each
word. A recall-precision curve is plotted for each search engine in
which the horizontal axis represents the rank in which the image
was returned and the vertical axis is the percentage of images that
corresponded to the query. Accuracy drops after the 100th image
and then stabilizes at around 44% correct on average.

3Further comments: (i) Wordnet is a lexical dictionary, meaning that it gives
the semantic relations between words in addition to the information usually
given in a dictionary.; (ii) The tiny database is not just about objects. It is
about everything that can be indexed with Wordnet and this includes scene-
level classes such as streets, beaches, mountains, as well as category-level
classes and more speci�c objects such as US Presidents, astronomical objects
and Abyssinian cats.; (iii) At present we do not remove inter-word duplicates
since identifying them in our dataset is non-trivial.
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The accuracy of online searchers also varies depending on
which terms were used for the query. Fig. 2(c) shows that the
noise varies for different levels of the Wordnet tree, beingmore
accurate when getting close to the leaves of the tree. Fig. 2(d)
shows a subset of the Wordnet tree used to build our dataset (the
full tree contains> 40,000 leaves). The number and color at each
node corresponds to the percentage of images correctly assigned
to the leaves of each node. The more speci�c are the terms, the
more likely are the images to correspond to the query.

Various methods exist for cleaning up the data by removing
images visually unrelated to the query word. Berg and Forsyth
[7] have shown a variety of effective methods for doing this with
images of animals gathered from the web. Berg et al. [6] showed
how text and visual cues could be used to cluster faces of people
from cluttered news feeds. Fergus et al. [16] have shown the use
of a variety of approaches for improving Internet image search
engines. Li et al. [26] show further approaches to decreasing label
noise. However, due to the extreme size of our dataset, it is not
practical to employ these methods. In Section 5, we show that
reasonable recognition performances can be achieved despite the
high labeling noise.

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

Despite32� 32 being very low resolution, each image lives in
a space of3072 dimensions. This is a very large space — if each
dimension has8 bits, there are a total of107400 possible images.
This is a huge number, especially if we consider that a human in
a 100 years only gets to see1011 frames (at 30 frames/second).
However, natural images only correspond to a tiny fraction of this
space (most of the images correspond to white noise), and it is
natural to investigate the size of that fraction. A number ofstudies
[10], [25] have been devoted to characterize the space of natural
images by studying the statistics of small image patches. However,
low-resolution scenes are quite different to patches extracted by
randomly cropping small patches from images.

Given a similarity measure, the question that we want to answer
is: how many images are needed so that, for any given query
image, we can always �nd a neighbor with the same class label?
Note that we are concerned solely with recognition performance,
not with issues of intrinsic dimensionality or the like as explored
in other studies of large collection of image patches [10], [25].
In this section, we explore how the probability of �nding images
with a similar label nearby increases with the size of the dataset.
In turn, this tells us how big the dataset needs to be to give a
robust recognition performance.

A. Distribution of neighbors as a function of dataset size

As a �rst step, we use the sum of squared differences (SSD)
to compare two images. We will de�ne later other similarity
measures that incorporate invariances to translations andscaling.
The SSD between two imagesI 1 andI 2 (normalized to have zero
mean and unit norm)4 is:

D 2
ssd =

X

x;y;c

(I 1(x; y; c) � I 2(x; y; c)) 2 (1)

Computing similarities among7:9 � 107 images is computa-
tionally expensive. To improve speed, we index the images using

4Normalization of each image is performed by transforming the image into
a vector concatenating the three color channels. The normalization does not
change image color, only the overall luminance.

the �rst 19 principal components of the7:9 � 107 images (19
is the maximum number of components per image such that the
entire index structure can be held in memory). The1=f 2 property
of the power spectrum of natural images means that the distance
between two images can be approximated using few principal
components (alternative representations using wavelets [42] could
also be used in place of the PCA representation). We compute
the approximate distancêD 2

ssd = 2 � 2
P C

n =1 v1(n)v2(n), where
vi (n) is thenth principal component coef�cient for thei th image
(normalized so that

P

n vi (n)2 = 1 ), and C is the number of
components used to approximate the distance. We de�neSN as
the set ofN exact nearest neighbors and̂SM as the set ofM
approximate nearest neighbors.

Fig. 3(a) shows the probability that an image, of indexi , from
the setSN is also insideŜM : P(i 2 ŜM ji 2 SN ). The plot
corresponds toN = 50 . For the experiments in this section, we
used 200 images randomly sampled from the datasets and for
which we computed the exact distances to all the7:9� 107 images.
Many images on the web appear multiple times. For the plots in
these �gures, we have removed manually all the image pairs that
were duplicates.

Fig. 3(b) shows the number of approximate neighbors (M ) that
need to be considered as a function of the desired number of exact
neighbors (N ) in order to have a probability of0:8 of �nding
N exact neighbors. As the dataset becomes larger, we need to
collect more approximate nearest neighbors in order to havethe
same probability of including the �rstN exact neighbors.

For the experiments in this paper, we use the following proce-
dure. First, we �nd the closest 16,000 images per image. From
Fig. 3(a) we know that more than 80% of the exact neighbors
will be part of this approximate neighbor set. Then, within the
set of 16,000 images, we compute the exact distances to provide
the �nal rankings of neighbors. Exhaustive search, used in all
our experiments, takes30 seconds per image using the principle
components method. This can be dramatically improved through
the use of a kd-tree to0:3 seconds per query, if fast retrieval
performance is needed. The memory overhead of the kd-tree
means that only17 of the 19 PCA components can be used.
Devising ef�cient indexing methods for large image databases
[30], [19], [40] is a very important topic of active researchbut it
is not the focus of this paper.

Fig. 4 shows several plots measuring various properties as the
size of the dataset is increased. The plots use the normalized
correlation � between images (note thatD 2

ssd = 2(1 � � )). In
Fig. 4(a), we show the probability that the nearest neighborhas
a normalized correlation exceeding a certain value. Each curve
corresponds to a different dataset size. Fig. 4(b) shows a vertical
section through Fig. 4(a) at the correlations0:8 and0:9, plotting
the probability of �nding a neighbor as the number of images in
the dataset grows. From Fig. 4(b) we see that a third of the images
in the dataset are expected to have a neighbor with correlation
> 0:8.

In Fig. 4(c) we explore how the plots shown in Fig. 4(a) & (b)
relate to recognition performance. Three human subjects labeled
pairs of images as belonging to the same visual class or not
(pairs of images that correspond to duplicate images are removed).
The plot shows the probability that two images are labeled as
belonging to the same class as a function of image similarity.
As the normalized correlation exceeds0:8, the probability of
belonging to the same class grows rapidly. Hence a simple K-
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nearest-neighbor approach might be effective with our sizeof
dataset. We will explore this further in Section V.

B. Image similarity metrics

We can improve recognition performance using better measures
of image similarity. We now introduce two additional similarity
measures between a pair of normalized imagesI 1 and I 2, that
incorporate invariances to simple spatial transformations.

� In order to incorporate invariance to small translations,
scaling and image mirror, we de�ne the similarity measure:

D 2
warp = min

�

X

x;y;c

(I 1(x; y; c) � T� [I 2(x; y; c)]) 2 (2)

In this expression, we minimize the similarity by transform-
ing I 2 (horizontal mirror; translations and scaling up to10
pixel shifts) to give the minimum SSD. The transformation
parameters� are optimized by gradient descent [29].

� We allow for additional distortion in the images by shifting
every pixel individually within a5 by 5 window to give
minimum SSD. This registration can be performed with
more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D 2
shift = min

jD x;y j� w

X

x;y;c

(I 1(x; y; c) � Î 2(x + D x ; y + D y ; c)) 2

(3)
In order to get better matches, we initializeI 2 with the
warping parameters obtained after optimization ofD warp,
Î 2 = T� [I 2].

Fig. 5 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure.The
�gure shows two candidate neighbors: one matching the target
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Fig. 5. a) Image matching using distance metricsD ssd, D warp and D shift. Top row: after transforming each neighbor by the optimal transformation; the
sunglasses always results in a poor match. However, for the car example on the bottom row, the matched image approximatesthe pose of the target car. b)
Sibling sets from 79,302,017 images, found with distance metrics D ssd, andD shift. D shift provides better matches thanD ssd.
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Fig. 6. As we increase the size of the dataset from105 to the108 images, the quality of the retrieved set increases dramatically. However, note that we need
to increase the size of the dataset logarithmically in orderto have an effect. These results are obtained usingD shift as a similarity measure between images.

semantic category and another one that corresponds to a wrong
match. ForD warp and D shift we show the closest manipulated
image to the target.D warp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target.D shift further optimizes the warping provided byD warp

by allowing pixels to move in order to minimize the distance with
the target.

Fig. 5(b) shows two examples of query images and the retrieved
neighbors (sibling set), out of 79,302,017 images, usingD ssd and
D shift. For speed we use the same low dimensional approximation
as described in the previous section by evaluatingD warp and
D shift only on the �rst 16,000 candidates. This is a good indexing
scheme forD warp, but it results in slightly decrease of performance
for D shift which would require more neighbors to be considered.
Despite this, both measures provide good matches, butD shift

returns closer images at the semantic level. This observation will
be quanti�ed in Section V. Fig. 6 shows examples of query images
and sets of neighboring images, from our dataset of 79,302,017
images, found usingD shift.

V. RECOGNITION

A. Wordnet voting scheme

We now attempt to use our dataset for object and scene
recognition. While an existing computer vision algorithm could
be adapted to work on32� 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
D ssd, D warp or D shift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given
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Fig. 7. This �gure shows two examples. (a) Query image. (b) First 16 of 80 neighbors found usingD shift. (c) Ground truth Wordnet branch describing
the content of the query image at multiple semantic levels. (d) Sub-tree formed by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most votes. Note that this branch substantially agrees with the branch for vise and
for person in the �rst and second examples respectively.

query image with some semantic connection to it. The goal of
this section is to show that the performance achieved can match
that of sophisticated algorithms which use much smaller training
sets.

An additional factor in our dataset is the labeling noise. Tocope
with this we propose a voting scheme based around the Wordnet
semantic hierarchy. Wordnet [15] provides semantic relationships
between the 75,062 nouns for which we have collected images.
For simplicity, we reduce the initial graph-structured relationships
between words to a tree-structured one by taking the most
common meaning of each word. The result is a large semantic tree
whose nodes consist of the 75,062 nouns and their hypernyms,
with all the leaves being nouns Fig. 7(c) shows the unique branch
of this tree belonging to the nouns “vise” and “chemist”. Other
work making use of Wordnet includes Hoogs and Collins [23]
who use it to assist with image segmentation. While not using
Wordnet explicitly, Barnard et al. [3] and Carbonetto et al.[8]
learn models using both textual and visual cues.

Given the large number of classes in our dataset (75,062)
and their highly speci�c nature, it is not practical or desirable
classify each of the classes separately. Instead, using theWordnet
hierarchy, we can perform classi�cation at a variety of different
semantic levels. So instead of just trying to recognize the noun
“yellow�n tuna”, we may also perform recognition at the level
of “tuna” or “�sh” or “animal”. This is in contrast to current
approaches to recognition that only consider a single, manually
imposed, semantic meaning of an object or scene.

If classi�cation is performed at some intermediate semantic
level, for example using the noun “person”, we need not only
consider images gathered from the Internet using “person”.Using
the Wordnet hierarchy tree, we can also draw on all images
belonging to nouns whose hypernyms include “person” (for
example, “arithmetician”). Hence, we can massively increase the
number of images in our training set at higher semantic levels.
Near the top of the tree, however, the nouns are so generic
(e.g. “object”) that the child images recruited in this manner have
little visual consistency, so despite their extra numbers may be of

little use in classi�cation5.
Our classi�cation scheme uses the Wordnet tree in the follow-

ing way. Given a query image, the neighbors are found using
some similarity measure (typicallyD shift) . Each neighbor in turn
votes for its branch within the Wordnet tree. Votes from the entire
sibling set are accumulated across a range of semantic levels,
with the effects of the labeling noise being averaged out over
many neighbors. Classi�cation may be performed by assigning
the query image the label with the most votes at the desired
height (i.e. semantic level) within the tree, the number of votes
acting as a measure of con�dence in the decision. In Fig. 7(a)
we show two examples of this procedure, showing how precise
classi�cations can be made despite signi�cant labeling noise and
spurious siblings. Using this scheme we now address the taskof
classifying images of people.

B. Person detection

In this experiment, our goal is to label an image as containing
a person or not, a task with many applications on the web and
elsewhere. A standard approach would be to use a face detector
but this has the drawback that the face has to be large enough to
be detected, and must generally be facing the camera. While these
limitations could be overcome by running multiple detectors, each
tuned to different view (e.g. pro�le faces, head and shoulders,
torso), we adopt a different approach.

As many images on the web contain pictures of people, a large
fraction (23%) of the 79 million images in our dataset have people
in them. Thus for this class we are able to reliably �nd a highly
consistent set of neighbors, as shown in Fig. 8. Note that most
of the neighbors match not just the category but also the location
and size of the body in the image, which varies considerably in
the examples.

To classify an image as containing people or not, we use
the scheme introduced in Section V-A, collecting votes from

5The use of Wordnet tree in this manner implicitly assumes that semantic
and visual consistency are tightly correlated. While this might be the case for
certain nouns (for example, “poodle” and “dachshund”), it is not clear how true
this is in general. To explore this issue, we constructed an interactive poster
that may be viewed at:http:\\people.csail.mit.edu\torralba\
tinyimages .
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Fig. 8. Some examples of test images belonging to the “person” node of the Wordnet tree, organized according to body size.Each pair shows the query
image and the 25 closest neighbors out of79 million images usingD shift with 32 � 32 images. Note that the sibling sets contain people in similarposes,
with similar clothing to the query images.
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Fig. 9. (a) Examples showing the fraction of the image occupied by the head. (b)–(d): ROC curves for people detection (notlocalization) in images drawn
randomly from the dataset of 79 million as a function of (b) head size; (c) similarity metrics and (d) dataset size usingD shift.

the 80 nearest neighbors. Note that the Wordnet tree allows us
make use of hundreds of other words that are also related to
“person” (e.g. artist, politician, kid, taxi driver, etc.). To evaluate
performance, we used two different sets of test images. The �rst
consisted of a random sampling of images from the dataset. The
second consisted of images returned by Altavista using the query
“person”.

1) Evaluation using randomly drawn images:1125 images
were randomly drawn from the dataset of 79 million (Fig. 8
shows 6 of them, along with some of their sibling set). For
evaluation purposes, any people within the 1125 images were
manually segmented6.

Fig. 9(b) shows the classi�cation performance as the size of
the person in the image varies. When the person is large in the
image, the performance is signi�cantly better than when it is
small. This occurs for two reasons: �rst, when the person is large,
the picture become more constrained, and hence �nding good
matches becomes easier. Second, the weak labels associatedwith
each image in our dataset typically refer to the largest object in
the image. Fig. 9(c)&(d) show precision-recall curves for different
similarly measures and varying dataset size respectively,with the
full 79 million images andD shift yielding the best performance.

6The images and segmentations are available at:http://labelme.
csail.mit.edu/browseLabelMe/static_web_tinyimages_
testset.html

2) Evaluation using Altavista images:Our approach can also
be used to improve the quality of Internet image search engines.
We gathered 1018 images from Altavista image search using the
keyword “person”. Each image was classi�ed using the approach
described in Section V-A. The set of 1018 images was then
re-ordered according to the con�dence of each classi�cation.
Fig. 10(a) shows the initial Altavista ranking while Fig. 10(b)
shows the re-ordered set, showing a signi�cant improvementin
quality.

To quantify the improvement in performance, the Altavista
images were manually annotated with bounding boxes around any
people present. Out of the 1018 images, 544 contained people,
and of these, 173 images contained people occupying more than
20% of the image.

Fig. 10 shows the precision-recall curves for the people de-
tection task. Fig. 10(c) shows the performance for all Altavista
images while Fig. 10(d) shows the performance on the subset
where people occupy at least 20% of the image. Note that the
raw Altavista performance is the same irrespective of the persons'
size (in both plots, by 5% recall the precision is at the level
of chance). This illustrates the difference between indexing an
image using non visual vs. visual cues. Fig. 10 also shows the
results obtained when running a frontal face detector (an OpenCV
implementation of Viola and Jones boosted cascade [27], [41]).
We run the face detector on the original high-resolution images.
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Fig. 10. (a) The �rst 70 images returned by Altavista when using the query “person” (out of 1018 total). (b) The �rst 70 images after re-ordering using
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Note that the performance of our approach working on32 � 32
images is comparable to that of the dedicated face detector on
high resolution images. For comparison, Fig. 10 also shows the
results obtained when running the face detector on low-resolution
images (we downsampled each image so that the smallest axis has
32 pixels, we then upsampled the images again to the original
resolution using bicubic interpolation. The upsampling operation
was to allow the detector to have suf�cient resolution to be able
to scan the image.). The performance of the OpenCV detector
drops dramatically with low-resolution images.

C. Person localization

While the previous section was concerned with an object
detection task, we now address the more challenging problem
of object localization. Even though the tiny image dataset has not
been labeled with the location of objects in the images, we can use
the weakly labeled (i.e. only a single label is provided for each
image) dataset to localize objects. Much the recent work in object
recognition uses explicit models that labels regions of images
as being object/background. In contrast, we use the tiny image
dataset to localize without learning an explicit object model. It is
important to emphasize that this operation is performed without
manual labeling of images: all the information comes from the
loose text label associated with each image.

The idea is to extract multiple putative crops of the high
resolution query image (Fig. 11(a)–(c)). For each crop, we resize
it to 32 � 32 pixels and query the tiny image database to obtain
it's siblings set (Fig. 11(d)). When a crop contains a person, we
expect the sibling set to also contain people. Hence, the most
prototypical crops should get have a higher number of votes for
the person class. To reduce the number of crops that need to
be evaluated, we �rst segment the image using normalized cuts
[11], producing around 10 segments (segmentation is performed
on the high resolution image). Then, all possible combinations
of contiguous segments are considered, giving a set of putative
crops for evaluation. Fig. 11 shows an example of this procedure.
Fig. 11(d) shows the best scoring bounding box for images from
the Altavista test set.

D. Scene recognition

Many web images correspond to full scenes, not individual
objects. In Fig. 12, we attempt to classify the 1125 randomly
drawn images (containing objects as well as scenes) into “city”,

“river”, “�eld” and “mountain” by counting the votes at the
corresponding node of the Wordnet tree. Scene classi�cation for
the 32x32 images performs surprisingly well, exploiting the large,
weakly labeled database.
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Fig. 12. Scene classi�cation using the randomly drawn 1125 image test set.
Note that the classi�cation is “mountain” vs all classes present in the test set
(which includes many kinds of objects), not “mountain” vs “�eld”, “city”,
“river” only. Each quadrant shows some examples of high scoring images
for that particular scene category, along with an ROC curve (yellow = 7,900
image training set; red = 790,000 images; blue = 79,000,000 images).

E. Automatic image annotation and dataset size

Here we examine the classi�cation performance at a variety
of semantic levels across many different classes as we increase
the size of the database. For evaluation we use the test set
of 1125 randomly drawn tiny images, with each image being
fully segmented and annotated with the objects and regions that
compose each image. To give a distinctive test set, we only use
images for which the target object is absent or occupies at least
20% of the image pixels. Using the voting tree described in
Section V-A, we classi�ed them usingK = 80 neighbors at a
variety of semantic levels. To simplify the presentation ofresults,
we collapsed the Wordnet tree by hand (which had19 levels)
down to 3 levels (see Fig. 13 for the list of categories at each
level).

In Fig. 13 we show the average ROC curve area (across words
at that level) at each of the three semantic levels forD ssdandD shift

as the number of images in the dataset is varied. Note that (i)
the classi�cation performance increases as the number of images
increases; (ii)D shift outperformsD ssd; (iii) the performance drops
off as the classes become more speci�c. A similar effect of dataset
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Fig. 11. Localization of people in images. (a) input image, (b) Normalized-cuts segmentation, (c) three examples of candidate crops, (d) the 6 nearest
neighbors of each crop in (c), accompanied by the number of votes for the person class obtained using 80 nearest neighborsunder similarity measureD shift.
(e) Localization examples.
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size has already been shown by the language understanding
community[2].

By way of illustrating the quality of the recognition achieved
by using the 79 million weakly labeled images, we show in
Fig. 14, for categories at three semantic levels, the images
that were more con�dently assigned to each class. Note that
despite the simplicity of the matching procedure presentedhere,
the recognition performance achieves reasonable levels even for
relatively �ne levels of categorization.
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Fig. 15. Distribution of labels in image datasets. The vertical axis gives the
percentage of polygons in the two datasets containing each object category
(objects are sorted by frequency rank). The plot is in log-log axis.

VI. T HE IMPORTANCE OF SOPHISTICATED METHODS FOR

RECOGNITION

The plot in Fig. 15 shows the frequency of objects in the
tiny images database (this distribution is estimated usingthe
hand labeled set of 1148 images). This distribution is similar to
word frequencies in text (Zipf's law). The vertical axis shows the
percentage of annotated polygons for each object category.The
horizontal axis is the object rank (objects are sorted by frequency).
The four most frequent objects are people (29%), plant (16%), sky
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Fig. 14. Test images assigned to words, ordered by con�dence. The number indicates the total number of positive examplesin the test set out of the 1148
images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red). The middle row shows the ROC curves for three
dataset sizes (yellow = 7,900 image training set; red = 790,000 images; blue = 79,000,000 images). The bottom row shows the corresponding precision-recall
graphs.

(9%) and building (5%). In the same plot we show the distribution
of objects in the LabelMe dataset [35]. Similar distributions are
also obtained from datasets collected by other groups [38].As the
distribution from Fig. 15 reveals, even when collecting extremely
large databases, there will always be a large number of categories
with very few training samples available. For some classes,a large
amount of training data will be available and, as we discuss in this
paper, nearest neighbor methods can be very effective. However,
for many other classes learning will have to be performed with
small datasets (for which we need to use sophisticated object
models and transfer learning techniques).

VII. C ONCLUSIONS

This paper makes the following important contributions: a)The
compilation of a dataset of 79 million32� 32 color images, each
with a weak text label and link to the original image. b) The
characterization of the manifold of32� 32 images, showing that
Internet sized datasets (108–109) yield a reasonable density over
the manifold of natural images, at least for the purposes of object
recognition. c) Showing that simple non-parametric methods, in
conjunction with large datasets, can give reasonable performance
on object recognition tasks. For richly represented classes, such
as people, the performance is comparable to leading class-speci�c
detectors.

Previous usage of non-parametric approaches in recognition
have been con�ned to limited domains (e.g. pose recognition
[36]) compared with the more general problems tackled in this
paper, the limiting factor being the need for very large amounts
of data. The results obtained using our tiny image dataset are
an encouraging sign that the data requirements may not be
insurmountable. Indeed, search engines such as Google index
another 2–3 orders of magnitude more images, which could yield
a signi�cant improvement in performance.

In summary, all methods in object recognition have two com-
ponents: the model and the data. The vast majority of the effort in
recent years has gone into the modeling part – seeking to develop
suitable parametric representations for recognition. In contrast,
this paper moves into other direction, exploring how the data

itself can help to solve the problem. We feel the results in this
paper warrant further exploration in this direction.
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